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Abstract: In the recent years a considerable effort has been devoted to foster the understanding of the
basic mechanisms underlying the dynamical arrest that is involved in glass forming in supercooled
liquids and in the sol-gel transition. The elucidation of the nature of such processes represents one
of the most challenging unsolved problems in the field of material science. In this context, two
important theories have contributed significantly to the interpretation of these phenomena: the
Mode-Coupling theory (MCT) and the Percolation theory (PT). These theories are rooted on the
two pillars of statistical physics, universality and scale laws, and their original formulations have
been subsequently modified to account for the fundamental concepts of Energy Landscape (EL) and
of the universality of the fragile to strong dynamical crossover (FSC). In this review, we discuss
experimental and theoretical results, including Molecular Dynamics (MD) simulations, reported in
the literature for colloidal and polymer systems displaying both glass and sol-gel transitions. Special
focus is dedicated to the analysis of the interferences between these transitions and on the possible
interplay between MCT and PT. By reviewing recent theoretical developments, we show that such
interplay between sol-gel and glass transitions may be interpreted in terms of the extended F13 MCT
model that describes these processes based on the presence of a glass-glass transition line terminating
in an A3 cusp-like singularity (near which the logarithmic decay of the density correlator is observed).
This transition line originates from the presence of two different amorphous structures, one generated
by the inter-particle attraction and the other by the pure repulsion characteristic of hard spheres. We
show here, combining literature results with some new results, that such a situation can be generated,
and therefore experimentally studied, by considering colloidal-like particles interacting via a hard
core plus an attractive square well potential. In the final part of this review, scaling laws associated
both to MCT and PT are applied to describe, by means of these two theories, the specific viscoelastic
properties of some systems.

Keywords: dynamical arrest; sol-gel transition; fragile-strong crossover; viscoelasticity

1. Introduction

Scaling concepts, scale transformations and scale invariance have represented the con-
ceptual background for the description of complexmaterials and system. Supramolecular
materials (polymers, associating polymers, biological macromolecules, biological func-
tions, colloids, amphiphiles, emulsions, etc.), aggregation processes, growth mechanisms,
phase separation, out of equilibrium dynamics, supercooled liquids and glass transition

Int. J. Mol. Sci. 2022, 23, 5316. https://doi.org/10.3390/ijms23105316 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23105316
https://doi.org/10.3390/ijms23105316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4098-174X
https://orcid.org/0000-0001-9333-0292
https://orcid.org/0000-0003-0600-3133
https://orcid.org/0000-0002-6092-346X
https://orcid.org/0000-0001-6295-0106
https://orcid.org/0000-0002-7168-7263
https://doi.org/10.3390/ijms23105316
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23105316?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 5316 2 of 51

represent examples of this topic overlapping research areas in physics, chemistry, biology,
mathematics and technology.

Together with the scaling laws, the universality constitutes, according to the renormal-
ization group theory, much of the correct representation of how these systems, made up of
interacting subunits, behave [1]. It must be mentioned that these twin pillars were proposed
by some pioneers exploring phase separation phenomena and the system behavior in the
vicinity of its critical point.

Scaling also involve and explains, by means of the related correlation functions, both
static and dynamic properties of the system in the stable as well as in the critical region.
In this context, the mode coupling theory was used (MCT) [2], together with the classical
hydrodynamic models [3,4]. From a more general point of view, the percolation theory
and the MCT are the theoretical models that likely most exhaustively provide the structural
and dynamic description of complex systems in terms of scaling laws.

Percolation theory (PT) is the simplest model displaying a phase transition. It basically
describes the behavior of a network when nodes or links are added. It is a geometric type of
phase transition, since at a critical fraction of addition, the network of small, disconnected
clusters merges into significantly larger connected, so-called spanning cluster. The Flory–
Stockmayer theory was the first model investigating percolation processes [5,6], and its
application to materials science has become paramount to the understanding of many
collective phenomena [7].

The MCT exploits the principles of the static scaling law in order to calculate the
divergent part of the transport coefficients arising from the interaction among different
modes of excitation of the system (e.g., viscosity, heat, sound and transport). Although
initially developed to study dynamic critical phenomena [2,3,8] the MCT basic ideas can
be of interest in a quite general context [9,10] (for example they play a central role for the
liquid dynamics [11]). Here we consider both the theoretical models to explains the relevant
and universal aspects of the dynamical arrest typical of liquids at the sol-gel transition
and or supercooled ones on approaching the glass state [11–13]. As summarized by Phil
Anderson in 1995, this phenomenon represents “The deepest and most interesting unsolved
problem in solid state theory is probably the theory of the nature of glass and the glass transition.
This could be the next breakthrough in the coming decade” [14]. As also predicted by him,
and confirmed in recent years, the understanding of this process means that we can “also
have a substantial intellectual spin-off ” involving many scientific research fields.

However, in spite of both the theoretical and experimental interest placed on this topic
in recent years, we are still far from an exhaustive understanding. In this context, it must
also be mentioned that the experimentally observed huge variation with temperature (many
orders of magnitude) of the shear viscosity, η(T), of supercooled liquids is the signature
of slow dynamics, a characteristic phenomenon fundamental to the understanding of the
glass transition.

A theoretical attempt to link the thermodynamic behavior of supercooled liquids to
their flow and relaxation kinetics was due to the Adam and Gibbs analysis [15] developed by
introducing the concept of elementary “cooperatively rearranging regions”. In such a way,
an exponential expression connecting the temperature behavior of transport quantities (like
the shear viscosity η(T), or alternatively a mean relaxation time τ(T)) to the configurational
entropy per particle Scon f was obtained. In the model, Scon f is the portion of the entropy
attributable to the “rugged landscape” character of the system’s potential energy function.
In order to represent the vitrification kinetic aspects, two classes of scaling behaviors were
empirically proposed when considering the η(T) evolution for several molecular glass
forming liquid and polymers [16]: an Arrhenius (or strong) and a distinctly super-Arrhenius
(or fragile) variation. In the same way, the glass transition temperature, Tg, is defined as
the temperature at which η has the value of 1012 Pa.

The fragile scaling is the more intriguing of the two, as it indicates a thermal activation
process where the activation barrier is T dependent, and the liquid heat capacities, Cp,
are significantly larger than the corresponding crystal values (by an extent that increases
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with extent of supercooling). On the contrary, the strong scaling typically exhibits a
little difference between liquid and crystal heat capacities. Nonetheless, the quest for
understanding of metastable supercooling and glass formation has imposed an increasing
level of attention. In any case nowadays, we have reached the certainty that the key to
solving these problems lies in the analysis of the thermodynamic properties of transport
of glass forming materials in both the supercooled and the glass states. For this reason,
their energetic configuration on approaching the arrest as a function of the thermodynamic
variables is of interest.

Accordingly, the idea of the “Energy Landscape and Inherent Structures” in the context
of the several condensed-matter phenomena developed by Frank Stillinger is of utmost
importance [17]. Exploiting these concepts, diverse substances and systems, including
crystals, liquids, glasses and other amorphous solids, polymers, and solvent-suspended
biomolecules can be explored. The topography of the multidimensional potential energy
hyper-surface created when a large number of atoms or molecules simultaneously interact
with one another is central in this approach.

The corresponding complex landscape topography separates uniquely into individual
“basins”, each containing a local potential energy minimum or “inherent structure” [17].
On this basis, it has been demonstrated that just the energy landscape diversity is central
for the study of the supercooled liquid properties on approaching the dynamic arrest [18].
It has been suggested that the potential-energy surface associated with Arrhenius (‘strong’)
temperature dependence should be relatively smooth, whereas the energy surface giving
rise to fragile behavior should be quite rough. An important finding of this study is also
that the thermodynamics would appear to be decupled from kinetic behavior. Figure 1
elucidates the notion of the energy landscape in the description of supercooled liquids and
amorphous materials [17].

In addition to these theoretical models on the explanation of the fragile behavior of
supercooled glass forming liquids, many important suggestion have come from the use of
atomistic concepts and from appropriate simulation studies [19]. They also provide a way
to understand the nature of fragility in quantitative terms.

Figure 1. Schematic representation of the potential-energy profiles for strong Arrhenius and fragile
Super-Arrhenius liquids [17].

According to classical transition-state theory, η(T) of a glassy liquid can be expressed as

η(T) = η0 exp(Q(t)/kBT) (1)

in which η0 is a reference value, Q(T) an effective activation barrier and kB the Boltz-
mann constant.

According to this, the understanding of the viscosity behavior relies on the explanation
of the barrier and its details. The essential ingredient for this is the trajectory of the so-called
transition-state pathway (TSP), an information obtained by sampling the potential energy



Int. J. Mol. Sci. 2022, 23, 5316 4 of 51

landscape [20]. The TSP trajectory can be used for a direct viscosity calculation through
linear response theory, without using the previous exponential form, by also elucidating
our notion of the energy landscape description of amorphous media.

Many glass forming liquids appear to be “fragile” at high temperature whereas are
“strong” at the lower temperatures. Thus, they change with T their energetic configuration
implying a change in the corresponding landscape topographies—a situation that suggests,
in these supercooled liquids, a possible connection between their thermodynamics and the
kinetics. The onset of a sharp increase in η(T) over a relative small T range is characterized
by a fragile to strong dynamic crossover (or critical) temperature Tx (identified as the critical
MCT Tc) [21]. This situation is characteristic of a very large number of glass forming liquids,
and can be considered a universal process, providing further confirmation of the energy
landscape model. In particular, the viscosity curves of these liquids collapse into a single
curve only by assuming Tx as the only characteristic temperature. Figure 2 illustrates this
process by reporting the viscosity and diffusion data of more than 80 glass forming liquids.
These data also show that below Tx, the familiar Stokes–Einstein relation (D/T ∼ η−1)
breaks down and is replaced by a fractional form D/T ∼ η−ξ , with ξ ≈ 0.85.

Such a result raises questions on which could be the change in the atomic interactions
(and configurations) underlying such an upturn due to the temperature variation. In this
regard, some calculations propose that the observed increase in the resistance to viscous
flow can be interpreted as a molecular trapping in deep energy basins. In this energy frame-
work, the crossover phenomenon—the viscosity transition from gradual to accelerated
behavior—can be expected whenever different existing molecular mechanisms compete,
with the dominance of one over the other depending on the local environment (or driving
force). In this frame, an important analogy between viscous flow in glassy fluids and creep
deformation in plastic solids was proposed [19].

Figure 2. This figure illustrates the fragile-to-strong dynamical process by considering the viscosity
and diffusion data of more than 80 glass forming liquids [21]. Figure adapted from Ref. [21],
Copyright (2010) National Academy of Sciences.

Being that the glass rheology and crystal plasticity are closely related phenomena,
the transition-state theory is equally suitable in describing stress-driven responses where
Q(T) is replaced by a stress activation barrier Q(σ). Such an upturn is also a characteristic
dynamic response experimentally observed in other systems from metals to colloidal
suspensions [22], and may be compared to the η(T) variation with temperature of the
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fragile liquids. Such an upturn (or kink variation) is also a characteristic dynamic response
experimentally observed in other systems from metals to colloidal suspensions [19]. Its wide
spread presence proposes a common and simple underlying origin, basically a localization
(or confinement) process. Thus, the η(T) crossover would correspond to stress localization
as the system is trapped in a deep energy basin, whereas the crossover in the yield stress
would correspond to strain localization when the strain rate reaches a critical value.

A common aspect of the recent year research in both MCT and PT was to readjust
them in order to consider the physical effects related to the thermodynamic reality imposed
by the energy landscape. In the first case, a semi-empirical version based on hopping
processes [23–25] was proposed in addition to the idealized version [10]. On the other hand,
for PT the idea of the random and the facilitated models was considered [26]. In such a
way two important findings are obtained: (a) an interplay between gel and glass in gelling
systems, with the possibility to describe the sol-gel transition using MCT, and simultane-
ously, to use percolation concepts in order to understand critical phenomena underlying
the dynamic singularity found in MCT; and (b) the universal and singular role of the fragile
to strong dynamic crossover on approaching the dynamic arrest. This was obtained starting
from the consideration that both PT and MCT are characterized by very large viscosities
(and relaxation times), but with basic differences.

The sol-gel transition (typical of the PT) has a diverging length and a strong divergence
in the non-linear susceptibility (χ(T)). Instead, glass forming liquids, on approaching the
arrest, do not show diverging length, critical density fluctuations and, therefore, no diver-
gence in the compressibility. However, the energy landscape mechanism, if considered in
both the models, predicts a special temperature Tx > Tg where the energetic configuration
changes. At this transition, being it made of highly correlated and localized clusters, the sys-
tem can only have dynamics based on molecular hopping processes. As suggested by the
Adam–Gibbs model, such a crossover temperature is the one where the “cooperative corre-
lation length”, associated with a second-order thermodynamic transition, diverges. Such
a length, associated with the internal degrees of freedom of the system, is unfortunately
very difficult to verify experimentally. Nonetheless, the violation of the Stokes–Einstein
relation (SE) and the onset of the dynamic heterogeneities is customary observed on Tx in
supercooled liquids [27,28].

The plan of this review is to consider the possible interplay between MCT and PT also
based on the universality of the FSC and the relevance of the energy landscape concept
to condensed matter and statistical physics. In such a context, we will discuss already
published data in the field and present new ones, in the belief that the key to clarifying
the complexities of dynamic arrest is precisely in the FSC, due to the change in the system
energetic configuration.

2. Schematic Models

Many systems and models exhibit a sudden slowing down of their dynamics, fol-
lowed by transition associated with a structural arrest. We can distinguish two types of
transitions, continuous and discontinuous, depending whether or not there is a dynamic
correlator jump in the infinite time limit. The first one is given by the sol-gel transition
(commonly studied using a cluster approach, based on percolation theory) [26,29,30].
The glass transition instead, given by discontinuous transition, belongs to the second
category. A great advance in glass theory was provided by MCT developed by Götze and
collaborators [10,31].

Starting from first principles, under some mean field approximations, MCT predicts
a dynamic arrest at a the finite Tc, characterized by power law behavior and universal
scaling laws. These theoretical findings have been tested in great detail both experimentally
and numerically [32–38]. Other models, such as p-spin glass, Random Field Ising in an
external field [39] and kinetic facilitated [40], reproduce the same MCT results. However,
the transition described by MCT does not seem to exhibit any critical change in the structure
and no diverging static length.
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2.1. Ideal MCT

The MCT [10,31] aims to capture the slow dynamics induced by slow relaxation of
density fluctuations in dense liquids [10,12,13]. It formulates, for a system of N particles
(with mass m and an average density ρ), a closed equation of motion for the relative time
structural changes described by the coherent density auto-correlation function, where the
correlator is:

φq(t) = 〈ρ∗q(q, t)eiŁtρq(q, 0)〉/〈|ρq|2〉 (2)

where Ł is the Liouville operator and 〈|ρq|2〉/N = Sq (the static structure factor, and
→
q the

wave vector). The ideal MCT equations are a set of nonlinear coupled integro-differential
equations that determine the dynamics of φq(t) . Essentially, the static structure factor
S(q) and similar equilibrium static correlation functions enter here. This allows for a first-
principles comparison of the theory with simple glass-forming liquids, most prominently
the hard- or soft-sphere system [41]. In these terms the idealized-MCT equations consist of
the exact Zwanzig–Mori equation (ZM) [42,43] for a correlation-function description of the
dynamics of a many-particle system:

∂2
t φq(t) + Ω2

qφq(t) + Ω2
q

∫ t

0
dt
′
Mq(t− t

′
)∂t′φq(t

′
) = 0 (3)

with the ideal memory kernel denoted as Mid
q (t):

Mid
q (t) =

∫
d
→
k V(

→
q ;
→
k ,
→
p )φk(t)φp(t) (4)

and

V(
→
q ;
→
k ,
→
p ) = ρSqSkSp

[
(
→
q ·
→
k )ck + (

→
q ·→p )cp

]2
/
[
2(2π)3q4

]
with

→
p =

→
q −

→
k , cq = (1− 1/Sq)/ρ and Ω2

q = q2kBT/mSq. In such a way, the theory under
some mean field approximation is able to predict the dynamic of the density correlator φ(t)
as function of time t. These equations exhibit, at a critical temperature Tc, the bifurcation for
φq(t→ ∞) = fq also referred as the nonergodic transition [10]. For T > Tc, the correlator
relaxes towards fq = 0 as expected in ergodic liquid states. Instead, density fluctuations
for T 6 Tc arrest in a disordered solid, quantified by a Debye–Waller factor fq > 0. This
schematic MCT approach has opened the way to treat a variety of models, beyond the
description of the standard glass transition with φ(t) that obeys the following equation:

φq(t) + t0
·

φq(t) +
∫ t

0
M
[
φq(t− s)

] ·
φq(s)ds = 0 (5)

with t0 as a microscopic time scale,
·

φq the φq(t) time derivative and the memory kernel M
as a functional polynomial in φ(t). Taking the first three order terms, it is given by

M
[
φq(t)

]
= v1φq(t) + v2

2φq(t) + v3φq3(t)

where v1, v2 and v3 are coupling coefficients encoding the molecular interactions and are
assumed to be smoothly increasing functions of external control parameters such as ρ, P
or T. Hence,

φq(t) + t0φq(t) + v
∫ t

0
φq(t− s)φq(s)ds = 0 (6)

where v as the control parameter. Depending just on v′s, MCT defines different models with
different properties [10,44]. More precisely, for q = 1 it is defined the continuous model A
(v2 = v3 = 0), whereas for q = 2 (v1 = v3 = 0) we have the model B, characterized at the
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transition by an order parameter discontinuity. In that case the corresponding dynamic
behavior is characterized by a two-step relaxation time typical of the glass transition.

It has been suggested that such model B is well reproduced by Fredrickson and
Andersen facilitated Ising model [45] on a Bethe lattice (BL) [46], whose dynamics is well
described in terms of a cluster approach based on the Bootstrap percolation model (BP) [47].
For v3 = 0, we have the F12 model [10,44] and the phase diagram in the (v1, v2) plane
shows a line of continuous transition and a line of discontinuous transition, which join at a
higher order critical point. Finally, for v2 = 0, we have the F13 model, with v1, v3 as the
control parameters [44].

As shown in Figure 3, the corresponding phase diagram (v1, v3 plane) shows two
transition lines. The first one is a straight horizontal line corresponding to a continuous
glass transition, (like in model A). On crossing this line, by increasing v1, f = φ(t → ∞)
increases continuously. The second line is a discontinuous transition, like in model B. This
line (characterized by logarithm decay of the relaxation functions; see e.g., Figure 4) ends
at the cusp-like A3 singularity [10], where the plateaus of the two transitions coincide. This
situation is very important because it represents a molecular system made up of a repulsive
hard core plus an attractive interaction [34].

Figure 3. The phase diagram correspond to the F12 (v1, v2-plane) and F13 (v1, v3-plane) MCT models.
In the latter case, the presence of cusp-like singularity A3 and the re-entrant behavior attractive
repulsive glass are highlighted.

It has also been conjectured that while the discontinuous line corresponds to a glass
transition, and continuous line can be interpreted as a sol-gel transition [26]. A re-entrant
glass transition due to the existence of two glassy states: one dominated by repulsion
(with a caging structural arrest) and the other by attraction (with bonding arrest due
to bonding) have been revealed by dynamic light scattering in polymethylmethacrylate
(PMMA) depleted colloids dispersed in cis-decalin [36]. The short-range attraction was
induced by adding a non-adsorbing polystyrene, so that the experiment was made at
ambient temperature for different colloid volume fractions and polymer concentration.
Although the measured self Intermediate Scattering Function (ISF; proportional to the
coherent density correlator φq(t)) appears compatible with a logarithmic decay, neither an
attractive glass transition line nor the point A3 has been shown.
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Figure 4. The logarithmic decays observed the measured self Intermediate Scattering Function of an
adhesive colloidal system [37].

A theory datum point is the prediction of a critical temperature Tc (or a critical
concentration Cc) where the ergodic to nonergodic transition takes place, and φq(t) tends to
a finite plateau fq for t→ ∞. The separation parameter is σ ≈ (Tc − T)/Tc (or Cc − C)/Cc),
and are also proposes various density relaxation regimes with very different temporal
scales. The short-time dynamics region t < t0 is dominated by microscopic motions, and is
followed by the β relaxation region that satisfies the scaling relation:

φq(t) = fq + hqB(t) = fq + cσhqg±(t/tσ) (7)

where fq is the so called non-ergodicity parameter (the plateau value), hq is the critical
amplitude and B(t), that includes the time dependence, represents the β correlator. This
latter equation holds for all correlators between variables which have an overlap with
density fluctuations. B(t) depends singularly on two scales in the time and the control
parameter: an amplitude or correlation scale cσ = |σ|1/2 and the time scale tσ = t0|σ|−1/2a.
The initial part (g±(t � tσ) = (t/tσ) − a), dominated by tσ, gives the approach to fq,
while the final one follows the von Schweidler law g−(tσ � t � t′σ) = −hq(t/t′σ)b,
with tσ = t0|σ|γ as the second characteristic timescale.

γ = (1/2a) + (1/2b).

where a (0 < a < 0.5) and b (0 < b < 1) are non-universal exponents determined solely by
the so-called exponent parameter λ,

λ = Γ2(1− a)/Γ(1− 2a) = Γ2(1 + b)/Γ(1 + 2b) (8)

where Γ is the Euler gamma function and λ is in turn determined by the static structure
factor Sq. Finally, for t > tλ there is the α relaxation regime. For hard spheres, a = 0.301
and b = 0.545 have been measured. In our previous photon correlation spectroscopy
(PCS) experiment on a colloidal like system by considering the measured ISF, Fs(q, t) we
obtained b = 0.6 and λ = 0.7. In addition, a universal plot, for different ISFs, of the
von Schweidler law gives γ = 2.3 [35]. MCT (and the explanation of β relaxations) was
developed originally by using cage effects (or clustering) that determines the temporal (or
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frequency) dependence of relaxations [10]. At very short times, density relaxation reflects
the localized motion of individual particles, entailing the details of the hydrodynamic
interactions. At longer times, particles are trapped in their neighbor structure.

Figure 5 illustrates the different characteristic MCT time regions. The corresponding
ISFs were measured by PCS experiments made in a colloidal suspension of a PAMAM d5
NH2 dendrimer in methanol, at different ϕ. The von Schweidler universal plot obtained
from these (Figure 5) is illustrated in Figure 6 (b = 0.59 and γ = 2.5).

Figure 5. The decays of the density correlators in a supercooled liquids (colloidal suspension of a
dendrimer in methanol) close to the dynamical arrest. Highlighted in particular are the different
MCT regions. The initial non-universal intra-cage motion is followed by a region characterized by a
power law caging dynamics. After than, there is the onset of the slow inter-cage dynamics (described
by the stretched exponential).

As said, many aspects of the ideal MCT predictions have been detailed, experimentally
or by means of MD simulations, in different systems. More recently, MCT showed also
explanatory capabilities for colloidal glasses characterized not only by hard-core repulsion
but also by attractive interactions, where new processes have been discovered and will be
discussed in the next section.

It must be emphasized that, in the frame of the F13 model, of particular interest is a
colloidal system characterized by an attractive contribution to the potential [34], and for
the presence of a well-defined percolation line (whose properties had to be explicitly
dependent on volume fraction ϕ and T). Therefore, much attention has been devoted, as we
will see in detail below, to the water solution of polymer (Pluronic L64), in particular by
the use of many different experimental techniques including rheology, neutron and light
scattering [35,37,48,49].

Such a system is a combination of polyethylene oxide (PEO) and polypropylene ox-
ide (PPO): (PEO)13(PPO)30(PEO)13. Being that both PEO and PPO are hydrophilic at low
temperatures, L64 chains dissolve in water and exist as unimers. Instead, as T increases,
the hydrogen-bond formation between water and polymer molecules decreases with PPO
becoming rapidly less hydrophilic than PEO, and the copolymers acquire surfactant proper-
ties, aggregating in spherical micelles. Furthermore, at higher temperatures, water becomes
a progressively poorer solvent for both PPO and PEO chains, giving rise to an inter-micellar
attractive interaction (the system behaves like a grafted colloid). The evidence for the
increased short-range micellar attraction as a function of T comes from the existence of
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a critical point at (C ≈ 0.05 or ϕ ≈ 0.098 and T = 330.9 K) with a splinodal line and the
sol-gel transition the percolation line.

Figure 6. The von Schweidler universal plot measured in the previous colloidal PAMAM dendrimers
suspensions.

Figure 7 illustrates the T − ϕ phase diagram for a D2O solution of such a system
obtained by means of several techniques. This makes for a proper comparison between the
neutron scattering data with those obtained with different techniques; hence, all the experi-
ments on L64 here reported have D2O as solvent. In particular are shown the cloud point
line (CP), the critical micellar concentration (CMC), the sol-gel transition line (PT), the ki-
netic glass transition boundary, the regions of the repulsive and attractive glass and finally
the A3 locus. Figure 7 also shows details of the cusp-like singularity exhibiting glass–liquid–
glass re-entrant behavior and the attractive-to-repulsive glass transition line beginning
where the two branches cross and terminating at A3 (ϕ(A3) = 0.544), beyond which the
long-time dynamics of the two glassy states become identical.

Theoretically [34,35,37], the phase behavior of a system like that is characterized by an
effective temperature T∗ = kBT/u, the volume fraction of the micelles ϕ, and the fractional
attractive well width Θ = ∆/d, where kB is the Boltzmann constant, −u is the depth of
the attractive square well, d is the full particle diameter and ∆ is the width of the well
(∆ = d− d′, with d′ as the hard core diameter). Hence, for a given Θ, aside from ϕ, as in
the case of a pure hard sphere system, the effective temperature T∗ is introduced into the
description of the phase behavior of the system as a second external control parameter, and
thus the arrested glassy state can take place by increasing either ϕ or T∗.

Neutron scattering experiments have been used to evaluate T∗ as a function of the
normal temperature T at different ϕ [37,48,49] showing that, as T increases, T∗ increases.
By measuring the micellar aggregation number N as a function of T at different ϕ, it has
been shown that the degree of self-association increases as T increases at a given ϕ. This is
consistent with the fact that the PPO core becomes less hydrophilic at higher T. In addition,
at a given temperature, N decreases as ϕ increases, indicating that u increases as ϕ increases.
Finally, by comparing the effective temperatures obtained from fitting the experimental
data in the liquid and glass states, it can be seen that the depth of the square well increases
as T and ϕ increase, making a liquid–glass transition possible. Its phase diagram for
the glass region is reported in Figure 8 in terms of T∗ and ϕ, and for different attractive
well width.
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Figure 7. The experimental phase diagram (Temperature–Volume fraction) of the Pluronic L64
in D2O characterized by a critical point (cloud point line, CP), the critical micellar concentration
line (CMC), and a percolation line PT [35,37,48,49]. The inset reports an expanded region of the
corresponding glass phase showing the attractive-glass–repulsive-glass transition line and the cusp-
like singularity A3.

Figure 8. The phase diagram corresponding to a square well system described in the text in the plane
T∗-ϕ. Reported are curves for some different fractional attractive width Θ. Can be observed here
are the glass lines’ re-entrance and that the glass–glass line appears for Θ < 0.04, and increases as Θ
decreases. A4 identifies the place where the two characteristic lines (attractive and repulsive) meet
continuously, while A3 is the end point of the attractive line. It is shown that this last line tends,
at the low ϕ values, with continuity towards the PT line [34]. Copyright 2000 by the American
Physical Society.
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As it can be observed, the full F13 condition is obtained for Θ = 0.03; a continuity is
also observable between the percolation line (or gel line) and the liquid attractive glass
transition. The latter situation will be central in subsequent discussions because it represents
the first indication of the possibilities of basic interrelationships between percolation models
and MCT.

The next two figures propose how the singular behavior of this cusp-like singularity
was measured by means of specific heat (Figure 9) and neutron experiments (Figure 10).
In the first case, all the kinetic transitions of the L64/D2O system are detailed by means of
a specific heat measurement, made through a differential calorimeter, in a volume fraction
region (0.535 < ϕ < 0.55), just around the singularity A3. The narrow peaks at low T
deal with the liquid glass transition. The peak observed near T = 310 K is due to the
glass-to-glass transition. In the top panel are detailed the following transitions: sol-gel,
gel-attractive glass (AG), attractive (AG) to repulsive (RG) glass and, finally, the repulsive
glass (AG) to gel. The central one represents the system evolution just near A3, from at-
tractive to repulsive glass. The bottom panel instead shows a situation dominated only by
repulsive glass.

Figure 9. The specific heat data, Cp(J/gK) versus T, in the temperature interval 273–348 K, for our
AHS system at the volume fraction ϕ = 0.535 (top panel), ϕ = 0.544 (central panel) and ϕ = 0.55
(bottom panel).

Neutron scattering, small angle in particular (SANS), represents a powerful tool to
trace the details of the liquid–glass transition line and the glass–glass transition. In the case
of a monodisperse micellar (like the L64/D2O), the neutron scattering absolute intensity
can be expressed by:

I(q) = cN(∑i bi − ρwvp)
2P(q)S(q)
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where c is the polymer number density, N is the aggregation number of polymers in a
micelle, the sum refers to the coherent scattering lengths of atoms including a polymer
molecule, ρw is the scattering length density of D2O, vp is the polymer molecular volume,
P(q) is the normalized intra-particle structure factor (giving the normalized form factor as
P(q) = |F(q)|2) and S(q) is the inter-particle structure factor. Assuming the micelle to have
a compact spherical hydrophobic core of a radius a, consisting of all the PPO segments with
a dry core and a diffusive corona region consisting of PEO segments and solvent molecules,
it is possible to apply an original model called the “cap and gown” [48] to calculate F(q).

Figure 10. The scaling plots of the SANS intensities for ϕ = 0.495 measured in the PluronicL64-D2O,
at different temperatures in the range 310–327.4 K.

If the mentioned square well potential (hard sphere with adhesive surface layer) is
used, the inter-micellar attractive interaction can be evaluated. In such a way the absolute
measured scattered SANS intensity can be fitted uniquely with four parameters: the
aggregation number N, ϕ, Θ and T∗. In addition, whereas P̃(q) is function of N only,
the static structure factor S(q) depends on all four parameters. In these terms, a series of
SANS experiments were carried out, in this copolymer micellar system, to examine the
local structure of the glassy states, both in the region of the re-entrant glass transition and
in the vicinity of the A3 point [37,48,49].

The SANS absolute intensity of an amorphous state, reflecting the local structure,
is characterized by a single peak located at qmax (or a unique length scale Λ = q−1

max,
which is the mean distance between mesoparticles). In addition, the SANS absolute I(q)
distribution of a two-phase system (solvent and micellar aggregates) is proportional to
a three-dimensional Fourier Transform of the Debye correlation function, which in the
present case must be of the form Γ(r/Λ). Thus, by a simple transformation of variables,
the dimensionless, scaled intensity distribution can be reduced to a unique function of a
scaled wave vector in the form:

q3
max I(Q)

〈η2〉 =
∫ ∞

0
dx4πx2 j0(xy)Γ(x)

where x = qmaxr, y = q/qmax, and
〈
η2〉 is the so-called scattering invariant. In such a way

by plotting, at a given ϕ, the scaled intensity as the scaled variable y, all the scattering
intensity distribution at different temperatures within a single phase region should collapse
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into a single master curve. In this way, the distinct local structures associated with different
phases occurring at different T-ranges can be identified. A scaling plot of the SANS
intensities at ϕ = 0.495 is proposed in Figure 10.

From the width of the peak it is possible to infer the system disorder degree. In partic-
ular, the data shown indicate, depending on T, two distinct degrees of disorder: whereas
the narrower peak, which is resolution limited, represents the glassy state, the broader
one (much broader than resolution) represents the liquid state characterized by a wider
distribution of inter-particle distances respect to the glass. In such a way it has been de-
tailed, by means of neutron scattering experiments, the re-entrant glass to glass transition
and the cusp like A3 singularity [37,49]. In closing this part, it must be mentioned that
all the scaled intensities are characterized by a unique length scale and collapse into one
single master curve (T independent) showing the identical local structure of the two glasses.
All of this constitute evident proof of the accuracy of MCT predictions and of its basic
scientific validity

2.2. Basic PT

The percolation model is a powerful tool of statistical physics in order to understand
a large class of different phenomena. It has been used to describe a large variety of struc-
tures, such as composite materials, polymers and gels, proteins and biological properties,
etc., and to analyze the corresponding dynamic properties. Similarly studied were the
corresponding mechanical behaviors, conductivity, electrical breakdown and transport.
Percolation represents an example of the scaling theories. Its definition is simple [29]:
within a large lattice, each site of it can be randomly occupied with a probability p, or left
with a probability p − 1. A cluster is represented by a group of occupied neighboring
sites. Every site of the cluster is connected with another of the same cluster, by at least
a chain of sites. Occupied sites of different clusters are not connected. For small p there
are in the system few large clusters and many isolated sites. The increase of p leads to
largest aggregate that will comprise most of the occupied sites and touch all system sides.
This happens for a unique critical threshold pc, and the corresponding spanning cluster is
named “incipient infinite cluster”. This is the bond percolation.

By defining as ns the ratio between the number of clusters containing σ sites and the
number of sites in the whole lattice, p represents the fraction of sites of the largest cluster
and the susceptibility as χ = ∑s(s2ns), which give a measure of the mean cluster size
it is possible to represent, through a generalization oh the Fisher droplet model [50,51],
the cluster numbers in terms of the critical phenomena scaling functions [52]:

ns = s−τ f
(
(p− pc)s−σ

)
(9)

which is an equation depending on two variables x = s−1 and y = p − pc, with z =
(p− pc)sσ as the scaled variable describing the behavior of the cluster numbers (thus p is
the control parameter and pc its threshold value). Hence, χ can be related to the critical
exponents τ and σ. By replacing the sum by an integral, we have (above the threshold):

χ =
∫ ∞

0
dss2ns =

∫ ∞

0
dss3−τ f (z)/s = σ−1(p− pc)

−γ
∫ ∞

0
dzγ−1 f (z)/s

with γ = (3− τ)/σ being the integral, the constant is:

χ ∼ σ−1(p− pc)
−γ (10)

By considering that the probability of a site belongs to a cluster with s sites is ns, it
follows that the percolation probability P is zero below the threshold, and above it is:

P = p−∑s(sns)
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and thus

dP
dp

= 1−∑s sdns/dp = 1−∑s s1−τd fz/dp = 1−∑s sσ+1−τd fz/dz =

= 1−
∫ ∞

0
dssσ+1−τd fz/dz = 1− σ−1(p− pc)

β−1
∫ ∞

0
dzz(2−τ)/σd fz/dz

where β− 1 = (2− τ − σ)/σ or β− 1 = (τ − 2)/σ (11)

Near the threshold the system has a correlation length ξ, that in terms of the gyration
radius Rgs of a cluster with s sites is:

ξ2 = ∑s R2
gss2ns/ ∑s s2ns (12)

Also at the threshold, ξ diverges as ξ ∼ (p− pc)
−v, where for a d-dimensional is

dv = γ + 2β. According to these exponents’ relations, knowing two of them all the others
can be determined. That property of percolation clusters is typical of phase transitions and
can be studied by assuming the temperature as control parameter (y = T − Tc). A proof of
the validity of what is proposed is provided by viscosity data, of the L64/D2O colloidal
suspensions characterized by a precise PT line, measured by a strain controlled rheometer
by using a double wall cuette geometry, at different temperatures and volume fractions.

Figure 11 illustrates such a situation showing the corresponding viscosity data as a
function of the reduced temperature |T− Tc|. The slope of the continuous straight line give
v ' 1.09 in according with the theoretical predictions for a 3-dimensional system [52].

Figure 11. The shear viscosity η(T) measured at different volume franction reported in a log-log plot
as a function of |T − Tp|.

All PT exponents are universal quantities depending only on the dimensionality
of the embedding space [50,51]. The stochastic addition in a network of either vertices
(sites) or connections (bond) leads to the observation of the PT, a structural change with
the appearance of a connected component encompassing a finite fraction of the system.
Percolation has always been regarded as a substrate-dependent but model-independent
process, in the sense that the corresponding critical exponents are determined by the
geometry of the system, and thus are identical for the bond and site percolation models.
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3. Revised MCT Including Hopping Processes and Fragile to Strong Dynamic
Crossover (FSC)

A basic mathematical complexity prevents direct tests of the full MCT for the standard
glass formers [53,54]. One way to apply MCT beyond its asymptotic scaling is in the
so-called schematic models [31] that reduce the large set of coupled MCT equations to only
a few (just one or two). By dropping the q dependence, introducing fit parameters and
replacing the connection between S(q) and the theory’s coupling vertices, a quantitative
agreement with experimental data is often obtained.

Schematic MCT models also provide a flexible testing ground for extensions of MCT
as for example the inclusion of hopping processes. The β regime identification, explained
by means of simple power laws has been the first major success of the ideal MCT of
the glass transition, and the scaled relaxation was identified as the “cage effect” (where
nearest-neighbor steric hindrance slows down the collective motion).

Taking into account the corresponding relaxations as a function of the frequency (rather
than of the time), a minimum can be observed, at high T, whose position identifies the
cage relaxation, and the α-peak as the relaxation mode by which particles escape the cages.
MCT puts a theoretical basis to the power law (ω−b) describing the initial cage-escape
dynamics, known long before as von Schweidler’s law [55]. These asymptotic scaling forms
are demonstrated by various relaxation and scattering data around the β -minimum at not
too low T [10] . In addition, one has distinguished glass formers that instead of the slow
β-peak show an anomalous “wing” at this high-ω side of the α-peak, but there now appears
to be a consensus that both cases should be attributed to the same phenomenon [56].

It was also noted that the standard ideal MCT description of glassy dynamics is
no longer fully adequate for T < Tc, and not just for the fact that Tc is typically found
significantly above the phenomenological glass transition Tg. Meanwhile, for T > Tc,
MCT successfully and quantitatively describes available data [10]. Below Tc, the theory
captures only limited aspects of the dynamics, such as a nontrivial rise in the α-relaxation
strength [57–60] or the boson peak occurring at high frequencies [61]. A possible divergence
of τα as T → Tc is not observed and consequently the model in such a standard form cannot
be used to describe the complex α-relaxation shapes below Tc. For tracer diffusion studies
in metallic melts [62], Tc marks the system change from liquid-like transport (T > Tc) to a
more complicate (hopping-mediated solid-like) transport below.

Below Tc, diffusion coefficients (Ds(T)) of tracer atoms differ greatly and essentially
follow Arrhenius laws, whereas above ((T > Tc), the values merge and follow, within ex-
perimental accuracy, the same super-Arrhenius T-dependence, typical of the collective
caging motion. MCT extensions including additional “hopping” relaxation processes have
been proposed soon [23], although they have not been applied. Empirical scaling laws
have been used [63,64], as well as schematic models [65] that include an ad hoc hopping
parameter. The used equations there have also been re-derived in order to reconcile MCT
and the random first-order theory of the glass transition [66]. These studies were limited
to discussing scaling deviations in the β-relaxation due to hopping. Recently, Chong [25]
derived a semi-empirical microscopic MCT with hopping term, and was able to make
parameter-free predictions that have been able to explain the decoupling of diffusion pro-
cesses from the collective motion (the SEV). Moreover, features of the fragile-to-strong
crossover found in a number of experiments have been analyzed within this theory [67,68].

Some extended-MCT models have been questioned [69], but this critique does not ap-
pear to apply strictly to the form used in the above-mentioned models [23,25]. On following,
such a critical assessment an alternative hopping model has been proposed [70], whereas
another approach has also been proposed based on a continued-fraction representation of
the correlation function [71]. Together with this representation of the hopping-extended
MCT [25,67], another formulation has also been proposed, by introducing a phenomenolog-
ical time-dependent hopping rate, able to reproduce the experimental susceptibility spectra
in the full frequency and temperature range available [72]. In the following, we consider
both these hopping models.
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3.1. Hopping in the Memory Kernel

Such an approach starts from the consideration that a fragile-to-strong dynamic
crossover (FSC) phenomenon has been observed in confined water where the β−relaxation
time [73] and the inverse of the self-diffusion [74] cross over from a non-Arrhenius to an
Arrhenius behavior. On the other hand, it has also been recognized that the viscosity data
on various glass-forming liquids exhibits an FSC-like feature at a crossover temperature
Tx: while the T dependence of the viscosity of many glass-forming liquids can be well de-
scribed by a power law for T > Tx , it smoothly crosses over to approximately an Arrhenius
behavior for T < Tx [75,76].

Recent measurements of diffusion constants in bulk glass-forming alloys display the
crossover from a non-Arrhenius to an Arrhenius behavior [77,78]. This onset of a sharp
increase in η(T) by the FSC has been also related to the MCT associating the temperature
Tx with the critical MCT temperature Tc). This situation is characteristic of a very large
number of glass forming liquids where in particular the viscosities of these liquids collapse
into a single one curve only by assuming Tx as the only characteristic temperature [21].
Thus, the FSC seems a common, or at least an unexceptional, phenomenon in glass-forming
systems, which contrasts the traditional view that a glass-forming liquid can be classified
either as fragile or strong [79].

The account of these new experimental findings (in particular the FSC) is in the
extended model [23,25]. By closely following the original MCT proposal [10] (see e.g.,
Equations (3)–(5), it is considered the correlator Laplace transform (LT) φ(z) = i

∫ ∞
0 dtφ(z)

exp(izt):

φq(z) = −
[

z−
Ω2

q

z + Ω2
q Mid

q (z)

]−1

(13)

and the corresponding equations are the previous ZM (see e.g., Equations (4) and (5)),
but with the memory kernel modified as:

Mq(z) = Mid
q (z)/

[
1− δq(z)Mid

q (z)
]

(14)

where the new contribution δq(z), called the “hopping kernel”, takes hopping into account.
Such an extended kernel Mq(z) deals with the interplay of two effects. Nonlinear interac-
tions of density fluctuations, as described by the idealized Mid

q (z)), lead to the cage effect
with a trend to produce arrested states for T 6 Tc. Instead, the hopping contribution δq(z),
lead to the α relaxation and restore ergodicity at all temperatures.

In analogy with the ideal case, also the extended-MCT equations can be reformulated
in terms of the longitudinal current correlator Kq(z) in the form: φq(z) = −1/

[
z + Kq(z)

]
,

is Kid
q (z) = Ω2

q/(z + Ω2
q Mid

q (z)). Combining the Laplace transform of the ZM equation
(Equation (14)), with the new form of memory kernel, one finds [31]:

Kq(z) = δq(z)−
Ω2

q

[
1 + R(2)

q (z)
]

z +
[
1 + R(1)

q (z)
]
Ω2

q Mid
q (z)

(15)

where R(1)
q (z) = −zδq(z)/Ω2

q and R(2)
q (z) = zδq(z)

[
1− δq(z)Mid

q (z)
]
/Ω2

q are renormal-
ization functions. Being that these latter functions are unimportant in the low-frequency
regime z→ 0 (or long times) of interest, neglecting these terms, the function Kq(z) obtains
the form:

Kq(z) = δq(z) + Kid
q (z) = δq(z)−

Ω2
q

Ω2
q Mid

q (z)

By dropping δq(z), this equation reduces to that of the idealized MCT, Kq(z) = Kid
q (z):

approaching Tc from above, Mid
q (z) becomes larger due to the cage effect and the current
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correlator Kq(z) vanishes at T = Tc, originating the sharp non-ergodicity. In the presence
of δq(z), Kid

q (z) becomes unimportant when Mid
q (z) is large and there holds Kq(z) ≈ δq(z).

The hopping kernel takes over and hinders the currents from vanishing, preventing the
complete arrest of the density fluctuations. Hence, a dynamics crossover occurs at T ≈ Tc
from the cage-effect-dominated regime (Kq(z) = Kid

q (z)) to the hopping one, Kq(z) ≈ δq(z).
A crossover implication for the α−relaxation time τq of φq(t), can be evaluated from
τq ∼

∫ ∞
0 dtφq(t), i.e., iτq ∼ φq(z→ 0). Further, Kq(z→ 0) ∼ i/τq is:

1/τq ≈ 1/τ
hop
q + 1/τid

q (16)

where τ
hop
q comes from the hopping via δq(z → 0) = i/τ

hop
q . Thus, MCT predicts the

dynamic crossover in the β−relaxation time τq at T ≈ Tc from τq ≈ τid
q to τq ≈ τ

hop
q .

By marking the tagged particles, and related quantities, with the superscript or sub-
script ‘s’, we have that ZM equation for the tagged-particle density correlator is written
as φs

q(t) = 〈ρs∗
q (q, t)eiŁtρs

q(q, 0)〉/〈|ρs
q|2〉 and idealized-MCT memory will be Msid

q (t) =∫
d
→
k Vs(

→
q ;
→
k ,
→
p )φs

k(t)φ
s
p(t) with Vs = ρSk

[
(
→
q ·→p )ck

]2
/
[
(2π)3q4] [80]. Moreover, all the

related functions can be given in these terms. By considering that: (i) the self-diffusion coef-
ficient Ds in terms of the velocity correlation (Ks(t) =

〈→
v s(t)

→
v s(0)

〉
/3) is Ds =

∫ ∞
0 dtKs(t);

(ii) and Ks(t) is related with the mean-squared displacement (δr2
s (t) =

〈[→
r s(t)−

→
r s(t)

]2
〉

)

as Ks(t) = (1/6)∂2
t δr2

s (t) . The extended-MCT equations for Ks(t) can be deduced from
those for δr2

s (t), by exploiting the small-q behavior of φs
q(t) = 1− q2δr2

s (t)/6 + O(q4) [79],
with a resulting ZM representation:

∂tKs(t) + v2
∫ t

0
dt
′
Ms(t− t

′
)Ks(t

′
) = 0

with v2 = kBT/m, and Ms(z) = Msid/(1− δs(z)Msid); here Ms(z) = limq→0Ms
q(t) and

δs(z) = limq→0δs
q(z)/q2. Thus:

Ks(z) = δs(z)−
v2
[
1 + Rs(2)(z)

]
z +

[
1 + Rs(1)(z)

]
v2Msid(z)

Also in this case Rs(2)(z) and Rs(1)(z) are unimportant in the low-frequency regime
z → 0 (Rs(2)(z) = −zδs(z)/v2; Rs(1)(z) = zδs(z)

[
1− δs(z)Msid(z)

]
/v2 ). Neglecting

these terms, it is Ks(z) = δs(z) + Ksid(z), with Ksid(z) = −v2/(z + v2Msid(z)). Being
Ks(z→ 0) = iD:

Ds ≈ Did
s + Dhop

s (17)

Thus, the extended MCT predicts the dynamic crossover in the self-diffusion constant
Ds at T ≈ Tc from D ≈ Did

s to Dhop
s .

Figure 12 (top panel) reports the density correlators calculated at the peak position (q =
7.3) of the static structure factor S(q) for different T, in the case of a Lennard–Jones system
(with S(q) obtained within the Percus–Yevic approximation) by means of this extended
MCT (solid curves) together with their ideal counterparts (dashed curves). The ideal
correlators are characterized by the non-ergodicity plateau (and the appearance of the
critical point); instead, in the extended case, the plateau disappears in favor of a long time
decay due to the hopping processes. Illustrated at the bottom is the self-diffusion D versus
Tc/T. Also here, the solid curves deal with the extended MCT, and dashed curve refers to
Did from the ideal MCT (which vanishes at Tc/T = 1 according to the predicted power law
Did ≈ |T− Tc|γ [10]. The dash-dotted curve represents Dhop due to the hopping processes.
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Figure 12. The density correlators φq(t) calculated at the peak position (q = 7.3) of the static structure
factor S(q) for different T (top). The dashed curves deal with the ideal MCT and shows the bifurcation
(in the long t limit above and below Tc). The system self-diffusion D versus Tc/T (bottom). The solid
curves deal with the extended MCT while the dashed one refers to Did from the ideal MCT. The dash-
dotted curve represents Dhop originated to the hopping processes [67]. Adapted with permission
from Ref. [67]. Copyright IOP Publishing.

3.2. Hopping in the Correlator

In this case the correlator LT (Equation (13)) has been amended with a new time-
dependent hopping rate [72] so that the corresponding equation of motion can be written as:

φ(z) = −
[

z + ∆(z)− Ω2

z + iω + Ω2Mid
q (z)

]−1

(18)

again a form derived from the ZM projection-operator formalism [42], M(z) is the memory
kernel of fluctuating forces (the core target of MCT’s approximations by reflecting that for
short-times Ω and ω can be considered constants). Consequently:

Kq(z) = ∆(z)− Ω2

z + iω + Ω2Mid
q (z)

(19)
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The difference between these two models lies in the fact that, while in the first case the
memory kernel is amended (Equation (14)), in this second one it is just the correlator
(Equation (18)); by setting ∆(z) = 0 and approximating the memory kernel M(z) as a
nonlinear functional of the correlator in the time domain, M(t) = F[φ(t)], the original
schematic MCT is obtained.

In this frame the model able to reproduce the asymptotic power laws predicted by
the microscopic theory is the F12 model, specified by v3 = 0 (M(t) = v1φ(t) + v2φ2(t)).
The quadratic term is essential: it gives rise to bifurcations in the long-time limits of the
correlators, f = limt→∞φ(t), (the idealized-MCT glass transition). In these conditions the
coupling coefficients change smoothly, at critical values (vc

1, vc
2), but f jumps discontinu-

ously from zero to a finite value fc (the nonergodicity of the idealized glass). The exponent
parameter λ ∈ [1/2, 1] determines the non-universal power-law exponents a and b govern-
ing the long-time dynamics close to the transition.

In the F12 model, one has vc
1 = (2λ− 1)/λ2, and vc

2 = 1/λ2. The transition gives rise
to the φ(t) two-step decay, with an initial φ(t) = fc + h(t/t0)

−a toward the asymptotic
plateau fc, and then the von Schweidler decay φ(t) = fc + h′(t/tσ)−b (from the plateau
toward zero on the liquid side of the transition). Here, t0 is the time scale of the short-time
motion, whereas tσ represents a diverging time scale upon approaching the transition.
In the ω domain, these two asymptotes translate to the low- and high-frequency power
laws around a β-minimum. Hence, the idealized MCT transition at (vc

1, vc
2)(liquid side)

is accompanied by a second divergent relaxation time in φ(t), the α−relaxation time that
governs the correlation functions long-time decay.

The central point of schematic extended-MCT models is to incorporate additional
relaxation processes (not captured by the M(t)) that restore ergodicity inside the glass
state. In the idealized MCT, ∆(z) describes an additional slow relaxation channel (a very
small correction due a not completely arrested cage effect). If the primary MCT relaxation
channel vanishes, any contribution to ∆(z), also small, will dominate the long times and
thus must be accounted for. By transforming φ(z), Equation (18), in the time domain, it is:

··
φ(t) + C

∆
·
φ
(t) +

[
∆(t) +

·
φ0(t)δ(t)

]
+ ω

·
φ(t) + vC∆φ(t) + Ω2φ(t) + Ω2C

M
·
φ
(t) + C∆Mφ(t) = 0 (20)

CAB(t) represents the convolution of two (or more) functions A(t) and B(t) like e.g., f (t)

and g(t) C f g(t) =
∫ t

0 f (t− τ)g(τ)dτ, whereas
·
φ(t) and

··
φ(t) are the correlator temporal

derivatives. Equation (19) can be solved under the initial conditions: φ(0) = 1, ∂tφ(t)|t→0 =
−∆(0) = ∂tφ0(t); by approximating ∆(t) ≈ δ0δ(t) as ∆(z) ≈ iδ0, leads to the extended-
MCT model, also in the context of q-dependent correlators.

It must be noted that the correspond long times (low frequencies) behaviors are not
affected by such a change. To describe the non-exponentiality of the relaxation below Tc the
∆ time dependences are relevant. For t� tσ, the cage-effect channel has already attained
its long-t limit, φ(z) = −1/(z/ f + ∆(z)) and in the time domain under the initial condition
φ(t) = f it is:

∂tφ(t) = − f
∫ t

0
∆(t− t

′
)φ(t

′
)dt

′
(21)

which is an approximation that neglects the ∆(z) in the memory kernel and thus does not
capture the exact long-t behavior. However, any empirical distribution of relaxation times,
such a stretched exponential, can be reported in that expression if the generalization is
admitted [81]

∆(t− t
′
) ≈ ∆(t, t

′
) ≈ ∆̂(t

′
)δ(t− t

′
) (22)

Hence, φ(t) ∼ f exp[−R(t)], where R(t) =
∫ t

0 f ∆̂(t
′
)dt

′
. ∆̂ is the so called hopping

contribution, a form able to capture the physics of dynamic heterogeneities below Tc.
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The idea to describe the density fluctuations relaxation as a random process has been
suggested to be central in MCT [82]; this approximation leads to a significant simplification:

··
φ(t) +

[
ω + ∆̂(t)

] ·
φ(t) +

[
Ω2 + ω∆̂

]
φ(t) + Ω2C

M
·
φ
(t) + Ω2∆̂CMφ(t)(t) = 0 (23)

A correlation functions equation formally derived by using the modified projection
operators introduced by Mori and Tokuyama (MT) [83]. In a single-correlator model, the
∆̂(t) time dependence is responsible for the stretching of the hopping-induced relaxation,
and its overall magnitude controls the corresponding time scale. The previous kernel model,
by assuming localized hopping events embedded in the glassy structure [25], also derives
an Arrhenius rate where the strength of the frozen matrix—its elastic modulus—enters the
effective barrier height for the activated events.

In this formalism of the linear response functions, the longitudinal elastic modulus
(E) exhibits a thermodynamic contribution that varies smoothly across the MCT transition,
and a non-ergodic contribution essentially given by the MCT memory kernel M(t→ ∞) =
M[ f ], according to Ref. [84], that arises in the glass only, meaning that:

f̃ ∆̂(t) ≈ φ2(t) exp(−EM
[

f̃
]
/ρkBT) (24)

where f̃ = f in the glass, whereas f̃ = fc in the liquid. This situation highlights the way
with which MCT also accounts for the system viscoelasticity. In dense hard-core repulsive
liquids [84] a typical value is E/ρkBT ≈ 50. Smaller E values will enhance the hopping
contribution and M[ f ] increases as one enters deeper into the glass. Precise form of the
Arrhenius factor can be derived by estimating these hopping rates [85]. The quadratic
dependence of ∆̂(t) on φ(t) could be replaced by a linear one, more appropriate for inter-
mittent hopping relaxations [70]. This would result in less stretching of the final relaxation.
It seems that the correct form cannot be decided within a schematic model. However,
numerical findings for the schematic model (with memory kernel and hopping kernel)
qualitatively explains recent findings for hard-sphere-like colloids [86].

The kernel model also pays attention to the probe-density fluctuations and specific
Kohlrausch relaxation rates. In the first case (as described by the extended F12-model
correlator), the corresponding coupling is simply expressed by writing a second correlator
φs

A(z) for the fluctuation of a dynamic variable A probed in the experiment [87]. This
could be the reorientation of permanent dipoles, the molecular rotational and diffusional
motions, or describe the q-dependent coupling of incoherent scattering to the collective
density fluctuations in neutron scattering. The LT of φs

A(z) determines the corresponding
dynamic susceptibility χA:

χA(z)/χA = zφs
A(z) + 1 (25)

It is interesting to focus on the normalized susceptibility spectra, χ”
A(ω)/χA where

χA can be treated as a T independent adjustable parameter, so that the memory kernel
Ms

A(z) is:
Ms

A(z) = vs
Aφ(t)φs

A(t) (26)

The subscript A can deal with the analysis of dynamic light scattering data, (A = LS),
or dielectric spectroscopy data, (A = DS). The hopping motion will be present both for the
collective density φ(t), and the probe φs

A(t) correlator. In the case of the combined α- and
slow β-relaxations, they are better modeled by means of both terms, as:

f̃ s∆̂s(t) ≈ φ(t)φs
A(t) exp(−EM

[
f̃
]
/ρkBT) (27)

by assuming that the t-dependence is given by probe-density correlations, and the escape
rate (even of the single particle) is still due to collective rate. φ(t) embodies the fact that
hopping relaxation in glass formers is a highly collective effect, as seen (above and below
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Tc) in the tracer diffusion of metallic glass formers [88]. Both dynamic susceptibilities χ”(ω)
from the correlators φ(t) and φs

A(t) have been calculated.
The corresponding φ(t) comparison with a Debye-relaxation (χ”Debye(ω) ∝ ωτ/[1 +

(ωτ)2]) reveals the features of non-exponential relaxation even inside the ideal glass state.
Comparing with the results including hopping, one finds that the stretching almost stays
constant as one crosses the glass transition [24]. The susceptibility spectra follow an
analogous trend. The χ”

A(ω) stretching is less, and the α− relaxation peak strength is
enhanced for the choice of large coupling strength. In the glass region, there is the splitting
of the relaxation peak into two contributions. A result due to the coupling between φs

A(t)
and φ(t).

The relaxing φ(t) induces relaxation in φs
A(t), but on the same time scale the hopping

term (slightly slower) constitutes a second mode giving rise at two time scales in the
φs

A(t) decay: the shorter one corresponds to the collective fluctuations decay, and induces
a shoulder in the high-ω side of the α-relaxation peak in χ“

A(ω). This shoulder bears
some reminiscence of a slow β-peak that emerges as one moves deeper into the idealized-
glass state.

The schematic model with ad hoc t-dependent hopping rates represents an example
of how to generate stretched decay inside the MCT glass state, and how density and
probe correlators contribute to the slow β-peak in the presence of two distinct rate kernels.
There are, however, some drawbacks in the model respect the experimental data: the
spectra broadening (in particular in the β -peak (or HF-wing) region) is much less than that
observed. This is due to the hopping rate form, ∆̂(t) ≈ φ(t)2 and the appearance of a deep
minimum in the spectra for T < Tc that is not consistent with experimental data [89].

The slow β−modes interpretation as the interplay between collective relaxation and
probe-variable relaxation is still consistent within the extended MCT, providing that:

∆̂KWW(t) = β
tβ−1

f τβ
(28)

Such a long time stretched-exponential relaxation (KWW) [90] is empirical and the
original MCT is in some way compatible with such a correlation functions limiting form [80].
In addition, ∆̂KWW(t) diverges as t→ 0, since the stretched-exponential relaxation has no
regular short-time expansion. To make the model well defined, it has been assumed in
Equation (19) that:

∆̂(t) = ∆̂KWW(1/Ω), for t < 1/Ω and ∆̂KWW(t), for t ≥ 1/Ω (29)

This is a reasonable approach, as the model is only intended to be applied for times larger
than the time scale of microscopic motion set by 1/Ω. A corresponding expression can be
also used for the probe correlator.

The model introduces as fit parameters (Ω, v) and (Ωs
A, vs

A), used to model the micro-
scopic dynamics and to fix the frequency and energy units. The low-frequency part of the
solutions has a negligible dependence on their, up to a rescaling of frequencies. Thus, v1, v2
become the crucial control parameters driving the collective correlator φ(t) through its
idealized glass transition. vs

A determines the strength for the coupling between probe and
collective motion [87]. Finally, the hopping parameters, (τ, β) and (τs

A,βs
A) that determine

the shape of the α-relaxation below Tc, are crucial in fitting this part of the data.
Figure 13 is an example for the interplay between φ(t) and φs

A(t). The fit of experimen-
tal data (covering up to 18 orders of magnitude) is a demanding test of any model. In the
actual case, the use of the two correlators (φ(t) and φs

A(t)) with the interplay between these
two hopping processes is unique to the MCT ansatz (Equation (23)). The possibility to
consistently fit two different data sets, A = LS or A = DS, using the same parameter set
for the underlying φ(t), is a nontrivial reality. An example are the obtained findings in the
fit of the experimental spectra [91], far below Tc showed in the following [72].
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Figure 13. Fit of the propylene carbonate DS data (T = 157 K) by means of the extended schematic-
MCT model incorporating KWW-like hopping rates (solid line). The hopping contributions stemming
from the collective correlator φ(t) and from the probe variable correlator φs

A(t) are indicated sep-
arately (dashed and dash-dotted lines) [72]. Reprinted with permission from Domschke, M. et al.
Phys. Rev. E 84, 627 031506 (2011). Copyright (2011) by the American Physical Society.

4. The Interplay between Percolation and MCT

In the context of the present work MCT and PT have been, separately, the subject of
many studies. Both practically constitute the main tool for understanding the chemical
physics of complex systems in terms of scale laws. While PT is at the root of the problems
concerning the sol-gel transition, MCT has certainly clarified many of the complexities of
dynamic arrest. Only recently, however, has it been attempted to understand common
mechanisms [26,30,47,92–94].

By changing the control parameters, many physical systems reach a slow dynamics
regime followed by an arrested or a quasi-arrested state; examples, among others, are gels
and glasses, both considered amorphous solids. Gels are elastic disordered solids observed
at low density in systems, whereas molecules are bonded to each other through attractive
forces or chemical links.

The percolation (sol-gel) transition is a continuous transition. By using the random
percolation an explicit scaling form for the dynamic correlator was found, and general
scaling laws connecting the dynamic exponents can be derived [26,30]. It has been proven
that using mean field percolation exponents the same scaling form for the correlator and
scaling relations were valid for the continuous transition of MCT model A [10]. Such a
result suggests that the origin of the continuous MCT power laws is due to an underlying
static transition in the same universality class of the random PT.

In this frame it was considered, as paradigmatic example, the Fredrickson and Ander-
sen facilitated Ising model [45] on a BL [46]; with φ(t), that tends to the order parameter
of the bootstrap percolation (BP) model [95]. The BP model exhibits a mixed order transi-
tion with an order parameter which discontinuous jumps at the transition. Nevertheless,
the fluctuations, and the associated critical length, diverge as the transition is approached
from the glassy phase.

Generalizing the cluster approach, the dynamic behavior for the correlator (and the
susceptibility) of the FA facilitated model was predicted [26] (by including universal scaling
laws that relate dynamic exponents with the universal BP exponents). This proposes that,
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by means of the mean field values of these static exponents, the dynamic behavior and
the scaling laws are the same of the MCT model B [26,96,97]. On considering the results
found for the continuous transition by using clustering concept, a new, more precise form
is found for the approach of the correlator to the plateau, characterized by a power law and
followed by a stretched exponential divided by a power law.

Predictions were numerically verified on both FA and MCT model B, suggesting a
general common mechanism for discontinuous glass transition at mean field level, based
on a static transition in the same universality class of BP with a diverging static length,
responsible for the origin of scaling and universality present in such a wide range of systems,
apparently different from each other. In the frame of the classical two step relaxation (β
and α), the correlator can be written as

φq(t) ' fq + εβF(t/tβ, t/tα) (30)

where β = 1/2 is the order parameter BP exponent, tβ ∼ ε−z1 corresponds to the first step
relaxation to the plateau, and tα ∼ ε−z corresponds to the second relaxation time. At the
criticality it is φq(t)− fq ∼ t−a, with z1 = β/a = 1/2a.

The plateau approach is given by a stretched exponential divided by a power law and
the departure from it is φq(t)− fq ∼ −εβ(t/tβ)

b. This latter situation is interpreted as a
propagating damage from an initial density of altered sites εβ, times (t/τβ)

b (the number
of distinct damaged sites by one initial altered site during the time t).

The scaling function of the two variables have as consequence the scaling relation
between dynamic exponents a, b, z and the BP static exponent β, z = β/a + β/b = 1/2a +
1/2b. The dynamic susceptibility, χ4(t) = N(

〈
q2(t)

〉
− 〈q(t)〉) (where N is the number of

particles), is in the liquid phase χ4(t) = ε−γG−(t/tβ, t/tα), where γ = 1 is the BP critical
exponent of the order parameter fluctuations. This scaling leads to χ4(t) ∼ taγ/β = t2a for
t < τβ with a crossover to t2b for tβ < t� tα.

This is a consequence that the dynamics in this regime receive due the damage to
propagation and that χ4(t) is proportional to the square of distinct damaged sites. Finally,
χ4(t = τβ) ∼ ε−γ = ε−1 and χ4(t = τα) ∼ ε−γ−2β = ε−2 and goes to zero in the infinite
time limit. In the glassy phase, χ4(t) ∼ taγ/β = t2a for t < τβ with a crossover to a constant
plateau diverging as ε−γ = ε−1.

4.1. Kinetic Facilitated Models and Bootstrap Percolation

The system dynamic is characterized by the correlator, φ(t) = 〈q(t)〉. So that the
related susceptibility, χ4(t) = N(

〈
q2(t)

〉
− 〈q(t)〉2) and pair correlation function, gij(t), are:

q(t) =
1
N ∑

i
ni(t), gij(t) =

〈
ni(t)nj(t)

〉
− 〈ni(t)〉

〈
nj(t)

〉
, χ4(t) =

1
N ∑

ij
gij(t) (31)

with ni(t) = 0, 1 depending whether a spin at site i has flipped or not in the interval
(0, t) [94].

On a BL of coordination number z = k + 1 , the model, for 0 < f < k − 1, has a
transition from a high-T liquid (whit a large density of down spins), to a frozen phase at
low T, (whit few down spins and the onset of an infinite cluster of blocked spins) [98].
In that t → ∞ limit [46], this transition corresponds exactly to that of BP. Hence, BP has
a mixed order transition (its percolation order parameter P jumps discontinuously at the
threshold from zero to Pc), the fluctuation χ of the order parameter and the associated
length ξ diverge as:

P− Pc ∼ εβ, χ ∼ εγ, γ ∼ εv (32)

β = 1/2, γ = 1, v = 1/4
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Thus, for the FA model in the glassy phase, m = P, χ4(∞) = χ, and ξ4(∞) = ξ. With m =

limt→∞φ(t) and χ4(∞) = limt→∞N(
〈
q2(t)

〉
− 〈q(t)〉2) as the FA order parameter and its

fluctuation, respectively, and ξ4(∞) the associated length.

4.1.1. Decay to the Plateau by Using the Cluster Approach

Coming from the glassy phase T < Tc, the FA the static properties exhibits a mixed
order transition at Tc whose critical behavior given by the Equation (33) scaling laws. By re-
defining the order parameter as f − fc , the transition can be considered as a continuous
one and a cluster formalism can be applied, such as the sol-gel transition and the dynamic
transition of the MCT model A [30,47,92]. In this approach, the system can be described by a
distribution of clusters n(s), where each cluster of size s decays exponentially φs(t) ∼ e−t/τs ,
with τs as the relaxation time of a cluster of size s. The larger the cluster size, the larger is
τs; thus, it is natural to assume (as for polymer systems) the power law:

τs ∼ sx (33)

with x as a constant. Being that the entire system density correlator is the sum over
all clusters

φs(t)− fq '∑
s

sn(s)e−t/τs (34)

n(s) ∼ s−τe−s/s∗ is the cluster distribution associated to the BP fluctuation; τ = 2 + β/(β +
γ) and s∗ = ε−(β+γ), and finally β = 1/2 and γ = 1 are the mean field BP exponents. In the
sol-gel transition and in the MCT model A, the cluster distribution is thus given by the
random percolation with β = 1 and γ = 1 [29].

Such a general approach is based under the only assumption that the system configu-
ration can be partitioned in a clusters distribution, each decaying with a relaxation time
proportional to sx. This approach is still valid, just like in a liquid–gas transition close the
critical point, and able to describe the system criticality in terms of a droplet distribution,
such as Fisher’s droplet model [50,51]. In the glassy phase, T ≤ Tc, the cluster formalism
of the continuous transition can be applied, a formalism which also predicts a pure power
law decay [30] for the entire range of times at T = Tc, and the same power law below Tc,
provided that t� τβ,

φ(t)− fq ∼ t−a, t� τβ, τβ ∼ ε−z1 (35)

a =
1
x

β

β + γ
, z1 = x(β + γ) =

β

a

being that x is related to the relaxation time of a size s fluctuation, and with the BP
exponents:

a =
1

3x
, z1 =

3x
2

=
1
2a

As in the continuous case, close Tc the power law is followed by a transient, given by
a stretched exponential combined with a power law [30]:

φ(t)− fq ∼ εβ

(
τβ

t

)c
e−(t/τβ)

γ
(36)

c =
3β + γ

2(x + 1)(β + γ)
=

5
6(x + 1)

=
5a

2(1 + 3a)

and
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y =
1

x + 1
=

3a
1 + 3a

c
y

=
3β + γ

2(β + γ)
=

5
6

Large scale numerical simulations of the FA model on the lattice (BL) with k = 3, f = 2
and N = 2, fully agree with these cluster approach predictions. a ≈ 0.29 was obtained from
the power law decay at the Tc and from this value, the exponents y ≈ 0.46 and c ≈ 0.39,
have been obtained. In the liquid phase, there is the same approach to the plateau.

4.1.2. Departure from the Plateau Using the Damage Spreading Mechanism

In the liquid phase, the clusters (when the plateau is still present) survive on time
scales of the order of τβ. The small clusters start to decay first and the last relaxing clusters
are the largest ones, i.e., the critical clusters. In such a situation the relaxed sites, act as
initial altered (damaged) to “free” the sites of the potential boot-strap cluster represented
by the plateau. As t increases, this damage spreads through a cascade process [99], so that
the potential infinite cluster (which contributes to the plateau) is a sea of quasi frozen sites,
surrounded by critical clusters.

Above Tc these latters eventually decay, whereas just below Tc, they become frozen and
part of the infinite cluster. The number of sites m(t) in the core is related to the correlator as
φ(t) ' fc −m(t), where m(t) ∼ εβ(t/τβ)

b, β = 1/2 , and εβ represents the density of sites
in the critical clusters (the density of initial damaged sites). 1/τβ is the diffusion coefficient
of the sites in the critical cluster, being b a dynamic exponent related to the spreading
damage mechanism. Finally, in the α regime,

φ(t) ∼ g
(

t
τα

)
, τα ∼ ε−z (37)

and, like in MCT, using the matching conditions with the previous regime:

z =
β

a
+

β

b
=

1
2a

+
1
2b

(38)

having the liquid phase two relaxations (τβ and τα) the density correlator φ(t) must be:

φ(t)− fq ' εβF

(
t

τβ
,

t
τα

)
(39)

where F(x, y) = F1(x) for y � 1, F1(x) = x−βz1 for x � 1, F1(x) = −xb for x > 1,
and F(x, y) = −xbF2(y) for x � 1 and y > 1. The requirement that φ(t) for t > τα is a
function of t/τα only, implying that εβxb = yb, which in turn leads to τα = τbτβ where
τb ∼ ε−zb with zb = 1/2b. Taking into account that τβ ∼ ε−z1 , it follows the scaling relation
Equation (39).

4.2. Comparison with Discontinuous MCT Model B

The MCT model B correlator satisfies these scaling forms, suggesting a connection
between such a PT picture and MCT. This is also validated on considering that the mean
field static BP exponents coincide with those found in the Random Field Ising (RFI) model
in an external field [39]. Proposed as well in the previous analysis, MCT predicts a relation
between the exponent a and b and the MCT parameter λ. Instead, in the FA instead of λ
we have x as parameter, so that:

a =
1
x

β

β + γ
=

1
3x
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and if the FA approach applies to MCT:

λ = Γ2(1− 1/3x)/Γ(1− 2/3x) = Γ2(1 + b)/Γ(1 + 2b)

MD data show that this MCT relation is well verified on the FA model, thus strongly
supporting the idea that the FA model in mean field reproduces entirely MCT [96]. In the
next subsection, we will refer to the FA model, but the same predictions apply to the MCT
as well.

4.2.1. Fluctuations of the Order Parameter

Dynamic heterogeneities play a basic role in understanding the glass transition [28,100–103].
They are described through the susceptibility, χ4(t), defined as the fluctuations of the
dynamic order parameter. As made for the correlator, we express χ4(t) as a scaling function
of two variables; since in the glassy phase for t→ ∞ it coincides with the fluctuation of the
BP order parameter, diverging as γ:

χ4(t) ' ε−γG±(
t

τβ
,

t
τα

) (40)

using (+) in the glassy and (−) liquid phase, respectively.
Glass Phase. In this phase τα = ∞ is:

χ4(t) ' ε−γG+(
t

τβ
, 0) ' ε−γF+(

t
τβ

) (41)

being F+ = const for t = ∞, and for t < τβ is F+(t/τβ) = (t/τβ)
aγ/β with τβ ∼ ε−β/a is :

χ4(t) ' taγ/β = t2a for t < τβ and thus ε independent (42)

χ4(t) ∼ ε−γ = ε−1 for t→ ∞ (43)

Hence, χ4(t) grows as t2a up to the plateau (t ∼ τβ), whose value diverges as γ = 1.
Liquid Phase. Here, for t� τα is:

χ4(t) ' ε−γG−(
t

τβ
, 0) ' ε−γF−(

t
τβ

) (44)

In the early regime, t ≤ τβ, the behavior is the same as in the glassy phase,

χ4(t) ' taγ/β = t2a for t < τβ (45)

χ4(t) ∼ ε−γ = ε−1 for t = τβ (46)

In the late β regime, (tβ < t � tα) being the dynamic due to the damage spreading
mechanism, χ4(t) must be proportional to the square of the number of visited sites m2(t) ∼
t2b (similarly to what is found in the diffusing defects mechanism [93]), therefore:

F−(
t

τβ
) = (

t
τβ

)2b for tβ < t� tα (47)

χ4(t) ' ε−γ−2(
t

τβ
)2b for tβ < t� tα (48)

where τα ∼ ε−z, τβ ∼ ε−β/a. In the late β and α regime t > τβ, is G−(t/τβ, t/τα) =

(t/τβ)
2bH−(t/τα), where H−(y) = const, for y ≤ 1 in order to match the behavior in the
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late β regime Equation (45), and goes to zero for y� 1, as χ4(t) in the infinite time limit
tends to the value of the BP susceptibility χ, which is zero in the liquid phase. Therefore:

χ4(t) = ε−γ−2β(
t

τα
)2bH−(t/τα) for t > τβ (49)

and
χ4(t) ∼ ε−γ−2β ∼ ε−2 for t = τβ (50)

where β = 1/2 and γ = 1. The scaling relation 3.13 has been numerically verified (FA model
on the BL), showing that in the β regime (t� τβ) all curves rescale onto a unique function
corresponding to F−(x) (with x = t/τβ), and also by fully confirming Equation (45) [47]:
with χ4(t) ∼ t2a in the early β regime and ∼t2b in the late one.

Figure 14 reports the data collapse of the rescaled susceptibility χ4(t), showing that in
the β regime t� tα all curves rescale onto a unique function corresponding to F−(x) (with
x = t/τβ, and that χ4(t) ∼ ε−γ for t = τβ (with γ = 1). In particular, the scaling relation
γ = 1, τβ ∼ ε−1/2a are shown. Straight lines show the power law behaviors in the early t2a

and late β regime (t2b), with a = 0.29 and b = 0.50.

Figure 14. The data collapse in the β regime t � tα of the dynamical susceptibility, χ4(t) (for the
FA model on the Bethe lattice). In particular, the scaling relation are shown: γ = 1, τβ ∼ ε−1/2a.
Straight lines show the power law behaviors in the early t2a and late β regime (t2b), with a = 0.29
and b = 0.50 [47]. Figure adapted under the terms of the Creative Commons CC BY license from
Ref. [47].

4.2.2. Comparison with MCT

χ4(t) was also studied within the p-spin model and within the MCT theory using a
diagrammatic approach [104]. The MCT results [93] predicted for χ4(t) the growths ta and
tb for the early and late β regime and a growth of the t∗ maximum with an exponent 1.
Later it was argued [105] that this behavior is valid only for ensembles where all conserved
degrees of freedom are fixed, e.g., Newtonian or Brownian dynamics. In the NVT ensemble,
otherwise other diagrams would contribute to χ4(t) leading to t2a and t2b and an exponent
2 for the growth of the χ4(t) maximum of t∗.

In such a way, it has been substantially proposed that a cluster approach and the
damage spreading, applied to the FA in the mean field BP, predict a discontinuous dynamic
transition with the same scaling behavior found in the MCT discontinuous transition.
A transition, this latter, characterized by a static mixed order transition (in the same
universality class of the BP) with critical fluctuations diverging only in the glassy phase.
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Nevertheless, the liquid phase dynamics is strongly influenced by this transition,
as shown by the behavior of the χ4(t) heterogeneities. Just this transition, characterized by
a diverging static length, is responsible for the corresponding scaling laws and universality
class. In this scenario the sol-gel transition (with a static random PT) is described by the
continuous MCT model A in a different universality class. In conclusion, it can be stressed
that an MD study conducted by using a DLVO potential give a further demonstration that
both the glass and the sol-gel transitions can be described by an explicit MCT model [106]
(the F13 MCT schematic model).

4.3. The Related Main Findings
4.3.1. From Theory and MD Simulations

The common mechanisms between MCT and PT are essentially based on the univer-
sality present in both the F12 and F13 models [26,30,47,92–94]. As said, MCT and PT have
been intensively studied by using both MD simulation and experimental approaches; here,
however, we will refer to those specific results of the interrelation between MCT and PT,
and above all to data both related to the FSC and viscoelasticity.

Research findings essentially on two types of systems, physical and chemical gels,
are considered. The physical ones are colloids, essentially hard spheres (mono- [107]
or poly-dispersed [108–110]) or charged (interacting via a DLVO potential, shielded or
not [111,112]). On the other hand, the chemical gels belong to the large class of polymeric
solutions where the gel phase is the state characterized by percolating cluster, and the
gelation transition as the percolation line [5,7].

An MD study proposes that polymer suspensions can represent the F13 case [113].
By changing their volume fraction ϕ, the PT line (decreasing with ϕ) was found to occur at a
bond probability pgel(ϕ), and the particle diffusivity evaluated for each value of the bonding
probability p, (by assuming the glass line as ϕg(p)) follows the power law |ϕ − ϕg|γ.
However, the obtained phase diagram similar to that of the MCT F13 model does not show
the A3 singularity. It is observed that the gel line (associated to the continuous transition)
and the glassy line (to the discontinuous one) cross each other, with the glassy line entering
in the gel region) and the liquid–glass transition becoming a gel–glass transition.

The sol-gel transition appears as a divergence in the system relaxation time τ(q)
(obtained from the corresponding ISF, Fs(q, t) as

∫
dtFs(q, t)t/

∫
dtFs(q, t)) at the smallest

q. Regarding size, the structural arrest is comparable to the box size: at the threshold the
spanning cluster is unable to diffuse, opposite of the finite ones [114].

In the glass state, instead of the particles being unable to leave the cage formed by
neighbor particles, the structural arrest occurs on all length-scales. Important characteristics
of such a situation along the glass line are [92]: (i) the logarithmic decays inside the gel
phase; (ii) the self ISF on increasing p that shows a decreasing in the plateau value as an
effect of the cage motion.

As predicted in the F13 model, the plateau value associated to the gel transition
increases and the logarithm decay appears when the two plateaus coincide. The A3 singu-
larity, typical of models where the two interfering arrested lines are both discontinuous
glass transition lines [34], has been well studied experimentally, by using different tech-
niques (including viscoelasticity), in attractive colloidal particles. Experimental work where
the logarithmic decays were also found [35,37,48,49].

Physical gels, in comparison with the chemical one, having bonds with a finite lifetime,
were extensively studied by MD simulations. An interesting case is a recent study [106] on
systems with a DLVO interaction (between two particles i and j) represented as:

Vij(0) = ε

[
A
(

σij

r

)36
+ B

(
σij

r

)6
+ C

(
e−r/ξ

r/ξ

)]
(51)



Int. J. Mol. Sci. 2022, 23, 5316 30 of 51

where the temperature T is represented in (ε/kB) units, σ is the particle diameter, σij =

(σi + σj)/2 , the wave vectors are in units of σ−1 and the time is
√

m/σ2/ε. A = 3.56,
B = 7.67, C = 75.08, ξ = 0.49, and σi = σj ensure the monodispersity.

It must be noted that under monodispersed conditions, like in real colloids, transitions
from this disordered cluster phase, to an ordered hexagonal lattice first, and to an ordered
lamellar phase then, are observed by increasing ϕ. In the polydispersed case a disordered
cluster phase is observed at low T and ϕ and on increasing the ϕ, just the polydispersity
avoids the transition to the order, so that the system enters a “supercooled” metastable
liquid phase until structural arrest (gel) occurs very close to the percolation threshold.

Moreover, the DLVO having an attractive tail, depending of the relative strength, can
originate a clustering with finite lifetimes or a stable aggregation (coagulation). In this
study, the cluster relaxation was detailed by means of the time autocorrelation function
of bonds, B(t), evaluated as nij(t) = 1 if particles i and j are linked at time t, otherwise
nij(t) = 0.

Hence, the corresponding Fs(q, t(q)), the structural relaxation time, τ(q) and the bond
lifetime τb are thus obtained from such a quantity. The resulting data, at low ϕ and small q,
where the bond lifetime is larger than the structural relaxation time τ(q), obey to a power
law, a regime for which the system seems made of permanent clusters like in chemical gels.

By increasing ϕ, when these lifetimes become comparable to each other, a new regime
is observed, where, besides the clusters, also the particles crowding starts to play a role in
the dynamic slowing down. Consequently, the relaxation time departs from the lower ϕ
power law behavior and for ϕ > 0.12, logarithmic decays appear in the self ISF, although the
A3 singularity was not observed. In these results it is clearly proposed an important reality:
the glass transition and the sol-gel transitions can be described by a particular MCT model.

The glass transition is characterized by a discontinuity of the order parameter (model
B) and the sol-gel transition instead of by a continuity (model A). As such, a geometrical
interpretation leads to associate the BP to the discontinuous transition of model B and the
random percolation to the continuous transition of model A. Therefore, the same general
formalism can treat the transition from a liquid to an arrested state, whether glass or gel.

The phenomenology observed in some polymer systems and associated to the interplay
between chemical gels (with permanent bonds) and glasses, can be interpreted in terms
of the F13 MCT model, clarifying also the origin of logarithmic decays observed in these
systems. Giving the suggestion that there are other systems where such theory could be
applied, e.g., colloidal gels, where bonds between particles have finite lifetime and the
logarithmic decays appear.

It would be interesting to study such systems at higher concentrations in order to check
if the MCT scenario applies also in DLVO colloidal gels. Moreover, glasses with pinning
impurities deserve to be studied with these generalized MCT models; indeed, adding
pinning impurities bootstrap percolation will crossover towards random percolation.

Finally, let us mention possible applications to water polymers mixtures (polyelec-
trolytes and biopolymers). Because polymers (or proteins) form bonds, once the PT
threshold of bonded polymers are reached, the water system stops flowing, becoming
an amorphous solid. As it is well known in the deep supercooled regime, water becomes a
glass. It would be interesting to explore the interplay between the glass and the gel lines
in these solutions, in particular in those of biological interest where extremely interesting
phenomena occur.

Summarizing, by changing the control parameters, many systems reach a slow dy-
namics regime followed by an arrested or a quasi-arrested state. Examples, among others,
are gels and glasses. Both are considered amorphous solids in the sense that can reach a
slow dynamics regime followed by an arrested disordered state. Gels are elastic disordered
solids observed at low density in systems, where molecules are bonded to each other
through attractive forces or chemical links.

In chemical gels, the sol-gel transition was explained in terms of the appearance of a
percolating cluster of monomers linked by bonds [5,7], and experimental measurements
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confirmed this interpretation. Glasses instead exhibit a structural arrest usually at high den-
sity, and glass transition is also observed in liquids interacting only with excluded volume.

The glass transition is considered a mixed order transition, with discontinuous order
parameter, and MCT well describes dynamic behavior of glassy systems at least at mean
field level [10,31]. As mentioned, the ideal description of glassy dynamics is no longer fully
adequate for T < Tc, with Tc typically found well above the glass transition Tg. A reasonable
way to study the system dynamics below Tc is that such it marks the transport change from
liquid-like to an hopping-mediated solid-like, a situation suggested by the experimental
evidence of the dynamic crossover at temperatures higher than the glass transition.

4.3.2. From Experimental Data (a) Hopping in the Memory Kernel

Moreover, at given ϕ, decreasing T, the FSC is found. This is interpreted [38,48,115] as
a crossover from MCT regime, where power law is expected, to the extended MCT one,
where a hopping regime characterized by an exponential like behavior is expected. At the
same time, due to the attractive force, the first regime may be attributed to the aggregation
of percolation clusters, like in the sol-gel transition [21].

Interestingly, in some polymer or colloidal systems (e.g., PL64/D2O AHS micellar
system [48]), a crossover from a gel-like to a glass-like behavior is observable by changing
the control parameters. Such a system is also characterized by a viscoelastic behavior at
low ϕ, where the viscosity is well fitted by a power law, and by increasing ϕ, a crossover
to a different regime is observed (at the FSC). On these bases was considered the idea for
an interplay between gel and glass [116] to describe the sol-gel transition using MCT, and
simultaneously, to use percolation concepts in order to understand the criticality underlying
the dynamic singularity found in MCT. In this frame, the F13 schematic model, where the
continuous transition meets the discontinuous one, can be of relevant interest.

As said, the first extension of this schematic model was proposed by Chong only
considering the relevance for the arrest process of the FSC observed in the PL64/D2O
system [67,68], which consists of a semi-empirical microscopic MCT with hopping term,
able not only to make parameter-free predictions but also to explains the underlying SEV.
For this, of interest are the numerical results of a Lennard = −Jones (LJ) system whose
particles interact via the potential V(r) = 4εLJ{(σLJ/r)12 − (σLJ/r)6}. With the static
structure factor Sq, required for determining Ω2

q , Mid
q and Msid

q , evaluated within the
Percus–Yevick approximation [117]. The corresponding Tc, was found to be Tc = 1.637 for
the average number density ρ = 1.093 [25].

After these results, a model for the extended MCT was considered one for which the
hopping processes are incorporated via a dynamic theory formulated to describe diffusion–
jump processes in crystals [118]. In such a case hopping, with the rate whop, vibrational
fluctuations occur in the quasi-arrested state with particles trapped inside the cages. Hence,
both the collective and tagged-particle hopping kernels are then given by: δq(z) = δs

q(z)/Sq
and δs

q(z) = whopNc[1− sin(qa)/qa]/ f s
q , with Nc being the coordination number of the first

shell surrounding a particle and a as the hopping distance.
The φq(t), was thus calculated (at the peak position q∗ = 7.3 of Sq) for both the

idealized- and extended-MCT for some temperatures near Tc. The ideal φid
q (t) exhibits the

bifurcation of the long-time limit at T = Tc (φid
q (t→ ∞) = 0 for T > Tc) and for T ≤ Tc it

is φid
q (t → ∞) = fq > 0. On the other hand, the hopping contribution φ

hop
q (t) relaxes to

zero even for T ≤ Tc. Moreover, the hopping processes start to affect density fluctuations
above Tc. The α−relaxation time τq∗ , if evaluated under the same conditions, is considered
as a Tc/T function, reveals that τid

q∗ diverges at Tc/T = 1 according to the idealized theory

bifurcation and such a divergence obeys to the power law τid
q∗ ∼ |T − Tc|−γ.

In the extended MCT case, this law is replaced by a curve characterized by a smooth
crossover very near τid

q∗ . A relevant characteristic of this α− relaxation time representation is
that for T > Tc it can be well fitted by super-Arrhenius power law, whereas in the opposite
case of low temperatures T ≤ Tc the corresponding τ

hop
q∗ is nearly Arrhenius. Thus, in the
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present model the α−relaxation time exhibits the fragile to strong dynamic crossover (FSC)
at T ≈ Tc, by confirming the singular energetic configuration represented by the “energy
landscape” and the corresponding thermal evolution. It is relevant that these time values
cover in the T-range of interest many orders of magnitude (about 6).

The related self-diffusion Ds full confirms these findings. Both the Did
s and Dhop

s , show
as a function of Tc/T, that the Did

s of the idealized MCT vanishes at Tc/T = 1 as Did
s

∼ |T − Tc|γ reflecting the predicted dynamic arrest. Instead, depending on the T-regime,
Ds is determined by the larger one of Did

s and Dhop
s , explaining why Ds crosses over from

Ds ≈ Did
s to Dhop

s at Tc/T ≈ 1. In addition, that Ds exhibits the FSC at T ≈ Tc.
All of this being Ds ∼ (τ∗q )

−1 is fully reflected in the system SER. Obviously is
τ∗q ∼ η/T. The SER is known to be accurate for normal- and high-temperature liquids,
and holds also within the idealized MCT since it predicts that both τ∗q and 1/Ds exhibit a
universal power-law behavior |T − Tc|−γ for T → Tc+ [10].

As already demonstrated, the extended MCT also predicts the SER breakdown near
and below Tc in agreement with experimental [21,119–121] and theoretical [122] observa-
tions in glass-forming liquids. As proposed in the log–log plots of Figure 15 in terms of Ds
versus τ∗q (calculated by the extended MCT), can be observed that, while the SE holds at
high T (e.g., dotted curve), it breaks near and below Tc.

Figure 15. A log-log representation of the self-diffusion D versus α−relaxation time τq∗ of the
coherent φq(t) at the S(q) peak q∗ (solid curve). The arrow indicates Tc. The dotted line refers to the
SER prediction (Ds ∼ (τ∗q )

−1), while the dashed ((τ∗q )−0.73) and dash-dotted ((τ∗q )−0.95) curves to
fractional relations (see the text). Inset: D versus τq∗ from the main panel (solid curve) is compared
with the fractional relation ((τ∗q )−0.85 ) (dashed curve) [25]. Adapted with permission from Ref. [67].
Copyright IOP Publishing.

Such a SE violation is fitted by a fractional relation Ds ∼ (τ∗q )
−x with 0 < x < 1.

Theoretical investigation of the SE violation based on kinetically constrained models [122],
suggests the corresponding x value. The main result of is that, while in the fragile case
is Ds ∼ (τ∗q )

−0.73 (weakly dependent on the dimensionality d), in the strong case the
violation is sensitive to d (Ds ∼ (τ∗q )

−2/3 for d = 1 and Ds ∼ (τ∗q )
−0.95 for d = 3). Such
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an observation agrees with the experimental result for water confined in cylindrical tubes
(d = 1) for which the fractional relations with the exponents 0.73 and 2/3 are found to fit
the data for the fragile and strong sides, respectively.

4.3.3. From Experimental Data (b) Hopping in the Correlator

Results equally interesting were also obtained in terms of the hopping in the correlator.
More precisely, the propylene carbonate (PPC) data coming from the experimental sus-
ceptibility spectra measured by dielectric loss spectroscopy (DS) and by depolarized light
scattering (DL) at different T and in a very wide ω range (about 18 order of magnitude)
were satisfactory fitted. In the related study a special focus was set on the v1 and v2 varia-
tion in the (v1,v2) space, in a representation that allows us to check the linear dependence
γ ∼ (Tc − T), of DS and LS independent data by proving accurately the consistency of the
model fits.

Very interesting are, for both the experiments, the T-behavior of the coupling strengths
entering the memory kernel vs

A (Equation (26)). Both parameters are smoothly increasing
functions on decreasing T. In coherence for the different rotational contributions probed by
the two techniques, the collective density dynamics coupling for the DS probe is stronger
than that versus LS. vs

A determine, below Tc, the appearance of the excess wing relative to
the α−peak, meaning a consistent wing description in both data sets.

Moreover, below Tc, as confirmed by independent fits the hopping parameters τ
and β entering φ(t) there is a good data agree. For the broadness of the wing excess (or
slow β-peak) β decreases with decreasing T, resulting very small around Tg. Additionally,
according to the t − T superposition principle, the stretching parameters βs

A entering
the probe correlators are weakly T—dependent; for LS, its values, due to the correlation
between the α-peak strength and stretching, are lower.

The hopping time cannot be modeled by simple Arrhenius behavior, this is consistent
with Chong et al.’s results [67,68]. In that framework the plateau height enters the expres-
sion for the hopping rates, in particular the activation energy. This height at T > Tc is T−
independent, below it follows the square-root dependence, with an additional T depen-
dence of the activation energy, leading to a crossover from a rather weak T dependence of
the hopping rates to a high activation energy of the hopping times below Tc [68].

At high T, the α-peak separates from the microscopic band, revealing an intermediate
minimum in the GHz–MHz range; and the low- and high-ω sides of this minimum can be
described by power laws ω−b and ωa, respectively. Being that the main relaxation modes
are driven by pair fluctuations, the caging can become so strong that, below Tc, no longer
allow a relaxation to an ergodic liquid state. This implies τα → ∞ and a white noise in
the spectrum for low ω (χ(ω) ∝ ω). The idealized Tc can be thus identified by the scaling
forms predicted for the β-minimum position (and height), or that of the α-peak for T > Tc.

Following these suggestions a more empirical version of the model’s equations was
considered to test specific ligth-scattering data of a glass former (PPC [123]). Specifically,
by combining literature data of dielectric susceptibilities and depolarized Brillouin spectra
(DLS) with those of photon correlation spectroscopy (PCS). A consistent description of all
data sets is thus obtained by adjusting only few physical parameters. The wing excess (or
slow β−relaxation commonly observed in the susceptibility spectra) was modeled as the
effect of a coupling of the individual probe correlator to the collective density fluctuations.

Experimental susceptibility spectra of the glass former PPC ((Tg = 157 K, Tm = 218 K))
are explored with a two-component MCT schematic model from above the melting point
down to temperatures far below the T > Tc [31].

By introducing a phenomenological time-dependent hopping rate, the spectra were
reproduced in the full ω and T range available [24].

In PCS, customary measured is the autocorrelation function of the scattered intensity
g2(t), related to the electric field function g1(t). In this system both the measured g1(t)
and g2

1(t) have the long-time part of the decay well reproduced by a stretched exponential
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function, g(t) ≈ aexp[−(t/τ)β]. These time PCS data can be combined with the frequency
data (obtained with a Tandem Fabry–Perot setup [124]), if numerically Fourier-transformed:

χLS(ω) =
1

2π

∫ +∞

−∞
dtg1(t)e−iωt

Hence, the susceptibility data obtained from the PCS spectra can be compared with
the cited frequency data after a properly normalization.

The transformed PPC spectra point out that some additional relaxation modes likely
exist on the high-ω side of the measured α-peak. From the DS measurements, such
contributions are the slow β-mode (or the wing excess). A contribution, this latter, that is
rather small, in agreement with related findings obtained for salol, 2-picoline, and dimethyl
phtalate [125,126]. Presented in Figure 16 are the proposed susceptibility spectra for PPC as
measured by DS (left) and by DLS (right) at the indicated temperatures. Solid lines indicate
fits with the extended schematic-MCT model, while the dashed ones are fits with the ideal
MCT model.

 

Figure 16. Propylene carbonate data (DS and light spectroscopy) and the related fits obtained by
means of memory kernel schematic model are shown in a log-log plot. Dashed lines are fits with the
ideal MCT model, i.e., without hopping term for comparison. Solid lines represent instead the fits
with the extended schematic-MCT model [72]. Reprinted with permission from Domschke, M. et al.
Phys. Rev. E 84, 627 031506 (2011). Copyright (2011) by the American Physical Society.

As can be seen, the used model provides a consistent data fit giving an accurate
account of all available data spanning up to 18 orders of magnitude in ω, and 3 orders of
magnitude in amplitude, for temperatures ranging from around the melting temperature,
down to below Tg. Other findings on this subject can derive from the normalized density-
fluctuation correlation functions F(q, t); in fact, their corresponding susceptibility spectra
χ(ω) can be used to detail the evolution of the supercooled liquid versus its glass phase in
terms of the MCT models.

The susceptibility spectra χ(ω) evaluated from the F(q, t) are characterized, as well
as χ(ω) spectra measured with direct techniques, by peaks with maxima and minima
reflecting the properties of the primary α-relaxation that follow the MCT predictions.
With decreasing T, their peaks are shifted to lower ω and a distinct minimum appears in
the χ(ω) spectra. Moreover, for T → Tc, the minimum position (ωmin) is shifted to lower ω.
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However, at Tc, the α−peak and the minimum do not disappear (as predicted by the
ideal MCT) for the effect of hopping processes.

In addition, in this case, as far as for the viscosity (or the other transport parameters),
the critical Tc can be deduced from the T-dependence of χmin (the χ value at ωmin) by
means of MCT forms: χmin ∼ ε1/2 and ωmin ∼ ε1/(2a) . The near coincidence between Tc
and the dynamic FSC temperature TL, evidenced for these molecular liquids by means of
transport functions, can be also observed by an Arrhenius plot of the measured χmin.

Figure 16 shows this for DS spectra as function of the frequency, while Figure 17
proposes a similar situation obtained by means of the F(q, t) in the time regime with
χ(q, t) = −dF(q, t)/dT. This is in particular for the ISF previously proposed and calculated
in the case of a Lennard–Jones system (Figure 12 top panel). In such a case, the peak
height of χ(q, t), denoted as χ∗(q, t) (and related to the size of the system dynamic hetero-
geneities [27,28]), increases as one approaches Tc, but below Tc it decreases. The latter
situation is attributed to the existence of the dynamic FSC and thus to related behav-
iors [121].

Figure 17. The dynamic response function χ(q, t) evaluated for a Lennard–Jones system at peak
position of S(q) (q = 7.3). As it can be observed, the peak height of χ(q, t), denoted as χ∗(q, t)
increases as one approaches Tc, but below Tc it decreases. The latter behavior is due to the dynamical
crossover [121]. Adapted with permission from Ref. [68]. Copyright IOP Publishing.

5. Viscoelasticity
5.1. MCT

The Equation (27) shows that MCT can account for the viscoelastic (and rheological)
properties of a material. Thus, in this frame MCT has been intensively applied in many
different areas of material science, including granular liquids or biology. As demonstrated
in polymer science the system viscoelasticity is well characterized by the dynamic complex
viscosity η∗(ω) and by the complex shear modulus G∗(ω) (or the compliance J∗(ω) =
1/G∗(ω)) [127]:

G∗(ω) = G
′
+ iG

′′
= iωη∗ = iω(η

′
+ iη

′′
) (52)

being G
′

and G
′′

the storage (or elastic) and loss moduli, respectively. In an oscillatory ex-
periment, such as the one performed here, these moduli are obtained from the measurement
of the time dependence of the stress, σ as:

σ = γ(G
′
sin(ωt) + G

′′
cos(ωt)) (53)
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where γ is the strain amplitude. The equation showing that the stress amplitude varies as
σ = σ0 sin(ωt+ δ), also proposes the connection between the stress/strain phase angle δ(ω)

and the moduli as G
′
= (σ0/γ) cos δ and G

′′
= (σ0/γ) sin δ: so that it is: G

′′
/G

′
= tan δ.

In addition, the shear (G) and elastic moduli (E, Young’s and K, bulk moduli) are related
by means of the Poisson’s ratio: υ = E/2G− 1 [127].

One of the early studies on the MCT viscoelasticity was developed in order to analyze
the frequency dependence of G

′
(ω) and G

′′
(ω), of colloidal hard spheres at different

concentrations (C) [128]. After that, this topic became a relevant subject of interest for
glass forming and complex materials [53,129–135]. Nowadays, it represents, via the FSD
crossover idea [21], the connection point between the complex fluid dynamics and the
energy landscape [19,20].

Figure 18 illustrates the ω dependence of G
′
(ω) and G

′′
(ω) measured, in the L64/D2O

suspensions, for ϕ = 0.49 and 0.52, by using a strain controlled oscillating rheometer
in a cone-plate geometry. The linear viscoelastic moduli were determined, in the range
0.0147 < ω < 9.613 s−1. The shear viscosity η(T, ϕ) was instead obtained at the fixed
frequency of ω = 1 s−1, by ensuring a linear response. The corresponding data are
illustrated in Figure 19, for different ϕ in an Arrhenius plot.

The MCT formalism was used to explain the cage dynamics by considering hard
spheres light scattering data, in terms of the β decay. An MCT feature is that near the
glass concentration (Cg) the temporal autocorrelation functions of all variables coupled to
density fluctuations are identical in form. Thus, it is possible to assume (Equation (24) that
the generic stress autocorrelation function S has the same functional form as the φq(t) and
by using the generic, asymptotic MCT form for the β regime on the liquid side of Cg [31],
it is:

Sττ(t) = f C
ττ + hττcσ

[
(t/tσ)

−a′ − B(t/tσ)
b′
]
= fq + cσhqg±(t/tσ) (54)

including the nonergodicity parameter, f C
ττ , the critical amplitude and scale, hττ , cσ, and the

β-scaling time tσ; the constraints on the behavior of these parameters are: f C
ττ , and hττ

concentration independent, a scaling for cσ ∼ σ1/2 and tσ ∼ σ1/(2Aı̀) with the separation
parameter σ = (Cg − C)/Cg. These are predicted (for hard spheres) a′ = 0.301, b′ = 0.545,
and β = 0.963 [31].

In terms of the viscoelasticity concepts, the near-glass contribution to the complex
shear modulus is G∗g(ω) = G0[iωS∗ττ(ω)], with S∗ττ(ω) being the Fourier transform of the
stress autocorrelation function, and S0 the thermodynamic derivative of the stress with
respect to the strain, which sets the scale of the stress relaxation. The real and imaginary
parts of S∗g(ω) contribute to the storage and loss moduli, respectively. The high-ω behavior
is not described within MCT. Instead, it is possible to incorporate the energy storage effects
due to Brownian motion by using a form calculated for a diffusional boundary layer [136].
In such a case, (ωa2/Ds ∼ 101–102) can be considered only the high-ω asymptotic form,
as predicted by kinetic theory [137]:

G′D(ω) =
3

5π

kBT
a3 C2g(2a, C) (55)

where τD = a2/Ds is the diffusional time obtained by the C-dependent short-time Ds.
For the high C, the radial pair distribution function at contact can be approximated by
g(2a, C) = 0.78/(0.64− C) (coherent with MD studies indicating a divergence at random
close packing [138]). G′D(ω) reflects the additional driving force for diffusional motion that
arises from the hard sphere interaction, which prevents contact when the shear brings the
particles closer to each other.
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Figure 18. The real and imaginary part of the shear moduli for the volume franction 0.49 and 0.52.
The G′ and G′′ in the temperature range 291 < T < 305 K are reported as a function of the frequency
range 0.0147 < ω < 9.613 s−1.

Figure 19. The Arrhenius plot of the shear viscosity L64/D2O at twelve different volume fractions
as a function of 1000/T. Starting from low T, η increases steeply, first going through a PT, then to a
liquid–glass transition, and finally for ϕ > 0.53 to a glass–glass transition. Note that, for ϕ = 0.3, only
the percolation is present, denoted by crosses and straight line.

Because of causality, Kramers–Kronig relations requiring a similar contribution to
the loss modulus S”

D(ω), and the high-ω contribution to viscosity, S”
S(ω) = η∞ω must be

included. By assuming that the stress correlation functions are statistically independent,
the elastic moduli are thus the sum of the individual contributions. Such that the following
was proposed [128]:
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G′(ω) = GP + Gσ

[
Γ(1− a′) cos(

πa′

2
)(ωτσ)

a′ − BΓ(1 + b′) cos(
πb′

2
)(ωτσ)

−b′
]
+ G′D(ω) (56a)

G”(ω) = Gσ

[
Γ(1− a′) sin(

πa′

2
)(ωτσ)

a′ − BΓ(1 + b′) sin(
πb′

2
)(ωτσ)

−b′
]
+ G”

D(ω) + η∞ω (56b)

The plateau modulus, GP = G0 f C
ττ , contributes only to G′(ω) and is the overall elastic-

ity magnitude approaching the glass. Moreover, as expected from the MCT description,
the storage modulus has an infection point at the plateau value, while the loss modulus
has a minimum; the frequency of these is set by 1/tσ.

The Gσ = G0hττcσ amplitude determines the degree of variation of G′(ω) about its
plateau and the G”(ω) magnitude at the minimum. By fitting both G′(ω) and G”(ω)
by means of these latter equations, this model was compared, at different concentration,
with the measured data, using GP, Gσ, tσ, DS and η∞ as fitting parameters. In such a way an
excellent agreement between theory and experiments was obtained; in particular, capturing
correctly the plateau behavior observed in G′(ω). Subsequently this approach was recon-
sidered in order to account for viscoelastic measurements in L64/D2O copolymer micellar
system with short-range inter-micellar attractive interactions, characterized, in different
regions of the composition–temperature phase diagram, by the existence of a percolation
line (PT) and a kinetic glass transition (KGT) [139].

In particular, for the structural arrest at the KGT the frequency-dependent shear mod-
ulus behaviors have been investigated. As previously shown from PCS experiment, values
of b = 0.6 and λ = 0.7 have been measured, whereas a universal plot, for different ISFs,
of the von Schweidler law gives γ = 2.3 [35]. Being MCT developed by using cage effects
(or clustering) that determine the temporal (or frequency) dependence of relaxations [10],
by considering the system structure it was assumed that the time-dependent shear viscosity
can be written, in terms of the structure factor as [12]

η(t) =
kBT
60π2

∫ ∞

0
dq
[

nq2 dlnS(q)
dq

ϕ(q, t)
]2

(57)

with the complex shear modulus G∗(ω) given by the corresponding Laplace transform:

G∗(ω) = iω
∫ ∞

0
dteiωtη(t)

by assuming that the β density correlator region is a function of a scaled frequency variable
ω̂ = ωtσ corresponding to the scaled time variable t̂ = t/tσ we can write:

G∗(ω) = kBT
[
−g0 + g1cσχ∗(ω̂) + g2c2

σψ∗(ω̂)
]
. (58)

and

g0 =
kBT
60π2

∫ ∞

0
dq
[

q2 dlnS(q)
dq

f (q)
]2

(59)

g1 =
kBT
60π2

∫ ∞

0
dq
[

q2 dlnS(q)
dq

f (q)h(q)
]2

(60)

g2 =
kBT
60π2

∫ ∞

0
dq
[

q2 dlnS(q)
dq

h(q)
]2

. (61)

with the susceptibilities defined as:

χ∗(ω̂) =
∫ ∞

0
dt̂eiω̂t̂g−(t̂); ψ∗(ω̂) =

∫ ∞

0
dt̂eiω̂ t̂g2

−(t̂). (62)
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and related by the MCT equation for the β correlator as λχ∗(ω̂) + ψ∗2(ω̂) + 1 = 0. Obtain-
ing the final expressions for the storage and the loss moduli:

G
′
= −g0 + g1cσχ(ω̂)

[
1− g2cσ

λg1

1 + χ
′2(ω̂)− χ”2(ω̂)

χ′(ω̂)

]
(63)

G
′′
= g1cσχ

′′
(ω̂)

[
1− 2g2cσ

λg1
χ′(ω̂)

]
(64)

When close to the KGT, and to the lowest order in the control parameter σ, G
′′

behaves
like the susceptibility showing, as proposed in Figure 18, minima and scaling properties.
Being that the G

′
data is not accurate to allow fitting with MCT, we considered the mea-

sured values of G
′′

using the amplitude parameters G1 = g1cσ and G2 = 2g2cσ/(λg1),
the frequency ωσ and the exponent parameter λ.

For the MCT, the scaling in the β-correlation region implies the scaling of frequency
and the loss modulus at the minimum. In particular, the ωmin position and the intensity
of G

′′
min depend sensitively on the control parameter; thus, it is easy to express the two

scales 1/tσ and G1 in terms of ωmin and G
′′
min so that we also expect ωmin ≈ |σ|1/2a and

G
′′
min ≈ |σ|1/2.

This behavior is shown in Figure 20, from the data analysis of the ωmin(T) and
G
′′
min(T), at different ϕ on approaching Tc. Unfortunately, these latter scaling forms are

valid only approaching the criticality of the ideal MCT and the FSC. Nevertheless, another
MCT approach can be considered to describe the obtained data. A form successfully used
in the analysis of χ”(ω) data, measured by depolarized light scattering with which a MCT
master curve can be found, is:

G
′′
(ω) = G

′′
min

[
b(ω/ωmin)

a + a(ω/ωmin)
b
]

(65)

Figure 20. The power-law dependence of t′ = (ωmin)
−1 and G”

min on |T − Tc| for some different
micellar volume fractions.

This interpolation form (IF) is equivalent to the main MCT form for the β-correlators in
the time regime [10]. The full curves in Figures 21 and 22 are the interpolation form (IF) for
λ = 0.75 and γ = 3.1 (the average value obtained from the viscosity fitting). In particlular,
these figures report data for ϕ = 0.50, ϕ = 0.505 and ϕ = 0.53, illustrating the rescaled
loss moduli G

′′
(ω)/G

′′
min versus ω/ωmin, in a log-log plot. Figure 21 also shows in the left

panel the G
′′
(ω) data measured at different temperatures as a function of the frequency.
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Figure 21. The left panel shows the G
′′
(ω) data measured at different temperatures for ϕ = 0.50.

From these data, the minima and their frequencies, on approaching Tc, are well evident. On the right
side, the corresponding data fitting according to the MCT interpolation form (IF) are shown.

Figure 22. The rescaled loss moduli G(ω)/Gmin versus ω/ωmin, for the volume fractions 0.505 and
0.53. The line is the interpolation MCT form for λ = 0.75 and γ = 3.1.

5.2. Percolation

As said, the percolation models applied to complex fluids predict a universal scal-
ing behavior [52,140]. An important step to understand the corresponding viscoelastic
behaviors was the recognition [7,141] that the elastic modulus of a gel and the viscos-
ity of a sol are related to the conductance behavior of a random resistor or a random
superconducting network.

According to this analogy, the complex modulus G∗(p, ω) is expected to behave as the
AC conductivity of a resistor–capacitor random mixture (p is the control parameter (the
cross-linker concentration, the ϕ of polymers molecules, T, etc.)). For ε = |(p− pc)/pc| � 1,
the percolating structure is characterized by a correlation length that scales as ξ ∼ ε−v and
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a relaxation time τ, scaling as τ ≈ ξz ≈ εz, where v, z and z = vz are critical exponents [29].
Customary exponents used to describe viscoelastic singularities near the threshold in the
static regime are s, t and ∆ [52,141], defined respectively by the following power laws:

η0 ∼ ε−s and G0 ∼ ε−t (66)

where G0 is the static elastic modulus (the monomers modulus at some microscopic time
scale τ = 1/ω0). Instead, at the threshold, G

′
(ω) and G

′′
(ω) have this dependence:

G
′
(ω) ∼ G

′′
(ω) ∼ ω∆ (67)

The mentioned analogy of percolating viscoelasticity with conductivity allows to
postulate (for G∗ in the limit ω ,ε→ 0) a general scaling form [141,142]. The characteristic
ω-power law behavior of both G

′
(ω) and G

′′
(ω) for temperatures near the threshold is

shown in Figure 23, for four volume fractions.

Figure 23. The ω-power law dependence of both G
′
(ω) and G

′′
(ω), near the the percolation threshold,

for ϕ = 0.355, 0.42, 0.46 and 0.51 .

In percolating systems, the variation of the mechanical properties is correctly de-
scribed as:

G∗(ω, ε) = G0 ϕ±(iω/ω0), with ω0 ≈ ξ−z ≈ εz (68)

At low frequencies ω � ω0εs+t, for p < pc and p→ p−c is:

ϕ−(iω/ω0) = B−(iω/ω0) + C−(iω/ω0)
2 (69)

and for p > pc and p→ p+c :

ϕ+(iω/ω0) = A+ + B+(iω/ω0) (70)

and at intermediate frequency regime, ω0εs+t � ω � ω0:

ϕ−(iω/ω0) ≈ ϕ+(iω/ω0)
∆ (71)
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leading to the correct ω dependence for the elastic (viscous part) G
′

(G
′′
) for ω → 0.

Below the threshold is G
′ ≈ ω2, and very above G

′ ≈ const (G
′′ ≈ ω). With:

η0 = Lim
ω−→0

G∗(ω)/ω (72)

Finally, the general scaling forms lead to the relations between the scaling exponents

z = s + t and ∆ = t/z = t/(s + t) (73)

In addition, in the threshold regime, the frequency power-law of the complex modulus
G∗ has a remarkable consequence: G

′′
/G

′
have an universal critical value. More precisely,

considering that in rheology the loss angle δ is defined just as tan δ = G
′′
/G

′
one has:

δc =
π

2
∆ =

π

2
t

(s + t)
(74)

An MD simulation study [143] gave for the exponents s and t the following val-
ues: s = 0.75 ± 0.04, and t = 1.94 ± 0.1, so that ∆ = 0.72 ± 0.04. Now we will give
specific focus to the viscoelasticity to clarify some of the related properties. Figure 24 illus-
trates such a situation in an Arrhenius plot of the normalized viscosities. More precisely,
the normalized crossover temperature is reported in the main plot, η(T)/η(Tc) vs. ϕc/ϕ,
for T = 318, 315, 313, 311, 309 and 305 K (data also reported in Figure 18). As it can
be seen two separate behaviors above and below ϕc/ϕ = 1 are clearly shown; a precise
Arrhenius behavior for ϕ > ϕc, and in the opposite case data follow the MCT power law
(η = η0|(ϕ− ϕc)/ϕc|−γ)).

Figure 24. The normalized viscosity with the volume fraction as control parameter: η(ϕ)/η(ϕc) vs.
ϕc/ϕ. Data for T = 305, 309, 311, 313, 315, and 318 K are reported.

This situation gives further evidence of the universal behavior proposed for many
supercooled fluids, see, e.g., Ref. [144]. The inset shows the viscosity data in a scaled log-log
plot with temperature as control parameter (σ = (Tc − T)/Tc) for ϕ = 0.25, 0.4, 0.4, 0.49, 0.5
and 0.52. In both the cases from the data fitting of the fragile region (T and ϕ as control
parameters), it was found that the exponent γ ranges from approximately 2.7 to 3.1. In ad-
dition, all the calculated Tc values are located near above the system percolation threshold
(for ϕ ≥ 0.49), and the fragile region extends from Tc to the dynamic arrest.
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The behavior of these data clearly shows not only the validity of the MCT power laws
but also the coincidence between the corresponding threshold value with the onset of the
FSC. While the data below ϕc are described by the order parameter power law, above the
behavior is absolutely Arrhenius, with roughly the same activation energy.

It should be emphasized that the viscosity data for lines shown for ϕ > ϕc are obtained
by means of the percolation power law |ϕc − ϕ|−k, with k = 1.3.

In the final part of our work we will consider how an MCT approach can describe
the viscoelasticity of elastic material (filled rubber). In fact, we use DMA data of SBR-
rubbers (Styrene Butadiene Rubber) filled with Carbon Nanotubes (CNT) at different
concentration, Carbon Black (CB) and a mixture of them. A tensile strength test was selected
to evaluate the complex modulus E∗. We consider the data measured in a temperature
range 233 < T < 303 K for frequencies from 0.8 to 100 (s−1).

These systems behave as very highly viscous liquids and are characterized by a
calorimetric glass transition and also a PT.

As said, linear response experiments are usually reported in terms of the ω dependence
of the imaginary part of the studied response, the “loss”. If the shape of the loss peak in a
log-log plot is T independent the liquid obeys to the so called time-temperature superposition
(TTS) with respect to the response function. By considering the system average relaxation
time τ(T), from the mathematical point of view, TTS is obeyed whenever N and ψ functions
exist such that χ(ω, T) = N(T)ψ(ω, τ(T)).

When TTS applies response functions are easily determined over many frequency
orders of magnitude, by combining measurements at different T. This procedure works
even if only one or two decades of frequency are directly accessible (as, e.g., elastic moduli).
For many years TTS was assumed uncritically. More recently, it has been the general
opinion that the α process usually violates TTS.

Anyway, if TTS does not always work it cannot be assumed a priori, although for
polymers scientists TTS is still often valid and largely used. The shift factors above Tg,
obtained during the construction of TTS master curves, were successfully described by an
equation equivalent to the Vogel–Fogel–Tamman (SA) form, i.e., the Williams–Landel–Ferry
equation [145]:

log SF = log
τ(T)

τ(Tre f )
= −

C1(T − Tre f )

C2 + (T − Tre f )

where C1 and C2 depend on the material and on Tre f . An expression that usually holds
for polymers over the range Tg < T < Tg + 100 K and when Tre f is identified with
Tg it was seen that C1 and C2 assume “universal” values close to 290.44 and 324.6 K,
respectively [145].

It has been also proposed that in the less viscous regime at higher T, thus before Tc
where ideal MCT is valid, this model can be used for proper TTS predictions [146].

On following these suggestions we propose here a new method based on the linear re-
sponse theory susceptibility spectra χ(ω) reflecting the system relaxation they have to show
peaks with maxima and minima. Based on this basic concept we used the Equation (65) to
fit the experimentally measured data of the SBR-CNT samples, obviously the loss modulus.
We used as fitting parameters at a given temperature the exponent a, b and E′′min to obtain
ωmin and E′′min. The results of such a fitting are illustrated in the Figure 25 for the phrCNT
(phr-parts per hundred rubber) of 1 and 40, respectively. It should be noted that the good-
ness of this procedure is demonstrated by the fact that the values obtained for ωmin, at the
different T for each concentration, follow a precise Arrhenius behavior (as well as the WLF
shift factors). After which the TTS was made, in multiplicative terms, considering the shift
between the values ωmin and E′′min, and the results obtained are illustrated in Figure 26.
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Figure 25. The elastic loss modulus E′′ measured in SBR-CNT samples at the phrCNT of 1 and 40 (for
different temperatures from 233 to 303 K (Symbols)). Curves are the results of the fitting procedure
according to the MCT.

The obtained data are proposed like curves with full symbols, obviously there is not
a complete overlap between them because we have not considered vertical shift factors
between the two concentrations.

Finally, we conclude, taking into due consideration the finding of dielectric relaxation
measurements showing that the TTS is obeyed for the primary relaxation process at low
temperatures for many molecular liquids close to the calorimetric glass transition and also
indicating that TTS is linked to an ω−1/2 decay of the loss contribution, while the loss
peak width is non-universal [147]. In this context, the hypothesis of considering the data
shown in Figure 26 with an extra background contribution in the values of the loss modulus
was done.

Assuming that its value is the asymptotic one of E′′ at low frequencies, we subtracted
it from the original data, obtaining essentially the two lines made up of empty symbols (for
the two concentrations considered). We then superimposed two straight lines as a guide
for the eyes. The final result of this operation is that in the log-log representation of the
figure the slope of the two straight lines is about 0.5, fully confirming the suggestion of the
ref. [147]. Such a result suggests, considering the many orders of magnitude in frequency
with this precise scaling-law behavior, the TTS general validity.
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Figure 26. The time–temperature superposition (TTS) of the data illustrated in Figure 25. The curves
report data (fully symbols) obtained according to the described procedure. The lines (proposed
by the empty symbols) are obtained by a background subtraction. Empty symbols lines and the
superimposed straight lines have an ω−1/2 decay, which confirms the suggested generality of TTS.

6. Conclusions

Statistical mechanical foundation to estimate the properties of glass forming materials
at the gelling processes is presented. In this frame we considered the centrality of the
concepts related to the idea of the energy landscape and the universality of the fragile-to-
strong dynamical crossover (FSC) to understand the thermodynamic transport properties
of simple and complex fluids on going from the stable to dynamical arrest, crossing the
metastable supercooled phase. By assuming that the FSC is due to a change in the energy
configuration of the system, precisely in terms of the energy landscape, and that the
corresponding characteristic temperature Tx, is identified as the critical Tc of the ideal
MCT [21], we have proposed to consider this theory as the first basis in our study. Moreover,
bearing in mind that scaling concepts, scale transformations and invariance represent
together with universality the conceptual background for a clear and complete description
of the chemical-physic properties of complex materials and system, we have also considered
as relevant for our purposes the Percolation model together with the MCT.

If, on the one hand, PT is the simplest model displaying a phase transition, on the
other, the MCT represents the method of utilizing the principles of the scaling law to
calculate the divergent part of the system transport coefficients arising from the interaction
among different modes of excitation. In addition, common aspects in both MCT and PT
were discovered readjusting them to consider the thermodynamic reality imposed by the
energy landscape. In the first case, this has been accomplished by extending the idealized
version [10] and considering the hopping processes due to the FSC (and the EL) [23–25],
whereas for PT the ideas of the facilitated models were considered [26].

In such a way, the following findings were obtained: (a) an interplay between gel and
glass transition in gelling systems, with the possibility to describe the sol-gel transition
using MCT, and vice versa, to use PT concepts in order to understand critical phenomena
and the dynamic singularities typical of MCT; (b) clarification of the universal and singular
role of the FSC on approaching the dynamic arrest. Clarifying the role of this interplay (and
its validity) by properly considering some experimental results was the first of the aims of
this work.
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In this review, we first of all considered to present the foundations of both theoretical
models in a pedagogical way, considering them both in the basic and in the extended
versions. We therefore first presented the corresponding schematic models and then the
details of the extended ones. Explicitly, in the case of MCT we have first considered the
different models, specifically models A, B, F12 and F13, and their properties have been
defined. After that, a kernel extension of the memory function and then a second extended
model developed in the density autocorrelation function were considered. For percolation
we have instead considered the FA facilitated models and the bootstrap extension (BP).

The F13 model which has a cusp singularity characterized by a transition line from
attractive glass to repulsive glass and an A3 singularity has been characterized with great
attention considering a special colloidal suspension (L64/D2O). Such a system is character-
ized by a defined glass transition as well as a percolation transition in the corresponding
(T, ϕ ) phase diagram. Another specificity is that its PT (sol/gel) line continuously evolves
towards a sol, to the attractive glass transition line. For these reasons, as shown in the
present work, this colloidal system has been intensively investigated by means of different
experimental techniques, including scattering (light and neutrons) as well as viscoelasticity.

For the interplay between the two models, the following connections are interesting:
(i) FA, BP and MCT model B (supporting the idea that the FA model in mean field repro-
duces entirely MCT); (ii) FA in the mean field BP with the F13 schematic model. More
explicitly, in these results it is clearly proposed that: a geometrical interpretation leads to
associate the BP to the discontinuous transition of model B and the random percolation to
the continuous transition of model A. Therefore, the same general formalism can treat the
transition from a liquid to an arrested state, whether glass or gel. In addition, phenomenol-
ogy of some polymer systems, associated to the interplay between chemical gels (with
permanent bonds) and glasses, can be interpreted in terms of the F13 MCT model, clarifying
also the origin of logarithmic decays observed in the correlation function measured in these
systems. At the end of this part, it has been shown how specific attractive polymer colloids
can be the model systems to study the specific properties of these interplays. The absolute
experimental consistency of the two MCT models extended for hopping processes was
then shown not only in terms of density–density correlation function but also of response
functions such as dielectric susceptibility.

In the second part, considering the validity of the two theories in terms of response
functions, we explicitly studied the viscoelasticity of some systems in terms of both
MCT and PT. In particular, we have explicitly considered the dependencies of the loss
and shear moduli as a function of frequency, temperature and volume fraction for the
L64/D2O system.

Therefore, both the general methodologies and the related formalism, essentially made
up of scaling laws, were proposed through a comparison with a considerable number
of experimental results. Finally, we proposed a method by which the MCT formalism
for viscoelasticity can be used in order to understand the properties of elastic materials
by showing, as an example, the way in which the so-called time–temperature superpo-
sition (TTS) mechanism can be taken into account. Although TTS is the basis of many
technological applications, it is instead usually used in an empirical way. All of this rep-
resents the current state of the art regarding the dynamic arrest. On these basis, we can
certainly assert that the sol-gel and the glass transitions seem to have common kinetic
mechanisms. In any case, the fundamental role of the fragile to strong dynamic crossover
emerges from the proposed discussion. Its presence and characteristics have allowed the
optimal reformulation of MCT from the ideal to the extended one also discovering that Tx
(of FSC) is the critical Tc. In our opinion, just the universality of both FSC and potential
energy landscape represent the datum point in the perspectives of the research field of the
complex materials. The ascertained interplay between PT and MCT will be equally useful,
which represents the main objective of the present work. We are confident that FSC, energy
landscape and PT-MCT interplay will be three elements characterizing the results of future
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research in material science (and related technological applications) and in particular on
those of biological interest, including proteins, amyloidogenic species or tissue cells.
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