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Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion
between [1-13C]pyruvate and downstreammetabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through
kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this
work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways
present inMR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic
metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the
hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting
small physiological differences in the targetmetabolism. In comparison to the two-site exchangemodels, themultisitemodel yielded
metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-
to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values.
Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in
different tissues.

1. Introduction

While 13Cmagnetic resonance spectroscopy (MRS) has been
utilized for in vivo imaging and spectroscopy of metabolism
[1] for a long time, only the development of dynamic nuclear
polarization (DNP) helped to overcome the inherent sensitiv-
ity limit; as through hyperpolarization using DNP followed
by rapid dissolution, the 13C MR signal can be amplified by
more than 10,000-fold [2].

One of the most common and viable agents for in vivo
use is [1-13C]pyruvate (PYR) [3]. After intravenous injection,
it is transported to the observed tissue or organ under

observation, where it is enzymatically metabolized to its
downstream metabolites [1-13C]alanine (ALA) by alanine
transaminase (ALT), [1-13C]lactate (LAC) by lactate dehy-
drogenase (LDH), and [

13C]bicarbonate (BC) by pyruvate
dehydrogenase (PDH) to varying extent, depending on tissue
type and predominant metabolic activity. At the same time
PYR is in chemical exchange with [1-13C]pyruvate-hydrate
(PYRH). As part of gluconeogenesis, PYR may also be car-
boxylated to oxaloacetate [4].

In order to quantify themetabolic exchange between PYR
and its downstream metabolites, MRS data acquired over a
certain time period after injection first require assignment of
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spectral peaks [5] in the spectral domain and second require
quantification of these peaks over time. Several different
methods have been used for this time-domain analysis, and
among these the most simple and robust method is the
determination of metabolite signal ratios. These ratios are
usually obtained from the peak metabolite signals [6] or
through integrating over time [5]. The latter approach has
been employed in our previous study, conducted by Janich
et al. [5], where hyperpolarized PYR spectra were quantified
for different PYR doses and subsequently used to determine
the dose effects on Wistar rats based on time integrated
metabolite signal ratios.

Although the approach of obtaining relative metabolite
signal ratios, LAC to PYR or ALA to PYR, is straightforward
and robust, independently if obtained from peak signal or
time integrals, the results suffer from an increasingly strong
𝑇
1
weighting of the integral, which skews the resulting ratios.

Furthermore, although time-domain visualization and signal
ratio determination is an effective tool for assessing the effect
of different PYRdoses, it provides no quantitative kinetic data
of metabolic exchange.

In order to achieve this quantification, different methods
for kinetic modeling of hyperpolarized 13C MR data have
been reported. Most approaches, derived from the modified
Bloch equations, represent a two-site interaction between
PYR and one specific downstream metabolite, for example,
either LAC or ALA [7–14]. Modeling can be extended to
include more sites (intra- and extracellular) or more metabo-
lites [9, 12] (for a comprehensive comparison, see [15]).
Even so, presumably for robustness, previous work focuses
primarily on fitting data with just one downstream metabo-
lite, keeping most parameters fixed, or even model free,
based on signal ratios [5, 16, 17]. When PYR is injected and
the corresponding metabolic reactions begin to take place,
PYR is not metabolized exclusively into ALA (or LAC),
but it changes dynamically into all of the aforementioned
downstream metabolites [18]. There is furthermore some
skepticism, if the implicit assumption of rate constant stability
holds in all applications [17] and there are few analyses on
model parameter dependence on SNR [19]. In particular,
metabolic conversion in the heart predominantly follows the
PDH path producing BC [6, 20]. We therefore hypothesize
that the simultaneous consideration of various metabolic
pathways is necessary to obtain an accurate evaluation of in
vivo metabolic conversion rates. On this basis, we propose
using a mathematical framework for multisite modeling
(similar to [8, 21, 22]) by simultaneously fitting different
possible 13Cmetabolic pathways for PYR, which can typically
be observed after injection of pyruvate labeled in the [1-13C]
position.

Additionally, although our prior work [5] evaluates quan-
tification of spectra and employed a semiquantitativemethod
to investigate metabolic conversion under different PYR
doses (based onmetabolite to PYR ratios), it does not provide
fully quantitative kinetic data. Therefore, in this subsequent
work we employ the experimental data obtained in [5] and
implement the proposed multisite, dynamic model to deter-
mine metabolic conversion and signal decay rates for full

quantification of the kinetics of metabolic conversion. Fur-
thermore, the proposed model gives access to effective lon-
gitudinal relaxation times (𝑇

1eff), both for PYR and for the
downstream metabolites.

Using the identical biological data, the kinetic parameters
estimated by the multisite model are then compared to the
parameters obtained using the two-site models proposed
both in [8] and in [23]. The estimated parameters of all mod-
els are also compared between the three different doses uti-
lized in [5], that is, 20, 40, and 80mM (corresponding to 0.1,
0.2, and 0.4mmol/kg bodyweight) of PYR, in order to eval-
uate the capability of the model for the assessment of dose
response. As identical data is used, the evaluation allows
for direct assessment of kinetic model stability and quality.
Ideally, a successful kinetic model would allow the reduction
of data variability due to modeling to a minimum, allowing
the visualization of biological variability (i.e., as a response to
dose treatment, etc.). In addition, using simulated metabolic
data based on exemplary conversion rates, we assessed the
variability and stability of the kinetic models under the influ-
ence of noise. Here, the expectation towards a model is that
both systematic bias and standard deviation of the resulting
metabolic conversion rates should be as low as possible over
a large range of signal-to-noise ratio (SNR).

2. Theory

In our previous study [5], MRS spectral data after injection
of pyruvate was acquired and analyzed utilizing time-domain
fitting with AMARES [24], resulting in a time course ofmeta-
bolite levels. To quantify the metabolic conversion, this pre-
vious study employed integrated metabolite signal ratios. In
the following paragraphs, we will compare this simple inte-
grative approach to kinetic modeling using three different
approaches, which are two-site exchange differential model,
two-site exchange integral model, and multisite exchange
integral model.

2.1. Two-Site Exchange Differential Model. Using a two-site
exchange differential model (2SDM) allows computingmeta-
bolic exchange rates 𝑘pyr→𝑥 and the respective metabolite’s
effective signal decay rates 𝑟

𝑥
by solving a system of linear

equations given in differential form
𝑑𝑀
𝑥
(𝑡)

𝑑𝑡
= −𝑟
𝑥
𝑀
𝑥
(𝑡) + 𝑘pyr→𝑥𝑀pyr (𝑡) . (1)

The effective metabolite signal decay rate 𝑟
𝑥
is dominated by

𝑇
1
relaxation, the respective backward metabolic exchange

rate 𝑘
𝑥→ pyr, and a flip angle (FA) term, which also depends

on the repetition time (TR), accounting for the irreversible
consumption of signal after successive excitations:

𝑟
𝑥
=

1

𝑇
𝑥

+ 𝑘
𝑥→ pyr + 𝑓 (FA) (2)

with

𝑓 (FA) = 1 − cos (FA)
TR

. (3)

Hence, 𝑟
𝑥
results in a single, inseparable term of signal decay.

However, FA and TR are known from experimentation and
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can be corrected for. In case the backward exchange rate
𝑘
𝑥→ pyr is assumed to be negligible, true 𝑇

1
relaxation times

can be quantified; however, it remains unclear whether this
assumption holds true in all physiological states of the animal.

2SDM does not assume a PYR input function and for
that reason the first order differential equation (1) can be
solved as a linear system. This approach is independent
of the time course of PYR administration and is therefore
straightforward to apply.

2.2. Two-Site Exchange Integral Model. Another approach
in kinetic modeling, the two-site exchange integral model
(2SIM), assumes a PYR input function that represents the
PYR signal in time (𝑀pyr(𝑡)). In Zierhut et al. [8] a series of
piecewise defined exponential equations were presented:

𝑀pyr (𝑡) =
{{

{{

{

𝐼pyr

𝑟pyr
[1 − 𝑒

−𝑟pyr(𝑡−𝑡arrival)] , 𝑡arrival ≤ 𝑡 < 𝑡end,

𝑀pyr (𝑡end) 𝑒
−𝑟pyr(𝑡−𝑡end), 𝑡 ≥ 𝑡end.

(4)

The first part of the equation takes into account PYR signal
loss due to 𝑟pyr and the injection of PYR with a constant
rate 𝐼pyr from the arrival time 𝑡arrival until 𝑡end. It nevertheless
assumes that no conversion of PYR takes place during injec-
tion. The second part, for all time measurements later than
𝑡end, is characterized only by the PYR signal loss. In a similar
manner, an assumption on the initial PYR concentration can
be made instead of an assumption on the input function,
leading to the modeling of only the exponential decay, as
shown in [25]. Explicit modeling of𝑀pyr allows for (1) to be
solved yielding metabolite signals in time [8]:

𝑀
𝑥
(𝑡)

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝑘pyr→𝑥𝐼pyr

𝑟pyr − 𝑟𝑥
[
1 − 𝑒
−𝑟
𝑥
(𝑡−𝑡arrival)

𝑟
𝑥

−
1 − 𝑒
−𝑟pyr(𝑡−𝑡arrival)

𝑟pyr
] ,

𝑡arrival ≤ 𝑡 < 𝑡end,

𝑀pyr (𝑡end) ∗ 𝑘pyr→𝑥

𝑟pyr − 𝑟𝑥
[𝑒
−𝑟
𝑥
(𝑡−𝑡end) − 𝑒

−𝑟pyr(𝑡−𝑡end)]

+𝑀
𝑥
(𝑡end) 𝑒

−𝑟
𝑥
(𝑡−𝑡end),

𝑡 ≥ 𝑡end.

(5)

Alongside the parameters characterizing the PYR input func-
tion, these equations contain the same parameters (𝑘pyr→𝑥
and 𝑟
𝑥
) that were solved for using 2SDM.

2SIM can be considered as a two-step approach. First,
𝑡arrival, 𝑟pyr, and 𝐼pyr are determined by fitting (4) to the mea-
sured PYR signal. 𝑡end is simply calculated by summing 𝑡arrival
and the known injection duration. These parameters are
then utilized to fit (5) to the LAC and ALA signals. In [6],
this model is also utilized to fit the BC signal. Finally the
computed metabolic exchange rates 𝑘pyr→𝑥, the decay rate
𝑟pyr, and the flip angle correction (3) can be used to estimate
apparent 𝑇

1
relaxation of PYR.

2.3. Multisite Exchange Integral Model. As described above,
the metabolite signal decay rate 𝑟

𝑥
depends on 𝑇

1
relaxation,

backward metabolic exchange rates 𝑘
𝑥→ pyr, and signal loss

from flip angle variations. On the other hand, the PYR signal
decay 𝑟pyr does not depend on backwardmetabolic exchange,
but on forward metabolic exchange rates 𝑘pyr→𝑥. This signi-
fies that the rate of PYR decay is also proportional to the rate
of PYR downstream conversion.

Hence, when passing from 2SIM to a multisite exchange
integral model (MSIM), the PYR input function (4)—repre-
sented in its differential form—needs to include all of the
metabolic exchange rates:

𝑑𝑀pyr (𝑡)

𝑑𝑡
=

{{{{{{{

{{{{{{{

{

−𝑟pyr𝑀pyr (𝑡) − ∑
𝑥

𝑘pyr→𝑥𝑀pyr (𝑡) + 𝐼pyr,

𝑡arrival ≤ 𝑡 < 𝑡end,

−𝑟pyr𝑀pyr (𝑡) − ∑
𝑥

𝑘pyr→𝑥𝑀pyr (𝑡) ,

𝑡 ≥ 𝑡end.

(6)

Note that both the PYR signal decay rate 𝑟pyr and the sum of
all of the metabolic exchange rates ∑

𝑥
𝑘pyr→𝑥 are multiplied

by the same term𝑀pyr(𝑡) and can therefore be grouped into
a total PYR signal decay rate:

𝑅pyr = 𝑟pyr +∑
𝑥

𝑘pyr→𝑥. (7)

By replacing (7) in (6), the integral formof the newPYR input
function reads

𝑀pyr (𝑡) =
{{

{{

{

𝐼pyr

𝑅pyr
[1 − 𝑒

−𝑅pyr(𝑡−𝑡arrival)] , 𝑡arrival ≤ 𝑡 < 𝑡end,

𝑀pyr (𝑡end) 𝑒
−𝑅pyr(𝑡−𝑡end), 𝑡 ≥ 𝑡end.

(8)

The representation of the total PYR relaxation rate 𝑅pyr as the
sum of the PYR relaxation rate and the metabolic conversion
rates allows for a simultaneous fitting process, where the
conversion rates are taken into account also in the PYR
input function, creating dependent curves and a parameter
interdependency. In addition, the estimation of 𝑇

1
values for

PYR can be achieved directly using
1

𝑇
1pyr

= 𝑟pyr − 𝑓 (FA) . (9)

Utilizing the same𝑅pyr term for themetabolite signals, (5)
becomes
𝑀
𝑥
(𝑡)

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝑘pyr→𝑥𝐼pyr

𝑅pyr − 𝑟𝑥
[
1 − 𝑒
−𝑟
𝑥
(𝑡−𝑡arrival)

𝑟
𝑥

−
1 − 𝑒
−𝑅pyr(𝑡−𝑡arrival)

𝑅pyr
] ,

𝑡arrival ≤ 𝑡 < 𝑡end,

𝑀pyr (𝑡end) ∗ 𝑘pyr→𝑥

𝑅pyr − 𝑟𝑥
[𝑒
−𝑟
𝑥
(𝑡−𝑡end) − 𝑒

−𝑅pyr(𝑡−𝑡end)]

+𝑀
𝑥
(𝑡end) 𝑒

−𝑟
𝑥
(𝑡−𝑡end),

𝑡 ≥ 𝑡end.

(10)
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As seen in (2), the backward exchange rates are inseparably
confounded with 𝑇

1
in the respective signal decay rate 𝑟

𝑥

of each metabolite. A nonnegligible backward reaction thus
leads to an overestimation of the true 𝑇

1
values for all of

the downstream metabolites. For LAC, the overestimation
might be considered negligible since the backward reaction
was reported to have only a very small effect on kinetics [26],
although earlier work indicates upregulated gluconeogenesis
in liver-metabolism of tumor-bearing rats [27]. The assump-
tion of negligible backward reactions might also not hold for
ALA. There is no need to apply a backward exchange to BC;
however, depending on pH, it is breathed out as 13CO

2
and

this could lead to an apparent shortening in 𝑇
1
. This signifies

that the 𝑇
1
values for ALA and BC obtained utilizing this

model can only be considered bounds for the true value.

3. Methods

3.1. Experimental Data. The experimental data was obtained
from healthy male Wistar rats through the acquisition of
slice-selective FID signals in heart, liver, and kidney tissue.
Three different hyperpolarized PYR concentrations (20, 40,
and 80mM, which correspond to an injected dose of 0.1,
0.2, and 0.4mmol/kg bodyweight) were utilized to measure a
total of 15 animals. Each dose was injected into five different
animals twice, resulting in a total of 10measurements for each
dose. A flip angle of 5∘ was utilized and TR was triggered
to animal breathing yielding an average value of ∼1 s. SNR
was calculated by dividing the maximum PYR signal by the
average noise for all time steps.More experimental details can
be directly found in [5].

Further exemplary data to evaluate modeling perfor-
mance at presence of pathology were obtained from adult
female Fischer 344 rats (Charles River, Sulzfeld, Germany)
beating subcutaneous mammary adenocarcinomas. The ani-
mals’ anesthesia was maintained with 1–3% isoflurane in
oxygen starting about 1 h before the first injection. During the
experiment, the heart rate, temperature, and breathing signal
were monitored using an animal monitoring system (SA
Instruments, Stony Brook, NY, USA). All 13C animal exper-
iments were approved by the regional governmental com-
mission for animal protection (Regierung von Oberbayern,
Munich, Germany). Two injections were performed using an
80mM concentration, allowing for direct comparison. For
this set of experiments, a flip angle of 10∘ was utilized and TR
was fixed to 1 s.

3.2. Data Processing. The experimental data 𝑦
𝑚,𝑖

with 𝑚 ∈

{lac, ala, pyr, bc} acquired at time steps 𝑡
𝑖
was fitted to MSIM

in a constrained least-squares sense; that is,

min
𝛽

𝑓 (𝛽) s.t. lb ≤ 𝛽 ≤ ub, (11)

with cost function

𝑓 (𝛽) = ∑
𝑚

∑
𝑖

(𝑦
𝑚,𝑖
−𝑀
𝑚
(𝑡
𝑖
, 𝛽))
2

, (12)

parameters 𝛽 = [𝑟lac, . . . , 𝑟bc, 𝑘pyr→ lac, . . . , 𝑘pyr→ bc, 𝐼pyr, 𝑡end],
and lower and upper bounds lb and ub, respectively. While

𝑡arrival was fixed to the time when the PYR signal reached
10% of its maximum peak value, 𝑡end was set as a fitting
parameter accounting for various injection times. On the
contrary, the implementation in [8] kept 𝑡end fixed while
fitting for 𝑡arrival. Even though the duration of the injection
was known, fixing 𝑡arrival in function of its peak value and
calculating 𝑡end as a parameter allowed for different delivery
and perfusion times. Delivery, perfusion, and export are
however not implicitly included in themodel. To improve the
convergence properties of the optimization, the gradient of
the cost function was calculated analytically. The optimiza-
tion was carried out using the MATLAB function fmincon
(MathWorks, Natick, MA, USA) employing the Trust Region
Reflective Algorithm and a function tolerance of 1𝐸 − 10.
The utilized bound constraints were set to physically relevant
limits: upper bounds of 0.1 s−1 for metabolic conversion rates
𝑘pyr→𝑥, since they have been reported to be of a smaller order
[8, 23], and of 0.005 s−1 for the decay rates 𝑟

𝑥
(equivalent to

a 200 s inverse effective signal decay rate) and lower bounds
establishing the positivity of all parameters. Note that the
optimization always converged far away from the bounds
and theywere only implemented for numerical improvement.
After optimization, 𝑇

1
values were estimated for all metabo-

lites from the effective signal decay rate (see (2) and (9)).
Initial conditions were fixed to expected normal parameters;
however, randomizing the starting guess in between bounds
and performing various iterations yielded comparable results.

Pyruvate-hydrate (PYRH), which is also present in spec-
troscopy, was not included in the minimization process. The
reason for this is that conversion between PYR and PYRH is
not enzymatic and we are interested in quantifyingmetabolic
rates that lead to a better understanding of enzymatic
activity. Additionally, since chemical exchange with PYRH
is instantaneous and almost in equilibrium, including PYR
would require adding three extra parameters to the mini-
mizationwithout providing additional information regarding
metabolic activity. In fact, if PYRH were to be included, the
immediate conversion of PYR to PYRH would lead to an
overestimation of the apparent metabolic rate, which in turn
would decrease all other parameters intrinsic in 𝑅pyr leading
to an overestimation of 𝑇

1
values for PYR.

The same reasoning holds for the exclusion of additional
pools. Although the MSIM model can be further extended
to include multiple pools [15, 22], including them only adds
variables to the minimization with no direct benefit to the
determination of enzymatic conversion rates.

4. Results

4.1. Convergence and Quality of Fit. Parameter fitting with
MSIM was shown to converge to an optimal point for every
set of experimental data. Figures 1(a)–1(c) show the fitted
curves of all metabolites for all models. The residuals for
every metabolite and every measurement in the time domain
were analyzed (Figures 1(d)–1(f)), and the error of the fitted
curves and computed parameters was determined based on
the parameter covariance matrix [28]. This error was utilized
to determine 95% confidence intervals on the fitted data (see
Figures 1(a)–1(c)).
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Figure 1: Example of metabolic data acquired for a 40mM (0.2mmol/kg) dose in kidney predominant tissue, fitted curves (solid lines) using
(a) MSIM, (b) 2SIM, and (c) 2SDM and 95% confidence intervals (dotted lines). (d–f) Residuals of fit.
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Table 1: Exemplary parameter estimates (± standard error) obtained from three different kinetic modeling methods for a 40mM
(0.2mmol/kg) dose of kidney predominant tissue.

Model MSIM 2SIM 2SDM
𝑘pyr→ lac [s

−1] 0.03194 ± 9.71𝐸 − 04 0.03202 ± 7.75𝐸 − 04 0.03448 ± 1.15𝐸 − 03

𝑘pyr→ ala [s
−1] 0.02507 ± 1.07𝐸 − 03 0.02518 ± 4.97𝐸 − 04 0.02832 ± 1.02𝐸 − 04

𝑘pyr→ bc [s
−1] 0.00379 ± 1.51𝐸 − 03 0.00381 ± 2.67𝐸 − 04 0.00392 ± 4.48𝐸 − 04

𝑇
1lac [s] 16.36 ± 0.620 16.28 ± 0.488 14.13 ± 0.629

𝑇
1ala [s] 14.48 ± 0.752 14.38 ± 0.552 12.18 ± 0.578

𝑇
1bc [s] 14.11 ± 4.78 14.11 ± 1.19 13.46 ± 2.051

𝑇
1pyr [s] 16.67 ± 0.676 16.82 ± 0.845 N/A∗
∗According to (1), 2SDM only fits for 𝑘pyr→𝑥 exchange rates and the corresponding 𝑇1 values.
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Figure 2: Metabolic conversion rates of LAC (left), ALA (center), and BC (right) obtained for heart, kidney, and liver predominant slices
at 20, 40, and 80mM concentrations (0.1, 0.2, and 0.4mmol/kg doses) for 2SDM (top), 2SIM (center), and MSIM (bottom). Every box plot
displays minima, 25th percentiles, medians, 75th percentiles, maxima, and outliers.

Note that for both MSIM and 2SIM the residuals have a
distinct pattern. The pattern indicates that a linear injection
rate does not fully model biological activity. In [9], the input
function is modeled as a trapezoidal instead of a linear input,
but the authors provide no residual analysis. On the other
hand, assuming no input function by establishing a fixed
initial PYR concentration [25] or solving the differential
linear systemmay not fully account for the entire kinetic time
course of the measured signals. In any case, this should be
considered as a limitation for both models.

4.2. Model Comparison. For all of the experimental data,
parameters were obtained utilizing the 2SDM, the 2SIM, and
the MSIM. While a single implementation of MSIM brought

forth parameter values for all downstream metabolites, an
independent implementation for LAC, ALA, and BC was
necessary in the two-site models. Since all three models were
applied on exactly the same experimental data, the com-
parison between them and to the results obtained for the
integrated metabolite signal ratios obtained from Janich et al.
[5] directly allows assessing model accuracy separated from
biological variability and experiment related inaccuracies like
low SNR levels. Results from one exemplary minimization
are shown in Table 1; Table 2 displays mean estimated 𝑇

1pyr
values for all experiments and their respective SNR levels; and
Figure 2 details the obtainedmetabolic conversion rates for all
three models.
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Table 2: 𝑇
1pyr calculated for MSIM and 2SIM and corresponding

SNR levels for all concentrations and slices (mean ± standard
deviation).

𝑇
1PYR (MSIM) 𝑇

1PYR (2SIM) SNR
20mMol

Heart 8.93 ± 2.68 9.04 ± 2.82 15.52 ± 3.87

Liver 22.14 ± 12.26 24.25 ± 14.28 8.62 ± 2.03

Kidney 27.63 ± 12.11 61.61 ± 91.27 11.63 ± 1.87

40mMol
Heart 10.02 ± 2.81 10.17 ± 2.88 44.57 ± 15.56

Liver 20.70 ± 3.72 22.83 ± 8.44 20.14 ± 6.36

Kidney 21.11 ± 7.04 21.73 ± 9.20 27.58 ± 5.38

80mMol
Heart 10.85 ± 5.98 10.94 ± 6.11 84.65 ± 32.32

Liver 25.75 ± 7.90 25.88 ± 7.89 23.06 ± 14.60

Kidney 20.69 ± 10.38 20.00 ± 10.33 29.61 ± 12.95

Conversion rates and 𝑇
1PYR values calculated with MSIM

tended to be lower than those of 2SIM and these in turn are
lower than 2SDM (see Tables 1 and 2). Although performance
is very similar for all models, reduced data spread can be
observed in PYR to LAC conversion in kidney predominant
tissue (Figure 2). Since MSIM fits up to nine parameters
simultaneously, estimated error from the parameter covari-
ance matrix was usually higher for MSIM.

Additionally, for an exemplary dataset, a noise analysis
of all three models was implemented by adding Gaussian
noise to different extent. Parameters were first obtained
from an exemplary minimization with MSIM and were then
subsequently used for time curve simulation. Every model
was then fit 1,000 times with different initial parameters to
this simulated time curve to create a model specific ground
truth. Finally, based once again on 1,000 iterations, the
simulated dataset was corruptedwith randomGaussian noise
and minimized with each model. Figure 3 displays mean and
standard deviation of 𝑘pyr→ lac values up to a 10% noise level.

Figure 3 illustrates that although allmodels yield the same
results in noise-free data, with increasing noise both bias and
standard deviation of the two-site models 2SIM and 2SDM
increase. As a consequence, the resulting metabolic conver-
sion rates obtained from these two-site models increasingly
suffer from systematic under- or overestimation. In contrast,
the simulation demonstrates that the MSIM model remains
bias-free, evenwith increased noise level, while exhibiting the
smallest standard deviation compared to the two-sitemodels.

From experimental results, it is clear that SNR increases
with higher concentrations of injected PYR and that 20mMol
injections in liver and kidney predominant tissue had the
lowest SNR (with corresponding noise levels of nearly 10%),
whereas SNR in heart was generally higher but had a larger
standard deviation (Table 2). According to noise simulations,
it is precisely in low SNR regions that MSIM is expected to
perform with lower deviations. Standard deviations for 𝑇

1pyr
values and reduced data spread in 20mMol 𝑘pyr quantifica-
tion, especially in kidney predominant tissue, are indications
that this holds.
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Figure 3: Noise level analysis for exemplary simulated data. Error
bars show mean ± standard deviation.

4.3. Pyruvate Dose Assessment. The effects of PYR dose on
Wistar rats were examined through the injection of solutions
with concentrations of 20, 40, and 80mM (doses of 0.1,
0.2, and 0.4mmol/kg) hyperpolarized PYR. Kinetic data was
obtained for all downstream metabolites and visualized with
the same box plots used in [5]. With this approach, a direct
comparison between the results previously obtained and the
results obtained with kinetic modeling could be made, using
median values as a distance dimension between the results
obtained by the different models, rather than as confirmatory
values (see Figure 2). As in [5], all median values suggest
saturation effects. A more detailed assessment of the PYR
dose effects on metabolism and its biological interpretation
can be found in [5].

4.4. Tumor Evaluation. In tumor cells, it is well known that
conversion from PYR to LAC is elevated even in the presence
of oxygen [29, 30]. Additionally, some tumors show changes
in alanine transaminase activity, leading to suppression of
conversion of PYR to ALA [31–34]. Both effects were quanti-
fied by comparing experimental data obtained from a healthy
rat and a rat with mammary carcinoma and using MSIM
to obtain conversion rate parameters (see Figure 4). It can
be seen that, for the same dose, the 𝑘pyr→ lac conversion rate
was more than four times larger in tumor cells than healthy
cells and the 𝑘pyr→ ala rate was more than 18 times larger in
healthy cells than tumor cells.Therefore, obtained conversion
rates provide a quantitative metric of metabolic differences
between healthy and tumor cells.

5. Discussion and Conclusion

Three different kinetic modeling methods were implemented
and investigated for the quantification of time-dependent
metabolite levels. The two-site exchange differential model
(2SDM) and two-site exchange integralmodel (2SIM) assume
a two-site interaction between pyruvate (PYR) and one
specific metabolite. The proposed multisite exchange inte-
gral model (MSIM) takes into account various downstream
metabolites in one system and allows fitting in a one-step
process.That is, all of the parameters are generated in a single
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Figure 4: Comparison of 𝑘pyr→ lac and 𝑘pyr→ ala conversion rates
between a healthy rat (from an 80mM dose in kidney predominant
tissue) and a rat with mammary carcinoma.

minimization, avoiding the need for separate implementa-
tions for every specific metabolite and resulting in a robust,
optimal convergence far from the imposed constraints.

The threemodels were compared by takingmedian values
as a distance dimension and, using exemplary simulated
data, performing a noise analysis. In this analysis, metabolic
exchange rate values obtained with 2SDM and 2SIM showed
a bias with increasing noise levels. On the other hand, MSIM
showed almost no bias, maintaining the average computed
value close to the ground truth even at high noise levels, with
smaller standard deviations than 2SDM and 2SIM.

Using the experimental data of [5], all kinetic models
were compared between different PYR concentrations to
assess the effect of increased PYR doses on in vivo meta-
bolism. Results obtained from all three kinetic models were
very similar; however, MSIM yielded smaller data spread
for metabolic conversion in low SNR experiments and more
accurate effective 𝑇

1
values for PYR as downstream metabo-

lite rates are taken into account during the optimization,
while effective𝑇

1
-estimation in 2SIM requires postprocessing

corrections.
MSIM was then further utilized to evaluate model per-

formance in disease. Obtained conversion rates from MSIM
showed significant differences in healthy cells in comparison
to tumor cells, where LAC conversion was elevated and ALA
conversion, on the other hand, was suppressed.

Extending two-site models into a multisite model yields
both biological and numerical insight. Biologically, it has
been shown that calculated rates give proof of the saturation
effects studied in [5] and can be used to quantify metabolic
differences between normal and tumor cells. Numerically,
a one-step fitting process with parameter interdependency

performs marginally better than other fitting methods, par-
ticularly in regions with low SNR. Further work with the
MSIM model will focus on pixelwise metabolic mapping
of cellular activity and its application to different metabolic
systems.
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LDH: Lactate dehydrogenase
ALT: Alanine transaminase
PDH: Pyruvate dehydrogenase
CA: Carbonic anhydrase
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𝐼pyr: Pyruvate injection rate
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𝑥
: Metabolite signal decay

𝑟pyr: Pyruvate signal decay rate without
metabolic conversion rates

𝑅pyr: Pyruvate signal decay rate including
metabolic conversion rates
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𝑚: Index of all metabolites (lactate,
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𝑡
𝑖
: Sampling times
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