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Abstract—Diabetes mellitus reduces immunological activity and increases susceptibility to various
infections. Hochuekkito (TJ-41) has been reported to improve the weakened physical condition of
various chronic diseases. BALB/c mice were divided into three groups; groups A and B were fed a
standard diet, and group C, a TJ-41 diet. Two weeks after starting these diets, hyperglycemia was
induced in groups B and C by injection with streptozotocin. Two weeks later, bronchoalveolar
lavage was performed. Toll-like receptor (TLR) ligands (TLR2: peptidoglycan, PGN; TLR4: lipo-
polysaccharide, LPS; TLR5: flagellin, FLG) were used to stimulate alveolar macrophages (AMs),
and TNF-α production was measured. Under hyperglycemic conditions and PGN or FLG stimul-
ation, TNF-α production from AMs was significantly reduced in group B compared with group A.
However, treatment with TJ-41 (group C) significantly improved the impaired production of TNF-
α. These results suggest that, under hyperglycemic conditions, TJ-41 can improve the inflammatory
responses of AMs with stimulation of TLR ligands.

KEY WORDS: alveolar macrophage; Toll-like receptor; diabetes mellitus; streptozotocin; inflammatory
response.

INTRODUCTION

It is well known that patients with diabetes mellitus
have decreased immunological activity and have an
increased susceptibility to various infections, including
lower respiratory tract infections. Several previous
studies of patients with community-acquired pneumonia
have reported that hyperglycemia was associated with an
increased risk of pneumonia-related hospitalization [1].

Alveolar macrophages (AMs) are first-line defense
cells targeting invading pathogens and therefore play a
central role in innate respiratory host defense [2]. Few
reports have investigated the effects of hyperglycemic
conditions on the function of AMs, such as decreased
phagocytosis and bactericidal activity [3], and depressed
respiratory burst [4]. Recent studies focusing on macro-

phage inflammatory responses under hyperglycemic
conditions have mainly been performed using peritoneal
macrophages [5–7] and bone marrow-derived macro-
phages [8, 9], while data on AMs are limited. Lipopoly-
saccharide (LPS)-induced macrophage inflammatory
protein-2 gene expression in diabetic mice [10] and
production of tumor necrosis factor alpha (TNF-α),
interleukin (IL)-12, and nitric oxide (NO) in diabetic rats
infected with Mycobacterium tuberculosis were reported
to be decreased [11].

Toll-like receptors (TLRs) are cellular receptors that
recognize molecular signatures of pathogens and initiate
an inflammatory signaling cascade that is critical to the
innate immune response. In humans, ten TLRs have
been identified which recognize pathogen-specific
ligands. TLR2, TLR4, and TLR5 play important roles
in bacterial infection: TLR4 recognizes LPS, a major cell
wall component of Gram-negative bacteria, whereas
TLR2 and TLR5 recognize peptidoglycan (PGN),
another bacterial wall component, and flagellin (FLG),
respectively. All three TLRs are expressed and function-
ally active on AMs [12, 13]. When stimulated with a
ligand, TLRs induce the production of inflammatory
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cytokines and provoke natural immune responses. Our
preliminary data showed that hyperglycemic conditions
cause an impaired responsiveness of AMs to selective
TLR ligands by inhibiting the production of pro-
inflammatory cytokines [14].

Bu-Zhong-Yi-Qi-Tang (Hochuekkito; TJ-41) is a
kampo (Japanese and Chinese traditional) herbal medi-
cine and has been used to improve the weakened
physical condition of patients with various chronic
diseases. TJ-41 was prepared as a spray-dried powder
of a hot-water extract obtained from ten medical plants,
including Astragali radix, Atractylodis Lanceae rhi-
zoma, Ginseng radix, Angelicae radix, Bupleuri radix,
Zizyphi fructus, Auranti Nobilis pericarpium, Glycyrhi-
zae radix, Cimicifugae rhizoma, and Gingiberis rhizoma
[15]. TJ-41 has been reported to exhibit a pharmacolog-
ical immunopotentiating activity [15] and enhance the
suppressed reactive oxygen-producing activity of neu-
trophils in diabetic rats [16]. Additionally, treatment of
human monocytic cells (THP-1 cell line) with TJ-41 has
been reported to cause slightly increased expression of
TLR4 [17].

In the present study, we evaluated the immune-
activating effects of TJ-41 by studying its effects on
inflammatory responses of AMs from hyperglycemic
mice.

MATERIALS AND METHODS

Reagents

TJ-41 was provided by Tsumura Co. (Tokyo,
Japan). Mouse food was produced by CLEA Japan
(Tokyo, Japan) and was supplemented with 2 mg/5 g
(0.04%) TJ-41. Streptozotocin (STZ), a known diabe-

togen, was purchased from Sigma-Aldrich (St. Louis,
MO). Escherichia coli LPS was purchased from Sigma.
Staphylococcus aureus PGN and Salmonella typhimu-
rium FLG were purchased from Invitrogen (San Diego,
CA). PE-labeled anti-murine TLR2 antibody (Ab) and
TLR4 Ab were purchased from eBioscience (San Diego,
CA). PE-labeled anti-murine TLR5 Ab was purchased
from Imgenex (San Diego, CA). Culture media and
supplements were purchased from Sigma.

Animals

Specific pathogen-free male Balb/c mice at 6–
8 weeks of age were purchased from Japan SLC
(Tochigi, Japan). Animals were housed in standard cages
with carefully controlled ambient temperature (25°C)
and artificial light (12 h of light from 8:00 am to
8:00 pm) and were fed with standard laboratory chow
with or without TJ-41 and tap water at the animal facility
of Jichi Medical University. All experiments described
in this study were approved by the Institutional Animal
Care and Use Committee of Jichi Medical University.

Administration of TJ-41 and Injection of STZ

The experimental setup of this study is outlined in
Fig. 1. TJ-41 was administered orally with a composite
of 2 mg/5 g (0.04%) per day. Mice were divided into
three groups: groups A and B were given standard food,
and group C was given food containing TJ-41.

Two weeks after the initiation of TJ-41 treatment,
STZ, in 0.01 M citrate buffer (pH 4.5), was injected
intraperitoneally at a dose of 250 μg/g body weight into
groups B and C. Two weeks later (4 weeks after the
beginning of TJ-41 treatment), blood glucose levels
were measured using Glutest Ace (Sanwa Chemical Co.,

Standard diet + no STZ administration
(n=8)

Standard diet + STZ administration
(n=8)

TJ-41 diet + STZ administration
(n=8)

STZ

STZ

BAL

BAL

BAL

(W)

Fig. 1. Experimental protocol. Oral administration of TJ-41 or standard diet by gavage for 4 weeks. Two weeks after the beginning of feeding, STZ
was injected intraperitoneally to groups B and C. One week after injection, blood glucose levels were measured, and only the mice with blood glucose
levels exceeding 200 mg/dl were used in the experiments. Four weeks after the beginning of feeding, mice were sacrificed, before bronchoalveolar
lavage (BAL) was performed and blood glucose levels measured.
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Nagoya, Japan) and Glutest sensor (Sanwa Chemical
Co.). Only mice with a fasting blood glucose level of at
least 200 mg/dl were considered diabetic and used in the
following experiments.

AM Isolation and Culture

Two weeks after STZ injection, tracheas were
cannulated with an 18-gauge catheter, and bronchoal-
veolar lavage (BAL) was performed under deep anes-
thesia with pentobarbital, by instilling 1 ml of
phosphate-buffered saline (PBS) into both lungs through
the trachea four times [18]. After each instilment, fluid
was collected and pooled. Cells were counted by trypan
blue dye exclusion. Cytospins for differential cell counts
were prepared and stained with modified Wright-Giemsa
(Diff-Quick; International Reagents Co., Kobe, Japan).
Cells were resuspended in RPMI 1640 medium supple-
mented with 10% heat-inactivated fetal calf serum (FCS,
Harlan, Indianapolis, IN), 100 U/ml penicillin, 100 μg/
ml streptomycin, and 2 mM L-glutamine. Based on
trypan blue dye exclusion and differential cell counts,
equal numbers of AMs were plated at the indicated cell
density. After 2 h of incubation at 37°C in a 5% CO2

incubator, nonadherent cells were removed by washing
twice with PBS. Adherent cells were cultured in RPMI
1640 medium supplemented with 10% FCS, 100 U/ml
penicillin, 100 μg/ml streptomycin, and 2 mM L-
glutamine and were either left unstimulated or were
stimulated with PGN (10 μg/ml), LPS (100 ng/ml), or
FLG (1 μg/ml).

TNF-α Measurement

AMs plated in 96-well plates at 5×104 cells per well
were cultured in the medium alone or stimulated with
specified reagents at indicated concentrations for 18 h. Cell
supernatants were harvested, and levels of TNF-α were
measured using commercially available enzyme-linked
immunosorbent assay (ELISA) kits (Invitrogen, Carlsbad,
CA) according to the manufacturer’s instructions.

Analysis of Cell-Surface TLR Expression

AMs from control and diabetic mice were obtained
by BAL as described above. AMs were resuspended at
1×105 cells per 100 μl in staining buffer (PBS
containing 1% bovine serum albumin and 0.1% sodium
azide). Nonspecific staining was blocked by incubation
with anti-murine CD16/32 Ab (eBioscience) for 15 min.
After blocking, cells were incubated for 30 min with PE-

labeled anti-murine TLR2, TLR4, and TLR5 Abs. AMs
were washed twice with staining buffer and fixed with
staining buffer containing 1% formalin. Flow cytometry
was performed using a FACS LSR flow cytometer (BD
Bioscience, San Jose, CA). Using forward scatter and
side scatter parameters to define macrophage
populations, 1×104 events were acquired. Flow
cytometry data were analyzed using the CellQuest Pro
software.

Real-Time PCR

AMs were plated in 12-well plates at 4×105 cells
per well. Cells were cultured in the medium alone or
stimulated with specified reagents, and RNA was
isolated at the indicated time points using the
RNAqueous Kit (Ambion, Austin, TX) according to
the manufacturer’s instructions. Reverse transcription
was performed on similar amounts of RNA per group
using a High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA). Specific primers
for murine TNF-α, TLR2, 4, and 5 were designed, and
PCR was performed in triplicate with Fast Universal
PCR Master Mix in the ABI 7500 Fast Real-Time PCR
System (Applied Biosystems).

Statistical Analysis

All data are shown as mean±SEM of each group.
The statistical significance of any difference in each
parameter among the groups was evaluated by a
Student’s t test (Statview, SAS Institute, Cary, NC). A
value of p<0.05 was considered statistically significant.

RESULTS

To test the immune-activating potential of TJ-41 in
the context of diabetic conditions, the drug was
administered to mice under both basal conditions and
in conjunction with the diabetogen STZ. As shown in
Fig. 2, significant body weight loss in animals was
observed after 2 weeks in groups B and C, to which STZ
was administered. Furthermore, blood glucose levels at
week 4 of the study were significantly higher in groups
B and C, compared with the untreated control group, but
did not differ between groups B and C.

No difference was observed in the cell fractions in
the bronchoalveolar lavage fluid among the three groups,
and they were mostly macrophages (Fig. 3).
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We initially tested TNF-α production under PGN or
FLG stimulation in the three treatment groups. As shown
in Fig. 4, production of TNF-α was lower in diabetic
(STZ-treated) animals, compared with untreated animals.
Interestingly, treatment with TJ-41 significantly in-
creased TNF-α production following PGN and FLG
stimulation in diabetic animals (PGN, group B 1,742±
80 pg/ml versus group C 2,091±166 pg/ml, and FLG,
group B 5,626±288 pg/ml versus group C 7,143±
315 pg/ml, p<0.05, respectively) but not following
LPS stimulation (Fig. 4). These results suggested that
suppressed TNF-α production under diabetic conditions
with PGN or FLG stimulation improved with intake of
TJ-41.

We next examined whether the above-described
modulation of cytokine production by TJ-41 treatment
(Fig. 4) was associated with changes in TLR expression.
The expression of TLR2, TLR4, or TLR5 on the cell
surface was evaluated by flow cytometry. As shown in
Fig. 5, no difference in TLR expression was observed

between the three groups. In addition to protein levels,
we also tested whether TLR mRNA levels were altered
in response to TJ-41 treatment. RT-PCR using specific
primers for TLR2, 4, and 5 was performed on cDNA
generated from AMs, but no differences were observed
in the three treatment groups (data not shown).

Initially, we divided mice into four groups: groups
A–C as previously described and one further group
which was given food containing TJ-41 but was not
injected with STZ. However, in this group, we found
entirely no difference comparing with the data of control
group A (standard diet+no STZ administration) (data
not shown).

To summarize the above results, in diabetic mice,
TNF-α production from AMs was significantly reduced
following stimulation with TLR2 or TLR5 ligands,
compared with the control group. However, TNF-α
production in diabetic mice was increased upon treat-
ment with TJ-41. Interestingly, no difference was noted
in the expression of TLR mRNA in macrophages or
TLR expression on the cell surface between the three
groups.

DISCUSSION

Japanese herbal medicine is a mixture of many
plant materials, and the mechanism of action mediating
the effect can appear to be complicated. There have been
numerous reports describing the beneficial effects of Bu-
Zhong-Yi-Qi-Tang (Hochuekkito; TJ-41) on immune
functions. Harada et al. reported an enhancement of
immune function, particularly of antitumor immunity,
through the augmentation of cytostatic activity [19].
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Fig. 2. Change in body weight and blood glucose levels in mice after STZ injection. a Mouse body weight was measured at 0, 2, and 4 weeks. Body
weight of groups B and C (STZ injected) were significantly decreased compared with group A (no STZ). b Blood glucose levels of mice after
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Fig. 3. Cell differentiation in bronchoalveolar lavage fluid. There was
no difference in cell differentiation in bronchoalveolar lavage between
the three groups.

1297Effect of Hochuekkito on Alveolar Macrophage in Hyperglycemia



Elderly people who received doses of TJ-41 had a
significant increase in their serum interferon-gamma
(IFN-γ) levels, which is thought to be associated with
increased NK cell activity [20]. TJ-41 combined with
IFN-γ moderately enhanced the daily activity of chronic
fatigue syndrome mice by increasing NK cell activity
[21]. Utsuyama et al. showed that TJ-41 could enhance
the impaired immune function of old mice by increasing
the numbers of T and NK cells [22]. Mice administered
with TJ-41 for 32 weeks had a significant increase in
their splenic NK cell population, and the CD4/CD8 ratio
in the spleen was increased [23]. TJ-41 increased IL-18-
induced ICAM-1 and CD86 expression, resulting in
enhanced TNF-α and IFN-γ production. This suggests
that TJ-41 enhances IL-18-induced cell-mediated immu-
nity and may enhance host defense mechanisms against
pathogens [24]. Therefore TJ-41 may have beneficial
effects via its ability to enhance immune system
activation.

As for innate immunity in the diabetic mouse
model, most of the studies regarding the impacts of a
hyperglycemic state on tissue macrophage inflammatory
responses to TLR ligands have been performed on cells
other than AMs. Moreover, the examinations have
focused on the response to LPS, a TLR4 ligand, but
not other TLR ligands.

For example, several studies have shown impaired
inflammatory responses in peritoneal macrophages, such
as reduced LPS-induced TNF-α and IL-6 production in
type 1 diabetic rat models [5, 6] and reduced TNF-α and
IL-1β production by LPS plus IFN-γ stimulation in type
2 diabetic (db/db) mice [25]. Contrary to these reports,
peritoneal macrophages from diabetic mice produced
more IL-1β in response to LPS, resulting in increased
peritoneal levels of IL-1β induced by LPS [26]. Also,
exposure of bone marrow-derived macrophages derived
from non-obese diabetic mice to a hyperglycemic
environment resulted in elevated levels of TLR2,
TLR4, and TNF-α [9]. Thus, immunomodulatory effects
of a hyperglycemic state on macrophage cytokine
reactions are complex. Although these data were
different in part from our present study, the discrepancy
was probably due to the different experimental models,
origin of macrophages, and additional stimuli.

Our preliminary data suggested that the hypergly-
cemic state impairs the reactivity of alveolar macro-
phages to selective TLR ligands, TLR2 ligand (PGN),
and TLR5 ligand (FLG), by inhibiting the production of
TNF-α [14]. Additionally, in the present study, the
suppressed TNF-α production from alveolar macro-
phages in mice stimulated with PGN or FLG was
alleviated by TJ-41. TNF-α activates T cells, B cells,
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LPS (100 ng/ml), or FLG (1 μg/ml) for 18 h, supernatants were harvested, and TNF-α levels were measured in cell supernatants by ELISA. Data are
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and macrophages [27]. TNF-α induces the synthesis and
release of immunostimulatory polypeptides such as IL-1
and IL-6 from various cells. Together with IL-1, TNF-α
acts on a variety of cells like T cells, B cells, fibroblasts,
and macrophages to secrete various cytokines which are
essential for the development of an effective immune
response. These TLRs are involved in responses to
Gram-positive bacteria, mycoplasma, and bacteria with
flagellar filaments. In contrast, no effect was observed on
the level of cell surface receptor expression in this study.
Therefore, TJ-41 is likely to have an effect on as yet
unidentified intracellular signal pathways.

Diabetes may predispose to increased morbidity
and mortality of certain pulmonary infections, such as
those caused by S. aureus, Streptococcus pneumoniae,
M. tuberculosis, and Legionella pneumophila [28].
TLR2 or TLR5 is indeed important in the recognition
of these microorganisms. Moreover, recent clinical
studies have shown the association of TLR2 and TLR5

gene polymorphisms with susceptibility to infection with
M. tuberculosis [29] and L. pneumophila [30], respec-
tively. In the present study, TNF-α production from
alveolar macrophages stimulated with TLR2 or TLR5
ligands during diabetic conditions was decreased, sug-
gesting that inflammatory responses to certain bacteria
may be impaired in diabetic patients. Alternatively, TJ-
41 recovered suppressed TNF-α production from alve-
olar macrophages in a hyperglycemic state. This sug-
gests that this drug normalizes the dysregulated
inflammatory response in hyperglycemic states and,
furthermore, is useful for host biological responses to
bacterial infections.

There are several reports which have investigated
TLR signaling in hyperglycemic conditions. LPS-depen-
dent TNF-α production in mice increased due to an
augmentation of LPS-induced p38 MAPK activity. The
extracellular signal-regulated kinase (ERK) MAPK
pathway is thought to be critical in TLR3 and TLR7
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Fig. 5. Effect of TJ-41 on TLR surface expression. Flow cytometric analysis of AM surface phenotype was performed by direct immunofluorescence
using a BD LSR cell analyzer. AMs were resuspended in staining buffer (1×105 cells/100 μl) and nonspecific Fc receptor staining blocked using Fc
block. PE-labeled TLR2, 4, and 5 Ab were added to stain the cells before analysis using a FACScan flow cytometer.
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activation signaling in non-obese diabetic mice [31].
However, several reports have addressed the effects of
TJ-41 on TLR signaling. Chino et al. reported the effect
of Shi-Quan-Da-Bu-Tang (Juzentaihoto; TJ-48) on
TLR4-mediated cellular responses in peritoneal exudate
macrophages [32]. Although FACS analysis revealed
that TJ-48 had no effect on TLR4 surface expression, it
activated the NF-κB and p38 pathways while inhibiting
the JNK and ERK pathways. In contrast, Mita et al.
suggested that TJ-48 increased the expression of TLR4
and might enhance defense against Gram-negative
bacteria in vitro [17]. Despite the contrasting data in
these two reports, the present study and the work by
Chino et al. suggest that TJ-41/TJ-48 specifically
influences the downstream signaling pathways of TLR
without affecting its surface expression [32]. Further-
more, the results presented here suggest that TJ-41
modulates MAPK signaling pathways to enhance TNF-
α production.

Our study had limitations. We examined only one
inflammatory cytokine, TNF-α. There are many inflam-
matory cytokines involving the site of inflammation. To
clarify the exact mechanism of Hochuekkito, more
examinations will be needed. Furthermore, the differ-
ences of the responses of TLR-2 and 4 to hyperglycemic
environment between alveolar and other macrophages
should be clarified.

CONCLUSION

Our results suggest that TJ-41 alleviates the sup-
pressed inflammatory responses elicited from AMs
following stimulation with TLR ligands in a hypergly-
cemic state, but the mechanism of this effect requires
further investigation.

Open Access This article is distributed under the terms of
the Creative Commons Attribution License which permits
any use, distribution, and reproduction in any medium,
provided the original author(s) and the source are credited.
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