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Sepsis is a major cause of morbidity and mortality worldwide despite numerous

attempts to identify effective therapeutics. While some sepsis deaths are attributable

to tissue damage caused by inflammation, most mortality is the result of prolonged

immunosuppression. Ex vivo, immunosuppression during sepsis is evidenced by a sharp

decrease in the production of pro-inflammatory cytokines by T cells and other leukocytes

and increased lymphocyte apoptosis. This allows suppressive cytokines to exert a greater

inhibitory effect on lymphocytes upon antigen exposure. While some pre-clinical and

clinical trials have demonstrated utility in targeting cytokines that promote lymphocyte

survival, this has not led to the approval of any therapies for clinical use. As cytokines with

a more global impact on the immune system are also altered by sepsis, they represent

novel and potentially valuable therapeutic targets. Recent evidence links interleukin

(IL)-17, IL-27, and IL-33 to alterations in the immune response during sepsis using patient

serum and murine models of peritonitis and pneumonia. Elevated levels of IL-17 and

IL-27 are found in the serum of pediatric and adult septic patients early after sepsis onset

and have been proposed as diagnostic biomarkers. In contrast, IL-33 levels increase in

patient serum during the immunosuppressive stage of sepsis and remain high for more

than 5 months after recovery. All three cytokines contribute to immunological dysfunction

during sepsis by disrupting the balance between type 1, 2, and 17 immune responses.

This review will describe how IL-17, IL-27, and IL-33 exert these effects during sepsis

and their potential as therapeutic targets.
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INTRODUCTION TO SEPSIS AND THE IL-17/IL-27/IL-33 AXIS

Although it was first described centuries ago, sepsis remains a leading cause of morbidity and
mortality. While the infectious agent and the organ system(s) impacted can vary between patients,
sepsis is characterized by immune dysfunction linked to alterations in systemic cytokine levels
and lymphocyte apoptosis (1). The immune response during sepsis was originally thought to
proceed through two distinct phases through which an initially hyper-inflammatory immune
response shifted toward profound immunosuppression caused by lymphocyte impairment (2).
However, this only reflects the phenotype of circulating lymphocytes in some immunocompetent
patients (3–6) and does not reflect the immune response in immunocompromised patients (7).
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In addition, evidence now exists that both pro- and anti-
inflammatory cytokines are released shortly after sepsis onset
(8, 9) and continue to be released in tandem throughout the
course of the illness (10–12).

While there have been many positive animal studies
demonstrating the beneficial effect of targeting cytokines during
sepsis, this has not translated into improvements in clinical
treatment; no clinical trials so far have led to an approved
therapeutic. The reasons behind this are multifactorial and
partially stem from a failure to consider the interaction between
individual cytokines and the larger cytokine milieu. In addition,
the cytokine milieu varies between septic patients, making it
difficult to distinguish any benefit in large studies of heterogenous
patients. Although the failure of cytokine-based therapy in septic
patients has been disappointing, recent phase I clinical trials
(such as IL-7 infusion) have demonstrated the potential benefit of
immunomodulation (13). However, before additional cytokines
can be considered as therapeutic targets for sepsis, further work
needs to be done to define the alterations that occur across the
cytokine milieu during sepsis and distinguish how individual
cytokines interact and modulate the effects of one another.

Recent work on the cytokines IL-17, IL-27, and IL-33 suggest
the presence of a novel cytokine axis during sepsis. IL-17
primarily acts to promote the inflammatory response in mucosal
tissue. In humans, serum levels of IL-17 are predictive of the
development of sepsis and mortality in poly-trauma patients (14)
and mutations in the IL-17A gene are associated with increased
susceptibility to infection caused by gram positive bacteria and
mortality (15). The immunosuppressive cytokine IL-27 increases
in the plasma of many septic patients (16–27) and has been
shown to inhibit the differentiation of Th17 cells (16, 18, 19, 28–
33). These results have been recapitulated in diverse models of
sepsis in mice (34–38). The blockade of the p28 subunit of IL-27
(38) or depletion of IL-27 using a soluble and recombinant IL-
27Rα (34) significantly reduces mortality in the cecal ligation and
puncture (CLP) model of sepsis and is associated with reduced
bacterial burden in the tissues and blood. IL-33 is a member
of the IL-1 family of cytokines that modulates Th2 responses
and decreases the differentiation of T cells into Th17 cells (39).
IL-33 signals through the cytokine receptor ST2 and plays an
anti-inflammatory role during sepsis, improving survival during
the early stages of sepsis but ultimately leading to long lasting
immunosuppression through the induction of regulatory T cells
(Tregs) (40–42). In addition to its interactions with IL-17, IL-
33 has also been reported to interact with IL-27, with both
modulating the activity of ILC2 cells (43–46). As the importance
of ILC2 cells during sepsis has recently been described (47–49),
these interactions may become increasingly significant for the
development of effective therapeutics.

In this review, we will further discuss the individual and
combined roles of IL-17, IL-27, and IL-33 during sepsis and how
this axis might be therapeutically targeted.

The Role of IL-17 in Sepsis
Pathophysiology
The IL-17 family of cytokines is composed of the structurally
similar IL-17A-F. Apart from IL-17A (classically referred to as
IL-17) and IL-17F, all the cytokines in this family are encoded

separately, although they share conserved sequences. The earliest
studies addressing the role of IL-17A during sepsis in animal
models reported that they induced significant pathology and that
eliminating IL-17A resulted in significantly improved survival
(50, 51). However, subsequent studies using mice deficient in the
IL-17 receptor found opposite results (52), and the literature now
contains numerous studies demonstrating the mixed effects of
IL-17A blockade in sepsis.

In 2012, Ogiku et al. reported that mice lacking IL-17A had
significantly increased mortality following CLP that correlated
with higher bacteremia at 12 h (53). Similarly, a more recent
paper using the CLP model concluded that IL-17 has a partially
protective role during sepsis: wild type mice had significantly
increased survival and IgA production after CLP when compared
to IL-17−/− mice (54). Interestingly, this study found that non-
canonical signaling through NF-κB was responsible for much
of the IL-17A production, as mice lacking RANKL and NF-κB
inducing kinase (NIK) signaling in their intestinal epithelium
cells had significantly reduced IL-17A and mortality similar to
IL-17−/− mice (54).

Other studies have found that the impact of IL-17A on sepsis
mortality depends on the microbe that initiated the infection.
Using a bacterial pneumonia model, Ritchie et al. found that the
role of IL-17A in sepsis is highly dependent on the encapsulation
status of the infecting bacterium (55). IL-17A was beneficial
during infections caused by minimally encapsulated bacteria,
but significantly increased lung pathology and mortality if the
infectious organism was heavily encapsulated (55). The authors
concluded that this was due to the accumulation of neutrophils
unable to phagocytose the bacteria (55). In conjunction with IL-
23 signaling, IL-17A increases the recruitment of neutrophils and
their accumulation in the lung following CLP, partially explaining
the inflammation seen in the lung following polymicrobial sepsis
originating in other tissues (56). IL-17 has also been linked to
the development of acute kidney injury in septic patients and
animal models (57). Given these findings, it is not surprising that
multiple groups have reported that the neutralization of IL-17A
or IL-17F improves survival (58, 59).

As the results of these sepsis studies conflict, it is important
to note that IL-17A can induce the production of other IL-17
family cytokines, especially IL-17C (60). Although it is a distinct
cytokine, it plays a similar role in neutrophil recruitment and
the inflammatory process to IL-17A (60). In a mouse model of
pneumonia induced by Pseudomonas aeruginosa, mice lacking
IL-17C had 100% survival at 48 h, whereas wild type mice
had only 25% survival at this time point (60). In contrast,
another recent paper reported that IL-17C induction provides
protection against LPS-induced endotoxemia (61). As IL-17C
has been reported promote the production of IL-17A by Th17
lymphocytes in inflammatory conditions (such as autoimmune
disease) (62), the authors concluded that these effects may be due
more to the promotion of IL-17A than to IL-17C alone.

The Role of IL-27 in Sepsis
Pathophysiology
Originally thought to be pro-inflammatory, there is now
consensus that IL-27 is a potent immunosuppressant. It is
composed of an alpha subunit (IL-27p28, also known as IL-30)
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and EBI3 (shared with IL-35) (63). IL-27 binds to the IL-27
receptor alpha (IL-27Rα, also known as WSX-1) and gp130 and
is primarily produced by dendritic cells (DCs), monocytes and
macrophages (63). The lymphocyte populations that respond to
the presence of IL-27 or one of its subunits are T cells, natural
killer (NK) cells, natural killer T (NKT) cells, and DCs (64–
69). This allows IL-27 to have wide ranging effects on cells of
both the innate and adaptive immune response in addition to
autocrine effects.

In septic patients and in murine models of sepsis, the plasma
concentration of IL-27 significantly increases (34, 35, 70, 71),
briefly causing it to be considered as a potential diagnostic
biomarker in adults (22–24) and children (20, 26). However,
these results have not been consistently replicated in humans,
limiting its current therapeutic potential. In mice, the results
are more consistent and indicate a clear role for IL-27 in the
pathology of sepsis and critical illness. When the p28 subunit is
neutralized or the IL-27Rα is blocked, mortality is significantly
decreased in both CLP and endotoxemia (34, 37, 38).

In a study by Cao et al., mice lacking the IL-27Rα

were resistant to a secondary bacterial infection caused by
Pseudomonas aeruginosa following CLP in a manner dependent
on alveolar macrophages and neutrophils (37). Specifically,
the neutrophils and alveolar macrophages in these mice had
a significantly improved ability to kill P. aeruginosa upon
phagocytosis (37). Similarly, Bosmann et al. observed that
the oxidative burst of macrophages was improved upon the
elimination of IL-27 signaling, and determined that IL-10 limits
the production of IL-27p28 in vivo following CLP (38). In
addition, this study found that the cells primarily responsible for
the production of IL-27p28 in the CLPmodel of sepsis are splenic
macrophages (38). However, a more recent study has found
conflicting evidence that indicates a protective role for p28 during
sepsis (72). In this study, the administration of the p28 subunit or
its overproduction through genetic therapy led to a reduction in
mortality during sepsis directly linked to the reduction in NKT
cell production of inflammatory cytokines (72).

In addition to its modulation of innate cells, IL-27 has
a significant impact on T cells. IL-27 can promote the
differentiation of Th1 cells and it is also a potent inducer
of type 1 Treg (Tr1) cells (73). While Tr1 cells produce
IFN-γ, they also produce large quantities of IL-10 and have
potent suppressive functions (74). In addition to the induction
of this cell population, IL-27 signaling leads to an increase
in co-inhibitory molecule expression on T cells following
chronic antigen exposure and during cancer (75). As T cell
dysfunction and exhaustion is associated with the development
of immunosuppression during sepsis and ultimately worsened
survival (76–79), IL-27 could be an effective therapeutic target.
However, mice can produce IL-27p28 in the absence of EBI3,
so it is unclear if the reported effects of IL-27 during sepsis are
actually due to the full heterodimeric cytokine or merely to its
alpha subunit. A group has recently reported the development of
transgenic B57L/6J mice in which the IL-27p28 subunit cannot be
produced independently of EBI3 (80). This animal model will be
necessary to truly distinguish the effects of IL-27p28 from those
of IL-27.

The Role of IL-33 in Sepsis
Pathophysiology
ST2 was an orphan receptor until 2005, when Schmitz et al.
reported their discovery of IL-33 (81). A member of the IL-
1 family, IL-33 is constitutively expressed by endothelial and
epithelial cells in barrier tissues and is also found at high levels
under inflammatory conditions in other tissues (82, 83). When T
cells, mast cells, eosinophils, and ILC2s receive IL-33 signaling,
the immune response shifts toward a type 2 response (81, 84).

The first paper to describe the role of IL-33 (rather than its
receptor ST2) in sepsis was published by Alves-Filho et al. (40).
The authors found that survival significantly increased when
IL-33 was administered to mice following CLP (40). Another
2010 study found that IL-33 is protective against LPS induced
endotoxemia (85). The ability of IL-33 to improve survival during
sepsis is linked to the rescue of neutrophil migration to the site of
infection (40), to improvements in bacterial clearance, and to a
reduction in lymphocyte apoptosis (41). IL-33 also suppresses the
inflammatory response by a variety of innate lymphocytes (86)
and modulates the activity of ILC2 cells (47–49). In addition to
direct effects on other lymphocytes, IL-33 impacts the activity of
other cytokines, including IL-17 (41, 87). While IL-33 can bind
to a soluble form of ST2 (sST2), the effects of IL-33 during sepsis
appear to be dependent on signaling through membrane bound
ST2; in one study, patients who had did not survive sepsis had
higher levels of sST2 than patients that went on to survive their
infections (40).

Despite being linked to improvements in survival early after
sepsis onset, IL-33 signaling may not always be beneficial.
IL-33 is implicated in the induction and maintenance of
immunosuppression during sepsis through the induction of
Tregs (42). Nascimento et al. found that this occurs through
the production of IL-4 and IL-13 by ILC2s that receive IL-33
signaling (42). The IL-4 and IL-13 then drives the proliferation
of IL-10 producing macrophages and ultimately an expansion
in Treg numbers (42). When they examined the blood of
a small number of patients who had been diagnosed with
sepsis 5–10 months prior, they found that sepsis survivors had
significantly higher concentrations of both IL-10 and IL-33 and
higher circulating Treg numbers compared to previously healthy
patients (42). While these findings need to be replicated, they
suggest that the impact of IL-33 signaling may depend on the
stage of disease.

INTERACTIONS BETWEEN IL-17, IL-27,
AND IL-33

The ability for lymphocytes to recognize and respond to slight
changes in their environment makes the immune system very
adaptable and ensures that the balance between inflammatory
and immunosuppressive responses is fine-tuned. While the
ability of lymphocytes to respond so readily to their surroundings
is beneficial from an evolutionary point of view, it makes it
significantly harder to elucidate the role of individual cytokines.
The individual and combined actions of the cytokines in the
IL-17, IL-27, and IL-33 axis are summarized in Figure 1.
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FIGURE 1 | The proposed role of the IL-17, IL-27, and IL-33 axis during

sepsis. Th17 cells that receive co-inhibitory signaling from IL-27 induced Tr1

cells have inhibited production of IL-17. Differentiation of naïve T cells into

Th17 cells is also inhibited by IL-27 through the modulation of DC

cytokine production. ILC2 cells and EOs expansion are also inhibited through

the action of IL-27 signaling on IL-33. Th17, T helper type 17 cell; Tr1, T

regulatory type 1 cell; ILC2, innate lymphocyte type 2 cell; DC, dendritic cell;

EO, eosinophil.

IL-17 and IL-27
IL-17 plays a harmful role in many autoimmune diseases,
particularly experimental autoimmune encephalomyelitis (EAE)
and rheumatoid arthritis (RA). By limiting the differentiation
of naïve CD4+ T cells into Th17 cells, IL-27 is able to
attenuate these diseases (16, 19, 28, 31, 32, 88). Similarly, IL-
27 signaling prevents the development of neurological damage
during chronic Toxoplasma gondii infection (18) and reduces
tissue damage during RSV infection (89). Further research has
shown that STAT1 signaling (which IL-27 induces) inhibits the
expression of the transcription factor RORγt, necessary for Th17
differentiation, while promoting the induction of the protein
suppressor of cytokine signaling 1 (SOCS1) (16, 19, 30, 90).
This leads to the suppression of IL-22 production by Th17
cells, impairing antimicrobial defenses in the epithelium (30,
33). In addition to its direct effects on T cells, IL-27 can also
inhibit Th17 differentiation by inhibiting the production of the
Th17-polarizing cytokines IL-1β, IL-6, and IL-23 by DCs (29).
In contrast, T cells that have already committed to the Th17
lineage are not directly inhibited by IL-27 signaling (28, 91).
Instead, inhibition occurs indirectly through the induction of

Tr1 (29) and the expression of co-inhibitory receptors and their
ligands (32, 88).

IL-17 and IL-33
Similar to IL-27, IL-33 has been reported to attenuate EAE
through the suppression of Th17 responses (92). While IL-
33 attenuates sepsis mortality, it is less clear if this is due to
any effect on the Th17 response. One group reported that the
administration of IL-33 actually enhanced the production of IL-
17 while decreasing the levels of IL-6, IL-10, and IFNγ following
CLP (41). Similarly, another group found that the deletion of
the IL-33 receptor ST2 led to a reduction in the frequency and
number of IL-17 producing NK cells after CLP (86). However,
a recent study of human patients with Staphylococcus aureus
bacteremia revealed that a higher ratio of Th17 to Th1 cytokines
early after sepsis onset was associated with increased mortality
(49). As there was a trend toward increased Th2 cells in surviving
patients, the authors did a follow up study using a mouse model
of S. aureus bacteremia (49). IL-33 provided a survival benefit
in this model that was dependent on functional ILC2s and EOs,
suggesting that IL-33 is protective in part because it re-balances
type 1, 2, and 17 responses during sepsis (49).

IL-27 and IL-33
While IL-27 signaling promotes type 1 immune responses and
directly limits type 17 immunity, it also serves as a negative
regulator of type 2 responses by interfering with IL-33 signaling.
The first paper to describe this phenomenon utilized in vitro
experiments which showed that IL-27 reduced type 2 cytokine
production in bone marrow cells exposed to IL-33, including IL-
5, IL-13, and GM-CSF (43). For IL-5, this effect was dependent
on STAT1 signaling, as STAT1 knockout bone marrow cells were
not impacted by the presence of IL-27 (43). Moro et al. confirmed
these findings in vivo using STAT1 knockout mice, and revealed
that while IL-27 reduces type 2 cytokine production by ILC2
cells, it does not affect cytokine production in Th2 cells (44).
Another recent study reported that the administration of IL-27
limits IL-33 induced ILC2 accumulation and activation in the
lungs, liver, spleen, and mesenteric lymph node in vivo (45).
The administration of IL-27 also led to the overrepresentation of
IL-27Rα−/− cells in chimeric mice (45). While not specifically
addressing IL-27, another murine study found that STAT1
signaling induced by infection with respiratory syncytial virus is
sufficient to reduce the production of IL-33 (46). These studies
collectively show that a major function of IL-27 is to negatively
regulate the type 2 immune response, specifically ILC2 cells, in a
manner that is dependent on STAT1 signaling.

EXPLOITING THE IL-17, IL-27, AND IL-33
AXIS DURING SEPSIS

While many reviews have discussed the therapeutic potential
for targeting IL-17, IL-27, and IL-33 during sepsis (93–95),
none have considered the effect that treatment targeting
only one of these cytokines may have on the others.
In addition, the compartmentalization of the immune
response during sepsis means that cytokine therapies that
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restore the function of circulating lymphocytes could
cause excessive stimulation and ultimately programmed
cell death in the more normally responsive tissue
lymphocytes. To aid the specificity of these therapies,
binding should be targeted to cells expressing the circulatory
chemokine receptor molecule CCR7 or the integrin
CD62L (required for lymphocyte extravasation into the
lymphatic system).

As IL-17 can have either beneficial or detrimental roles during
sepsis depending on the murine model used, it is currently
unclear what course of actionwould bemost beneficial for human
patients. However, anything that significantly increases IL-17
levels for a long period of time raises the risk of auto-immune
disease formation and increased tissue damage. It seems more
tenable to target IL-27 and IL-33, with an eye to keeping a balance
between these cytokines and IL-17.

Neutralizing IL-27 seems likely to provide a survival benefit
in septic patients if administered early after disease onset. IL-27
signaling shifts the balance too far toward a type 1 regulatory
response, but its neutralization would balance type 1 and type 2
responses through the increase in activity of the type 2 promoting
cytokine IL-33. IL-33 signaling has been shown to improve
sepsis survival in the short term in murine models, although
one report suggests that IL-33 is linked to the development
of immunosuppression during sepsis (42). In this study, mice

lacking the IL-33 receptor had attenuated immunosuppression
associated with a reduction in type 2 cytokines, ILC2 cells,
and Tregs (42). It is currently unknown how much IL-33
signaling changes during sepsis in the absence of IL-27 signaling
and therefore might lower the efficacy of IL-27 blockade in
improving long term survival in sepsis patients who receive no
further interventions.

Ultimately, targeting any of these cytokines in an
indiscriminate fashion is unlikely to be clinically beneficial.
However, understanding the complex interplay between IL-17,
IL-27, and IL-33—including the timing in which cytokine
augmentation or blockade may potentially be beneficial—
suggests this axis may potentially be manipulatable for
therapeutic gain as part of a precision medicine approach
toward sepsis treatment.
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