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	 Background:	 Lung squamous cell carcinoma (LUSC) is one of the major types of non-small-cell lung cancer. Epigenetic alter-
ations, such as DNA methylation, have been recognized to be closely associated with the tumorigenesis and 
progression.

	 Material/Methods:	 In this study, we investigated the prognosis subgroups and assessed their correlation with clinical characteris-
tics in LUSC using a methylation array acquired from The Cancer Genome Atlas (TCGA) database.

	 Results:	 A total of 196 DNA methylation sites exhibited a significant association with patient prognosis, and patients 
were further stratified into 7 prognosis subgroups based upon the consensus clustering. The patients in ev-
ery subgroup were different in terms of prognosis and TNM stage. In addition, we found these 196 signifi-
cant methylation sites corresponded to 258 genes. The function enrichment analysis revealed that these 258 
genes enriched in biological pathways were closely related to cancers, such as DNA methylation and demeth-
ylation, cell cycle DNA replication, regulation of signal transduction by p53 class mediator, and genetic im-
printing. Subsequently, we determined the levels of methylation sites in 7 subgroups, and found 24 intra-sub-
group-specific methylation sites. Meanwhile, we selected 3 subgroups-specific methylation sites to construct 
the prognosis model for LUSC patients using multivariate Cox proportional risk regression model analysis. This 
model can effectively predict the prognosis of LUSC patients.

	 Conclusions:	 Our study identified a new classification of LUSC into 7 prognosis subgroups on the basis of DNA methyla-
tion data in TCGA, which demonstrated that molecular subtypes are independent factor for prognosis in LUSC. 
This may provide a more detailed explanation for LUSC heterogeneity. Additionally, this classification will con-
tribute to discovery of new biomarkers of LUSC and provide more accurate subdivision of LUSC. Furthermore, 
these specific DNA methylation sites and corresponding genes can serve as biomarkers for early diagnosis, ac-
curate therapy, and prognosis prediction.
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Background

Lung cancer is a major public health problem and remains the 
leading cause of cancer-related mortality worldwide. Non-small-
cell lung cancer (NSCLC) accounts for approximate 80-85% of 
all lung cancer cases, and lung squamous cell carcinoma (LUSC) 
is one of the most common histological subtypes in NSCLC [1]. 
Despite progress made in diagnosis and treatment of lung can-
cer over the past few decades, there still a lack of effective 
therapeutic methods for patients. Owing to differences in ge-
netic and epigenetic changes among different subtypes of lung 
cancer, effective therapy for lung adenocarcinoma (LUAD) may 
not be available for LUSC, like epidermal growth factor recep-
tor-tyrosine kinase inhibitors (EGFR-TKI) [2]. Therefore, more 
potential diagnostic biomarkers and novel therapeutic targets 
for LUSC still need to be discovered.

In recent years, the study of molecular characteristics in can-
cers has been proved to improve the treatments and prog-
nosis in patients with cancer. For example, human epidermal 
growth factor receptor 2 (HER2)-positive breast cancer was as-
sociated with sensitivity to some endocrine and chemotherapy 
agents [3]. Owing to different treatment modalities, accurate 
classification of lung cancer plays an important role in target-
ing therapy and clinical management. Therefore, it is neces-
sary to identify specific molecular signatures for discriminating 
lung cancer subtypes. A study by Lebanony et al [4] indicated 
that hsa-miR-205 could serve as a specific marker to distin-
guish LUSC from non-squamous NSCLC. Hou et al [5] revealed 
histo-pathological attributes of NSCLC based on the gene ex-
pression profiling datasets. Another study showed that a scor-
ing system of hsa-miR-205, hsa-miR-21, and U6snR can divide 
NSCLC cases into LUAD or LUSC cases [6].

Epigenetics is defined as mitotic modulation of gene ex-
pression that occurs without alterations in the nucle-
otide sequences [7]. Epigenetic alterations, particular-
ly DNA methylation, have been implicated in tumor 
initiation and progression [8]. DNA methylation is DNA meth-
yl-transferase (DNMT)-mediated methylation reaction, which 
occurs primarily within a cytosine preceding a guanosine (CpG) 
dinucleotide [9]. CpG islands are clusters of CpG-rich dinucleo-
tides frequently located in the promoter region of genes [10]. 
Hypermethylation of CpG islands leads to transcriptional silenc-
ing of tumor suppressor genes, while hypomethylation of CpG 
islands promotes transcriptional oncogenes [11]. DNA meth-
ylation is frequently associated with the occurrence and de-
velopment of lung tumor, including LUSC [12]. Wang et al [13] 
demonstrated that AKAP13 mRNA and its methylated CpG 
sites were potential prognostic indicators in LUSC patients. 
Zhang et al found that TRIM58/cg26157385 methylation site 
were associated with 8 prognostic genes in LUSC [14]. A pre-
vious study showed that methylation-driven genes DQX1 and 

WDR61 might be potential biomarkers for predicting the prog-
nosis of LUSC [15]. In addition, a prognostic risk model con-
structed with 4 abnormally methylated genes was used to pre-
dict the prognosis of LUSC patients [16]. Zhang et al [17] also 
reported that a risk scoring system based on the 10-gene-re-
lated methylation can be applied for predicting the outcomes 
of patients with LUSC. However, their classification does not 
provide detailed analysis, and the specific sites that are linked 
to each category have not been fully elucidated.

In the present study, our aim was to explore LUSC classification 
by identifying specific prognosis-related subtypes on the basis 
of DNA methylation profiles of LUSC from The Cancer Genome 
Atlas (TCGA) database. Additionally, based on multivariate Cox 
analysis, we selected 3 CpG sites to construct a risk signature 
to predict prognosis in patients with LUSC. This classification 
system may help identify novel biomarkers or molecular sub-
types of LUSC to more accurately subdivide patients with LUSC. 
Furthermore, our classification system can provide guidance 
for clinicians on diagnosis and treatment for LUSC patients.

Material and Methods

Data Preprocessing and Initial Screening of DNA 
Methylation Sites in LUSC

A total of 370 LUSC samples and 42 paracancerous samples with 
DNA methylation data generated from the Illumina Infinium 
HuamnMethylation-450 Bead-Chip array were downloaded 
from the TCGA database by using the UCSC Cancer Genomics 
Browser [18] (https://xena.ucsc.edu/) on May 1st, 2020. We 
downloaded clinical information data (including 504 samples) 
from the TCGA database (https://portal.gdc.cancer.gov), and 
403 samples provided complete clinical information, which 
included survival time and status as well as clinicopathologi-
cal parameters (age, sex, TNM stage, T, N, and M). There were 
274 matched samples between the DNA methylation profiles 
and the complete clinical information in patients with LUSC 
(Table 1). Additional information regarding surgically-extracted 
LUSC samples can be seen in TCGA collection protocols [19,20].

The DNA methylation data were preprocessed as follows. First, 
the CpG sites with a not available ratio of over 70% were re-
moved from all samples. Second, the k-nearest neighbors meth-
od in the impute R package was utilized to estimate the missing 
values in methylation profiles [21]. Batch effects from non-bio-
logical factors were adjusted with the use of the ComBat algo-
rithm of the R package of sva. Third, we discarded the instable 
genomic sites in the sex chromosomes which contained the 
CpG sites or single-nucleotide sites [22]. Because DNA methyl-
ation in promoter regions can influence gene expression, CpG 
sites in promoter regions were chosen. The promoter region 
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was defined as the 2kb sequence upstream to the 0.5kb se-
quence downstream in the transcription initiation site. Finally, 
16 381 methylation sites were used for the following analysis.

Univariate and Multivariate Cox Proportional Hazards 
Regression Model Analysis of Methylation Sites

CpG sites of DNA methylation affecting survival were em-
ployed as the classification feature. First, the R package of 
survival coxph function was utilized to construct a univariate 
Cox proportional risk regression model to filter the significant 

CpG sites [23]. Second, the significant CpG sites obtained from 
the univariate model were introduced into a further multivari-
ate Cox proportional risk regression model to determine inde-
pendent prognostic factors, where age, sex, T, N, M, and TNM 
stage were used as the covariates in the model. Finally, the 
methylation sites that were still significant both in univariate 
and multivariate analyses were used as classification features.

Selection of Molecular Subtypes Based on Consensus 
Clustering

Based on the intersected methylation sites that were significant 
both in univariate and multivariate Cox proportional hazards re-
gression model analysis, we used the ConsensusClusterPlus R 
package to obtain consistent clustering to identify the LUSC sub-
types [24]. In the present study, 80% of the LUSC samples were 
sampled 100 times by using the resampling program. The sim-
ilarity distance between samples using the Euclidean distance 
was calculated, and K-means was used as the clustering algo-
rithm to obtain the reliable and stable subgroup classification.

The optimal number of clusters was identified using the cumu-
lative distribution function (CDF) and the delta area plot. The 
criteria for determining the optimal number of clusters should 
be that the consistency of the cluster was relatively high, the 
coefficient of variation was relatively low, and no significant 
rise in the area under the CDF curve. The number of catego-
ries was selected with no appreciable rise in the area under 
the CDF curve. The corresponding heatmap of the consensus 
clustering was constructed using the R package of pheatmap.

Survival and Clinical Characteristic Analysis

We used the Kaplan-Meier curve method to identify overall 
survival for LUSC subsets defined by DNA methylation profiles 
and used the log-rank test to determine the statistical differ-
ences among the clusters. The survival R package was utilized 
for survival analysis.

Clinical characteristic N (274)

Age £65 104

>65 170

Gender Female 69

Male 205

TNM stage I 123

II 104

III 44

IV 3

T T1 65

T2 154

T3 45

T4 10

N N0 174

N1 76

N2 24

M M0 271

M1 3

Table 1. �The clinicopathological characteristic of patents with 
LUSC.

TCGA datasets
DNA methylation data (450K n=370)

Clinical data (n=504)

Multivariate cox proportional risk
regression model

Univariate cox proportional risk
regression model

The intersected CpG sites

Subgroup based on consensus cluster analysis

Survival and subgroups Speci�c-subgroups CpG
sites

Clinical features and
subgroups GO and KEGG analysis

Intersected CpG sites
corresponding to genes

Constructing prognosis model

Figure 1. The flowchart of data analysis.
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GO and KEGG Analyses for Annotated Genes by the CpG 
Sites

The DNA methylation sites that were statistically significant 
both in univariate and multivariate analyses were annotat-
ed to the corresponding genes. Subsequently, gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes pathways 
(KEGG) analyses were conducted on those corresponding genes 
with the use of the clusterProfiler package in R software [25].

Specific DNA Methylation Sites for LUSC Subgroups

To identify the subgroup-specific methylation sites, we per-
formed the differential analysis with the screened methylation 
profiles of each subgroup. In addition, we analyzed prognosis-
related methylation sites in each subgroup. We explored the 
difference in the methylation level of each CpG site between 
samples of a certain subgroup and those not of that subgroup 
using the Wilcox test (denoted as p). Moreover, we calculated 
the ratio (denoted as fold change (FC)) of the average methyl-
ation level of each CpG site in samples of a certain subgroup 
to that not of the certain subgroup. Then, the CpG sites sat-
isfying the adjusted P value <0.05 and the absolute value of 
log2FC >1 were retained for further analysis.

Generation of the Prediction Model for LUSC Patients

The subgroup-specific-expressed methylation sites were used 
to establish a prognostic risk score to evaluate patient prog-
nosis using multivariate Cox proportional hazards regression 
model analysis. Risk score=b1*the methylation level of CpG 
site1+ b2*the methylation level of CpG site2+b3*the methyl-
ation level of CpG site3+…+bn*the methylation level of CpG 
site n, where b represents the prognosis-relevant coefficient. 
According to the formula of the risk score, we calculated the 
value of each sample and set the median risk score as a cut-
off to determine which samples were divided into low-risk 
and high-risk groups. The prognostic performance for predic-
tion model of risk score was assessed by the area under the 
time-dependent receiver operating characteristic (ROC) curve.

Results

DNA Methylation Characteristic for Classification Based on 
Prognosis

To determine the CpG sites which were significantly related to 
survival in LUSC, we downloaded the 450k DNA methylation 
profile from TCGA database (Figure 1). After preprocessing the 
data, including imputing the missing values, eliminating batch 
effects, removing single-nucleotide sites from the sex chromo-
somes, and selecting CpG sites located in promoter regions, we 

obtained 16 381 CpG sites with 274 samples for the following 
analysis. The univariate Cox model was used to explore the 
association between each methylation site and survival data. 
As a result, a total of 247 methylation sites were found to be 
significantly associated with prognosis, with the p value set 
as less than 0.01. Additionally, those 247 significant methyl-
ation sites were used for multivariate Cox proportional haz-
ards regression models, including age, sex, TNM, T, M, and N 
stage incorporated as the covariates in the model. Ultimately, 
we obtained 196 significant CpG sites (P<0.01). The methyl-
ation sites (n=196) that were significant both in univariate 
and multivariate analyses were obtained for further analysis.

Consensus Clustering of LUSC Identified Distinct DNA 
Methylation Prognosis Subgroups

To obtain unique prognostic DNA methylation subgroups of 
LUSC, consensus clustering of 196 independent prognosis-
related methylation sites was analyzed with the use of the 
ConsensusClusterPlus package in R software. The average 
cluster consensus and inter-cluster variation coefficient for 
the number of each cluster were calculated to obtain the ap-
propriate cluster number. Based on the CDF curve, when the 
cluster was 7 or 8, the curve began to stabilize (Figure 2A). 
As depicted in the CDF delta area curve, 7 clusters that led 
the area under the CDF curve tended to be relatively stable 
(Figure 2B). Therefore, 274 LUSC samples were divided into the 
7 subgroups (Figure 3A). As displayed in Figure 3B, most meth-
ylation sites had low DNA methylation levels in each sample.

The Kaplan-Meier curve analysis demonstrated that the prog-
nosis of LUSC defined by the methylation-based consensus 
clustering was significantly different among the 7 clusters. Of 
the 7 clusters, clusters 1 and 7 had the best prognosis, while 
clusters 5 and 6 had the worst prognosis (Figure 4A). The dis-
tribution of every sample from the 7 subgroups in age, sex, 
TNM, T, N, and M stage was further examined. As depicted in 
Figure 4B, cluster 2 had low invasiveness, while cluster 4 had 
high invasiveness. Figure 4C indicates cluster 6 and cluster 7 
had high relevance with lymph node involvement. Figure 4D 
and 4E show that cluster 5 was associated with distant metas-
tasis and high TNM stage. No difference was found in age or 
sex among these 7 subgroups of LUSC samples (Figure 4F, 4G). 
These findings indicate that different DNA methylation sub-
groups were associated with different prognoses and clini-
cal features.

Functional Enrichment Analysis of Methylation Site 
Annotated Genes

To further understand the mechanism of the 196 independently 
prognosis-related methylation sites, the 258 genes correspond-
ing to the methylation sites located on the promoter region 
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were used for functional enrichment analysis using the cluster-
Profiler package in R software. The results demonstrated that 
these genes were particularly enriched in molecular function 
(MF), biological processes (BP), cell components (CC), and KEGG 
classification. In the BP group, the top 3 items were pattern 
specification process, response to steroid hormone, and sig-
nal transduction by p53 class mediator (Figure 5A). Regarding 
MF, these genes were mainly enriched in DNA-binding tran-
scription activator activity for RNA polymerase II-specific, cad-
herin binding, and kinase regulator activity (Figure 5B). With 

respect to CC, these genes were mainly involved in microtu-
bule, nucleolar part, and cytosolic part (Figure 5C). Finally, the 
KEGG results showed that these methylated genes were en-
riched in porphyrin and chlorophyll metabolism, steroid hor-
mone biosynthesis, and terpenoid backbone biosynthesis sig-
naling pathways (Figure 5D). These findings further illustrate 
that these prognosis-related methylation sites were closely re-
lated to tumor occurrence and progression.
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Identifying Subgroup-specific DNA Methylation Markers

To identify the subgroup-specific DNA methylation sites, the 
differences of 196 methylation sites in every subgroup of LUSC 
were further investigated. As a result, 24 subgroup-specific CpG 
sites were obtained. The heatmap illustrated in Figure 6 shows 
that cluster 7 had the largest number of specific methylation 
sites (n=12), most of which were hypomethylated sites. The 
other clusters also had a small number of specific methylation 
sites, and most of them were hypomethylated sites. However, 
there were no specific methylation sites in cluster 5. These 
results suggest that these specific DNA methylation markers 
might the reason for different subgroups in LUSC.

Establishing and Assessing the Prognostic Prediction Model

Of the 7 clusters, cluster 7 was linked to the best prognosis. 
Thus, all the specific methylation sites (n=12) in cluster 7 were 
selected for multivariate analysis (Supplementary Table 1). In 
the multivariate analysis, the R function step (direction=“both”) 

was used to obtain the optimal model based on the Akaike 
Information Criterion (AIC), which is a measure of the value of a 
prediction model [26]. The model with the smaller value of AIC 
was regarded as the better model. Following the multivariate 
analysis, we obtained 3 specific methylation sites (cg10608333, 
cg23179321, and cg26979339) for constructing the prediction 
model. The risk score=2.075815673*cg10608333+8.978013904* 
cg23179321+ (-2.219228256)* cg26979339 (Supplementary 
Table 2). According to the formula of the risk score, we cal-
culated the value of the risk score for each sample. Based 
on the cut-off value of the risk score, we divided 274 LUSC 
samples into high-risk (n=137) and low-risk groups (n=137) 
(Figure 7A). As shown in Figure 7D, patients in the high-risk 
group had a shorter overall survival than patients in the low-
risk group (p=1.198e-03). The survival time of each patient is 
displayed in Figure 7B. A heatmap is shown to present the 
DNA methylation level profile of the 3 CpG sites (Figure 7C). 
With an increased risk score of patients with LUSC, the meth-
ylation level of cg23179321 and cg10608333 was obviously 
increased; in contrast, the methylation level of cg26979339 
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Figure 5. �Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) pathway enrichment analysis of 
the genes corresponding to 196 significant DNA methylation sites. (A) Biological process (BP) enrichment analysis. (B) Cell 
components (CC) enrichment analysis. (C) Molecular function (MF) enrichment analysis. (D) KEGG pathway enrichment 
analysis.
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was reduced. Finally, the AUC value for 5-year overall surviv-
al was 0.657 (Figure 8). Thus, these findings suggest that this 
prognostic prediction model shows great promise for applica-
tion in clinical practice.

Discussion

Apart from genomic DNA sequence alterations and mutations, 
other mechanisms for regulating gene expression are epigen-
etic changes. This regulation is heritable and reversible [27]. 
Epigenetic changes, particular DNA methylation, play key roles 
in cancer initiation and progression. Therefore, understanding 
the mechanism of DNA methylation can contribute to early di-
agnosis, treatment, and prevention of cancer. Whole-genome 
bisulfite sequencing is considered as the criterion standard to 
study DNA methylation. Nevertheless, owing to its high cost 
and analytical burden, this method is not widely used. DNA 
methylation array is an appropriate alternative for scrutiniz-
ing global genome DNA methylation. The TCGA database is an 
open available resource involving a variety of data on cancers, 
which allowed us investigate the molecular subtypes of LUSC 
more comprehensively [28].

Cluster
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Figure 6. �The subgroup-specific methylation sites for each cluster. The blue bar and red bar represent the hypomethylated CpG site 
and hypermethylated CpG site, respectively.

Precision medicine or personalized medicine tackles cancers 
by tailoring treatment based on genomic alterations of each 
patient [29]. With precision medicine and the advancement 
of high-throughput sequencing technologies, genomic profiles 
of patients have been used for risk prediction, diagnosis, and 
treatment in cancers [29]. In addition, classification based on 
the origin of tissue or the pathological characteristics of tissue 
have certain limitations. Therefore, we performed this study 
to explore detailed classification of the LUSC epigenome on 
the basis of DNA methylation profile.

In this study, we selected CpG sites that were related to prog-
nosis and located in gene promoter regions for cluster analysis. 
A total of 196 methylation sites (P<0.01) that were significantly 
associated with prognosis were used for consistent clustering, 
and 7 subgroups of LUSC were obtained. We found that these 
7 subgroups had different prognosis and TNM stage, indicat-
ing that molecular subtypes are independent prognostic fac-
tors for LUSC. On the basis of the 7 molecular subtypes, when 
the significant CpG sites of patients were attributed to clus-
ter 5, the patients were found to have higher risk of develop-
ing remote metastasis and advanced TNM stage, and had rel-
atively poor prognosis. However, if the significant CpG sites of 
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patients were attributed to cluster 1, the patients were found 
had low rick of distant metastasis and advanced stage, and 

had relatively good prognosis. Thus, this classification system 
could guide clinicians in treatment of LUSC.

Hypermethylation of CpG islands can inhibit the transcription 
of tumor suppressor genes and hypomethylation of CpG is-
lands can activate the oncogenes, both of which can result in 
tumor formation and progression. We found these 196 signif-
icant methylation sites corresponded to 258 genes, such as 
ELOVL5 and CUL5. Boot et al [30] reported that ELOVL5 was 
downregulated through DNA hypermethylation in colorectal 
cancer, and it is involved in important cellular processes such 
as apoptosis, lipogenesis, and the downstream transcription-
al effect of the MAPK-pathway. Zhao et al [31] reported that 
CUL5 deficiency promoted small-cell lung cancer metastasis by 
stabilizing integrin b1. Then, we used these 258 methylated 
genes for functional enrichment analysis. The results showed 
that these genes were enriched in the biological processes that 
were correlated with lung cancer, including DNA methylation 
and demethylation, cell cycle DNA replication, regulation of sig-
nal transduction by p53 class mediator, and genetic imprinting.

In addition, we identified 24 subgroup-specific methylation 
sites from the 196 CpG sites, and cluster 7 had the most sub-
group-specific methylation sites (n=12). We used the subgroup-
specific methylation sites in cluster 7 to construct a prognos-
tic prediction model for LUSC patients using multivariate Cox 
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hazards proportional model analysis. This model can effective-
ly predict the outcomes of LUSC patients. Moreover, the mod-
el may provide useful guidance and assistance for clinicians 
in clinical diagnosis, prognostic assessment, and selection of 
therapeutic regimens. A previous study reported that 3-CpG 
methylation signature could be used as a tool for predicting 
prognosis in patients with LUSC [32]. However, this study just 
simply selected a series of prognosis-related CpG sites and 
constructed a predictive model using mathematical models. 
In contrast, in our study, we made a comprehensive analysis 
of methylation profile, survival data, and clinical characteris-
tics of different subgroups and obtained their specific methyl-
ation features. This is more meaningful for personalized treat-
ment for LUSC patients.

However, there are some limitation in our study. First, there 
were no available data on whether these methylation sites 
can be affected by chemotherapeutics or molecular inhibi-
tors. Second, whether intervention at the methylation level 
after treatment will affect the prognosis of patients requires 
further investigation. Third, molecular experiments are needed 
to explore the biological function of these methylation sites.

Conclusions

Our study identified a new classification of LUSC into 7 progno-
sis subgroups based on DNA methylation data in TCGA, which 
demonstrated that molecular subtypes are independent fac-
tors for prognosis in LUSC. This may provide a more detailed 
explanation of LUSC heterogeneity. Additionally, this classifi-
cation will contribute to discovery of new biomarkers of LUSC 
and provide more accurate subdivision of LUSC.

Furthermore, these specific DNA methylation sites and corre-
sponding genes can serve as biomarkers for early diagnosis, 
accurate therapy, and prognosis prediction.
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Supplementary Data

CpG site conMean treatMean logFC pValue fdr

cg01087382 0.08402786 0.031889875 -1.397769311 8.48497E-10 6.39636E-09

cg03169527 0.086522066 0.017040041 -2.344139284 7.37727E-11 8.50556E-10

cg04305134 0.046636576 0.020481763 -1.187121945 3.81751E-10 3.56301E-09

cg08793459 0.119355449 0.027236803 -2.131635171 1.83348E-12 5.98936E-11

cg09747578 0.060656778 0.021209374 -1.515966795 2.39862E-12 6.71614E-11

cg10608333 0.089685772 0.042767721 -1.068356787 2.56684E-08 1.22708E-07

cg16721845 0.01690917 0.040948013 1.27598759 3.84743E-11 5.3864E-10

cg23179321 0.036788663 0.018164567 -1.018134276 4.13815E-08 1.80239E-07

cg23274123 0.051585515 0.126322925 1.292078554 1.27875E-13 5.0127E-12

cg23570261 0.053765073 0.021343811 -1.332851506 6.36784E-11 8.15306E-10

cg25418748 0.104443668 0.032923444 -1.665537867 6.65556E-11 8.15306E-10

cg26979339 0.12488955 0.250532 1.004342116 2.02873E-14 1.98816E-12

Supplementary Table 1. The specific methylation sites in cluster 7.

treatMean represents the average methylation level of CpG site X cluster 7; conMean represents the average methylation 
level of CpG site X in the remaining the clusters (cluster 1, cluster 2, cluster 3, cluster 4, cluster 5, and cluster 6); log2FC=log2 
(treatMean/conMean); fdr represents adjusted p value.
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