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Abstract

Under the current policy decision making paradigm we make or evaluate a policy decision

by intervening different socio-economic parameters and analyzing the impact of those inter-

ventions. This process involves identifying the causal relation between interventions and

outcomes. Matching method is one of the popular techniques to identify such causal rela-

tions. However, in one-to-one matching, when a treatment or control unit has multiple pair

assignment options with similar match quality, different matching algorithms often assign

different pairs. Since all the matching algorithms assign pairs without considering the out-

comes, it is possible that with the same data and same hypothesis, different experimenters

can reach different conclusions creating an uncertainty in policy decision making. This prob-

lem becomes more prominent in the case of large-scale observational studies as there are

more pair assignment options. Recently, a robust approach has been proposed to tackle the

uncertainty that uses an integer programming model to explore all possible assignments.

Though the proposed integer programming model is very efficient in making robust causal

inference, it is not scalable to big data observational studies. With the current approach,

an observational study with 50,000 samples will generate hundreds of thousands binary

variables. Solving such integer programming problem is computationally expensive and

becomes even worse with the increase of sample size. In this work, we consider causal

inference testing with binary outcomes and propose computationally efficient algorithms

that are adaptable for large-scale observational studies. By leveraging the structure of the

optimization model, we propose a robustness condition that further reduces the computa-

tional burden. We validate the efficiency of the proposed algorithms by testing the causal

relation between the Medicare Hospital Readmission Reduction Program (HRRP) and non-

index readmissions (i.e., readmission to a hospital that is different from the hospital that dis-

charged the patient) from the State of California Patient Discharge Database from 2010 to

2014. Our result shows that HRRP has a causal relation with the increase in non-index read-

missions. The proposed algorithms proved to be highly scalable in testing causal relations

from large-scale observational studies.
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Introduction

Effective and evidence-based public policy decisions aim to manipulate one or many socio-

economic variables and analyze their impact on the desired outcomes [1]. The impact assess-

ment is not associational but causal [1, 2] which requires an understanding of the counterfac-

tual—the difference in outcomes with or without the presence of the policy [3]. This is also

true for any post policy evaluation [1]. A policy maker may design multiple policies and cal-

culate the causal quantities including the effect of the proposed policies on different recipient

groups, effects over time, possible trade-offs between competing goals, and, finally, choose

the optimal policy [4]. The gold standard approach for calculating those causal quantities is

conducting a randomized experiment [5–8]. In a randomized experiment, the experimenter

will assign observations to either treatment or control group randomly; this randomness can

avoid bias and eliminate confounding effects of covariates and thus can achieve unbiased

estimation of treatment effects. In this case, a possible association between treatment and

outcome will imply causation. However, many studies in health care, social science, econom-

ics, and epidemiology cannot be designed as a randomized experiment due to legal or ethical

reasons. Randomization can also be impractical, time consuming, or very expensive. Hence,

in most such cases experiments are performed on data that are collected as a natural process.

Such experiments are called observational studies (also referred to as natural experiments or

quasi-experiments) [9] and can be implemented in a prospective (collecting sample data as

natural observation over time) or retrospective (experimenting on already collected data)

way.

Making causal inferences from an observational study lacks the experimental elements of

randomization on all possible background covariates (the observed and unobserved charac-

teristics of a sample unit) [10, 11] and are prone to bias and systematic confounding on

covariates. However, with proper understanding of the underlying process and careful con-

trol of non-randomized data, it is possible to make a reasonable estimation of the causal

effect [5]. Researchers have been utilizing matching methods for identifying causality since

the 1940s [10] and it is one of the most popular methods. It was used or noted in as many as

486,000 academic articles involving causal inference (see S1 File). Matching methods exam-

ine the possibility of restoring or replicating properties of randomization based on the

observed covariates [10]. In fact, matching attempts to retrieve the latent randomization

within the observational data [12]. Being true to its name, matching methods aim to find a

control group that is identical to the treatment group in terms of joint distribution of the

observed covariates. As discussed by Stuart [10], and Zubizarreta [13], matching the empiri-

cal distribution of the covariates has several significant advantages. For example, matching

forces the experimenter to closely examine the data, check the common support on the

covariates, and assess the quality of inference. Even though the matching process can be

complex, the outcome analysis is often done with simple methods [14]. For instance, the

Rubin Causal Model (also known as Potential Outcome Framework) estimates the causal

effect as the difference of expected outcomes between the control group and the treatment

group [15]. Due to its simple architecture and other attractive properties (see [10, 13, 16]),

matching has been used to make policy decisions in health care [17–20], education [21, 22],

economics [23], law [24], and politics [25].

In this paper, we adopt a robust methodology recently proposed by Morucci et al. [26] and

extend it to accommodate causal inference from big data observational studies. We show the

efficiency of the proposed methods by evaluating the impact of the implementation of the

Medicare Hospital Readmission Reduction Program (HRRP) [27] on non-index readmissions

—readmission to a hospital that is different from the hospital that discharged the patient.
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Motivation and contribution

Motivation. The objective of the current one-to-one matching paradigm under the poten-

tial outcome framework is to find pairs (t, c) between samples t from treatment groupT and c
from control group C . A pair (t, c) is assigned in such a way that t and c are the same or very

similar on a specific, pre-determined set of covariates X: fðt; cÞ : t ’ cjX; t 2 T and c 2 C g.
Over the years, researchers developed a wide array of algorithms to find such pairs, for exam-

ple, Propensity Score matching [14], Mahalanobis Distance matching [14], Nearest Neighbour

Greedy matching [28], Coarsed Exact Matching [29], and Genetic matching [30] are among

the most popular algorithms. All these algorithms (including those not listed here) disregard

the outcomes ðY1
t ;Y

0
c Þ of corresponding pairs (t, c) in the assignment process. Though the

matching process reduces bias in treatment effect estimation, disregarding the outcomes in the

assignment process introduces a new source of uncertainty. If a sample t 2 T has multiple

possible pair assignments fc1; c2; � � � ; cng 2 C and have similar covariate balance but different

outcomes (i.e., Y1
t � Y

0
c1
6¼ Y1

t � Y
0
c2
6¼ � � � 6¼ Y1

t � Y
0
cn

), by assigning pairs without considering

the outcomes, an experimenter can estimate multiple degrees of causal effect (one for each pos-

sible assignment). Similarly, a sample from control group c 2 C can have multiple possible

assignment options ft1; t2; � � � ; tng 2 T . A possible scenario is presented in Fig 1 where within

each circle we have multiple pair assignment options with almost similar match quality but dif-

ferent outcomes (outcomes are presented as the size of the data points). In such cases, different

experimenters using different matching algorithms can get different pairs, hence, their causal

effect estimates and conclusions on the experiment can be different. It is possible that two

researchers having the exact same hypothesis and using the exact same data but with different

matching algorithms reach completely opposite results due to this uncertainty. This problem

is exacerbated for studies involving big data as we may have more pair assignment options.

Therefore, making policy decisions in health care or any other field by using the matching

method that disregards uncertainty due to pair assignments can lead to erroneous conclusions.

In 2012, Congress adopted HRRP as part of the Patient Protection and Affordable Care

Act (PPACA) [27] to increase quality of care and reduce hospital readmission rates. HRRP

penalizes hospitals when patients with certain clinical conditions (i.e., pneumonia, acute

Fig 1. Uncertainty due to multiple pair assignment options. Shapes and Colors represent the treatment status and

variations in size represent the difference in outcomes.

https://doi.org/10.1371/journal.pone.0223360.g001
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mayocardial infraction (AMI), congestive heart failure (CHF)) who have been discharged are

readmitted within 30 days. The index hospital is always penalized even if the patient is read-

mitted to a different hospital (non-index hospital) [27]. Though readmissions to the index hos-

pital are following a decreasing trend over the post HRRP periods, non-index readmissions are

increasing [31, 32]. This increase in the non-index readmission rate—approximately one fifth

of all readmissions for Medicare patients [31, 33]—creates suspicion that hospitals are possibly

discouraging patients from readmission to avoid penalties introduced by HRRP. Moreover,

a recent study identified that non-index readmissions are associated with higher odds of in-

hospital mortality and longer length of stay [34]. Therefore, we aim to identify whether HRRP

has a causal relation to the increase in non-index readmission. Finding such causal relation

involves analyzing a large volume of health care data and matching method would be vulnera-

ble to the uncertainty discussed above. The robust method proposed in [26] to handle such

uncertainty requires solving multiple Integer Programming (IP) models (a minimization and

a maximization problem) iteratively. Using state-of-the-art integer programming solvers to

solve those IP models for big data observational studies will be computationally expensive.

Contribution. In this work, we extend the robust causal inference testing method pro-

posed by Morucci et al. [26] to handle large-scale observational studies with binary outcomes.

To handle big data, first, we propose a robustness condition that identifies when a robust

solution is possible and combines the maximization and minimization problems into a single

problem. Second, we propose an efficient algorithm to calculate the test statistics for the robust

condition. In addition, we propose two algorithms—one to solve the minimization problem

and one to solve the maximization problem—for any condition that will show the degree of

uncertainty for a selected number of matched pair. Finally, we implement the algorithms by

testing the causal effect of HRRP to non-index readmissions using the State of California

Patient Discharge Data and compare the computational efficiency with canonical IP solvers.

Remark 1. Please note, by “Robust” we imply “Robust to the choice of matching method”: if
A represents a set of all possible matching algorithms, a researcher choosing any algorithm
Ai 2 A and testing a hypothesis of causal effect will get the same result if she has chosen algo-
rithm Aj6¼i 2 A . Also, we are considering matching as pre-processing and plan to achieve robust
test result from a large-scale observational study for a given set of good matchesM identified by
any matching algorithm Ai 2 A .

Causal inference with matching method and robust test

In the Rubin Causal Model, a sample unit i from a set of observations f1; 2; � � � ; ng 2 S can

have two outcomes or responses. The response YT
i is called treatment response when the unit i

receives certain treatment (T = 1) and control response when unit i does not receive treatment

(T = 0). It is assumed that the treatment assignment of any unit does not interfere with the out-

come of other units [35]. This assumption is commonly known as the Stable Unit Treatment

Value Assumption (SUTVA). Under this assumption, the treatment effect on a sample unit

i 2 S is calculated as TEi ¼ Y1
i � Y

0
i . However, it is impossible to observe the counterfactual

scenario for the same sample [15]. Under a certain treatment regime T 2 {0, 1} and identical con-

ditions, we can only observe YT¼1
i or YT¼0

i for sample i: Yi ¼ TiY1
i þ ð1 � TiÞY0

i [5, 15]. There-

fore, we cannot directly measure the treatment effect TE at an individual level. On the other

hand, the causal inference literature offers a statistical solution to this fundamental problem by

taking expectation over the observation setS , formally called Average Treatment Effect (ATE).

ATE ¼ E½Y1 � Y0jX� ð1Þ

Robust policy evaluation framework
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The ATE as defined in Eq 1 provides the opportunity to divideS into the treatment group

T when T = 1 and control group C when T = 0 such that ðT [ C Þ ¼ S and work with their

expectations. So, we can construct the ATE as E[Y1|T = 1] − E[Y0|T = 0] but, this form of ATE
implicitly assumes that the potential responses are independent of treatment assignment:

Y1
i ;Y

0
i ? T; 8i 2 S . Though this independence assumption holds in randomized experi-

ments, in general, it does not hold for observational studies as the experimenter rarely has con-

trol over the treatment assignment process. This problem is solved by making an assumption

known as Strong Ignorability [7]. Let X 2 X and X 2 Rk be the set of pre-treatment back-

ground variables (covariates) which characterizes the observations. The strong ignorability

assumption states that the potential responses are independent of treatment assignment when

conditioned on the covariates: Y1
i ;Y

0
i ? TjX and every unit i 2 S has a positive probability to

receiving treatment: 0< Pr(T = 1|X = x)< 1. Another commonly used estimate of causal effect

is Average Treatment Effect on Treated (ATT) which is defined under slightly relaxed assump-

tion (Y0
i ? TjX).

ATT ¼ E½ðY1 � Y0ÞjX;T ¼ 1� ð2Þ

Both of these estimates are prone to bias as the treatment assignment process is not ran-

dom. In the matching method, an unbiased estimate of causal inference can be achieved if

treatment unit t 2 T is exactly matched with a control unit c 2 C in terms of the covariate set

X 2 X [7]. However, in most of the applications, it is impossible to achieve exact matching [7,

13, 36, 37]. A wide variety of matching methods are employed to make (t, c) pairs as similar

as possible [7, 13, 38] or to find a subset of control group samples C � C that is similar to the

treatment group samples T � T in the joint distribution of the covariate set X [29, 36]. In

this work, we consider one-to-one matching that aims to find a pair ðt; cÞ � ðT ;C Þ that is

matched (either exactly or by some user defined balance function) on a set of covariates

X � X .

Before explaining the difference between the classical method of causal inference [5, 14, 15]

and the robust causal inference testing approach [26], let us define the set of good matchM
and the pair assignment variables ai,j.

Definition 1. (A set of Good Match) A set of good matchM includes treatment group sam-
ples T � T and control group samples C � C that satisfies certain covariate balance criteria
defined under matching algorithm Ai 2 A .

M ≔ fðt; cÞ 2 ðT � CÞ : t ’ cjXg

Definition 2. (Pair Assignment Operator) The Pair Assignment Operator is a binary assign-
ment variable aij 2 {0, 1} where aij = 1 if sample ti 2 T is paired with a sample cj 2 C and the
pair ðti; cjÞ 2M ; aij = 0 otherwise.

For a given set of possible matchesM , we can perform hypothesis test in the following

form with the null hypothesis being no causal effect and alternative being the opposite.

HATE
0

: E½Y1 � Y0jX� ¼ 0 ð3Þ

HATT
0

: E½Y1 � Y0jX;T ¼ 1� ¼ 0 ð4Þ

Under the classical approach of matching method, we can test these hypotheses first by defin-

ing a test statistic Λ, specifying an imbalance measure along with a tolerance limit on the

imbalance. Then, we apply a matching algorithm Ai 2 A to find the set of good matchM that

satisfies the imbalance limit; otherwise we tune the allowable imbalance limit to generateM .

Robust approach differs from the classical approach moving forward from here (see Fig 2).

Robust policy evaluation framework
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The classical approach picks one (out of many) possible combination of pairs fromM and

conducts the hypothesis test wherein, the robust approach calculate the maximum and mini-

mum value of the test statistic (Λmax, Λmin) and corresponding p-values to explore all possible

assignment combinations withinM which does not increase imbalance under Definition 1.

The test will be robust if both Λmax and Λmin produce same conclusion on the hypothesis. We

formally define the Robust Test in Definition 3.

Definition 3. (Robust Test) Let α be the level of significance set for the hypothesisH0 and
(Λmax, Λmin) are the test statistics calculated fromM , then, testing H0 is called α-robust if max
(p-value(Λmax), p-value(Λmin))� α or min(p-value(Λmax), p-value(Λmin)) > α. Testing H0 is
called absolute-robust when p-value(Λmin) = p-value(Λmax).

Calculating the test statistic Λ generates an integer programming model which is computa-

tionally expensive for large scale data (see Numerical experiment section). In the following sec-

tion, we propose a robustness condition following the Robust Test definition which will allow

us to calculate a Λrobust = Λmin = Λmax for absolute-robust test and we can avoid solving two

integer programming problems. From definition 3, it is clear that an absolute-robust test is

always robust. In this work, we are interested in testing the hypothesis stated in Eqs (3 and 4)

for binary outcomes: Y 2 {0, 1} with the McNemar’s test [39] as proposed in [26].

Robust McNemar’s test

McNemar’s test is the ideal candidate for testing hypothesis in Eqs (3 and 4) as it deals with

one-to-one matched pairs. It operates on a 2 × 2 contingency table (see Table 1) and the test

statistics under the null hypothesis assume that the marginal proportions are homogeneous.

Among the four types of matched pairs, we are mainly interested in the discordant pairs

B ¼
P

i2T

P
j2CaijY

0
j ð1 � Y

1
i Þ and C ¼

P
i2T

P
j2CaijY

1
i ð1 � Y

0
j Þ where ai,j is the pair assign-

ment operator defined in Definition 2. Here, B counts the number of pairs where treatment

units has outcomes 0: Y1 = 0 and control units has outcomes 1: Y0 = 1 and C counts the discor-

dant pairs where Y1 = 1 and Y0 = 0. Under the assumption of having at least 1 discordant pair:

B + C� 1 we will use the test statistic Λ as defined in Eq (5) to test both hypotheses.

L ¼
B � C � 1
ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p ð5Þ

Fig 2. Comparison of matching for hypothesis testing under classical approach and robust approach [26]. Steps

before covariate balance achievement remains same for each approach. In the remaining steps, Black arrows show the

classical approach, and Blue arrows show the robust approach proposed in [26].

https://doi.org/10.1371/journal.pone.0223360.g002

Table 1. Contingency table of the outcomes of treatment and control observations.

Treatment

Yes (Y1 = 1) No (Y1 = 0)

Control Yes (Y0 = 1) A B

No (Y0 = 0) C D

https://doi.org/10.1371/journal.pone.0223360.t001
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Morucci et al. [26] proposed the following integer programming model that explores all

possible assignment options and calculate maximum and minimum possible test statistics

Λmax and Λmin, respectively.

Maximize=Minimizea LðaÞ ¼
B � C � 1
ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p

Subject to:

X

i2T

X

j2C

aijY
0

j ð1 � Y
1

i Þ ¼ B ð6Þ

X

i2T

X

j2C

aijY
1

i ð1 � Y
0

j Þ ¼ C ð7Þ

Bþ C ¼ m ðTotal number of discordant pairsÞ ð8Þ

X

i2T

aij � 1 8j ðChoose at most one treatment observationÞ ð9Þ

X

j2C

aij � 1 8i ðChoose at most one control observationÞ ð10Þ

Additional user-defined covariate balance constraints to findM

aij 2 f0; 1g ð11Þ

The total number of discordant pair constraint in Eq (8) provides an opportunity to linear-

ize the robust McNemar’s test model. We can calculate the maximum and minimum test sta-

tistic by solving the integer programming model iteratively for different values of m until

either a robust solution is obtained under definition 3 or m cannot be increased further. For

the latter case, we will not find a robust solution.

As it is shown in Table 1, B is the total number of untied responses when Y1
i ¼ 0 is matched

with Y0
j ¼ 1. Similarly, C is total number of untied responses when Y1

i ¼ 1 is matched with

Y0
j ¼ 0. Therefore, both B;C 2 Rþ. Under this definition of B and C, we provide the following

propositions on the objective function of the robust McNemar’s test and its optimal values.

Proposition 1. The objective function Λ(a), has the following properties:

1. For any C> 0, Λ(a) is strictly increasing in B for B 2 Rþ

2. For any B� 0, Λ(a) is monotonically decreasing in C for C� 1 and strictly decreasing for
C> 1

Proof. Let C> 0, then for any B 2 Rþ, we have

@LðaÞ
@B

¼
Bþ 3C þ 1

2ðBþ CÞ3=2
> 0 ð12Þ

which implies Λ(a) is strictly increasing in B for a fixed C. Similarly, let B� 0, then for any

Robust policy evaluation framework
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C� 1 we have,

@LðaÞ
@C

¼
� 3B � C þ 1

2ðBþ CÞ3=2
� 0 ð13Þ

this proves the claims of Proposition 1.

Before further discussion on Λ(a) and the optimality conditions, we introduce the following

notations and definitions of maximum untied responses, for both B and C.

jY1
i ¼ 1j is the number of treatment units in the matched set with positive outcome

jY1
i ¼ 0j is the number of treatment units in the matched set with negative outcome

jY0
j ¼ 1j is the number of control units in the matched set with positive outcome

jY0
j ¼ 0j is the number of control units in the matched set with negative outcome

Definition 4. (Maximum type one discordant pair) Bmax is the maximum number of possible
pairs between Y1

i 2 T and Y0
j 2 C where the treated observation has negative (“No”) outcome

but the untreated (control) observation has positive (“Yes”) outcome, i.e.,

Bmax ¼ min fjY0
j ¼ 1j; jY1

i ¼ 0jg

Definition 5. (Maximum type two discordant pair) Cmax is the maximum number of possible
pairs between Y1

i 2 T and Y0
j 2 C where the treated observation has positive (“Yes”) outcome

but the untreated (control) observation has negative (“No”) outcome, i.e.,

Cmax ¼ min fjY1
i ¼ 1j; jY0

j ¼ 0jg

For a fix value of m, the McNemar’s test model becomes linear and the objective functions

become,

LðaÞ ¼
1
ffiffiffiffi
m
p ðB � C � 1Þ ð14Þ

Using the property of Λ(a) explained in Proposition 1, we can find the optimal solution.

Proposition 2. Let C� 1 and denote m as the total number of discordant pairs, then the opti-
mal pair (C�, B�) is given by:

min: ðC�;B�Þ ¼

(
ðCmax;m � CmaxÞ if m > Cmax

ðm; 0Þ if m < Cmax

max: ðC�;B�Þ ¼

(
ðm � Bmax;BmaxÞ if m > Bmax

ð0;mÞ if m < Bmax

Proof. From Proposition 1, we know that Λ(a) is monotonically decreasing in C when C� 1.

Therefore, in the minimization problem, assignment will be made to maximize C until we are

about to violate constraint B + C = m. When the total number of discordant pairs is set to m>

Cmax, C will take the value of Cmax and B will take the value of m − Cmax just to satisfy the total

number of discordant pair constraints and the solution will be optimal. If m< Cmax, the new

C = m and the minimum value will be achieved at C = m and B = 0.

Similarly, from Proposition 1, we know that Λ(a) is strictly increasing in B for any B 2 Rþ.

So, in the maximization problem, pair assignment will be made to maximize B within the feasi-

ble region. When the total number of discordant pair is set to m> Bmax, at optimal solution, B
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will take the value of Bmax and C will take the value of m − Bmax just to stay in the feasible

region. When m< Bmax, the B will take the value m and the maximum value will be achieved

at B = m and C = 0.

Proposition 3. For the linear model, an absolute-robust estimate will be achieved if and only
if the total number of discordant pair m = Bmax + Cmax.
Proof. According to the proposed approach to the causal inference estimate, an absolute-

robust estimate is achieved when Λ(a)max and Λ(a)min is equal. For the McNemar’s test model,

the model becomes infeasible when m is set to m> Bmax + Cmax as we can only have Bmax +

Cmax number of total untied responses. So feasible range of m is: 0<m� (Bmax + Cmax).
To prove the Proposition 3, we first set m to it’s maximum value Bmax + Cmax. Using Propo-

sition 2, in this case, the optimal solution for the Λ(a)max problem is: B = Bmax, C = m − Bmax =

Cmax and the optimal solution for Λ(a)min problem is: C = Cmax, B = m − Cmax = Bmax. So, for

m = Bmax + Cmax case, we get Λ(a)max = Λ(a)min and the solution is absolute-robust.

Conversely, m can take any integer value in the range 0<m< (Bmax + Cmax) which can

lead to the following six cases. For each of the cases, we will find the optimal solution using

Proposition 2.

• 0� Bmax� Cmax�m< (Bmax + Cmax): The optimal solution for the minimization problem

is C = Cmax, B = m − Cmax and the maximization problem is C = m − Bmax, B = Bmax.

• 0� Bmax<m� Cmax< (Bmax + Cmax): The optimal solution for the minimization problem

is C = m, B = 0 and the maximization problem is C = m − Bmax, B = Bmax.

• 0� Cmax� Bmax�m< (Bmax + Cmax): The optimal solution for the minimization problem

is C = Cmax, B = m − Cmax and the maximization problem is C = m − Bmax, B = Bmax.

• 0� Cmax�m� Bmax< (Bmax + Cmax): The optimal solution for the minimization problem

is C = Cmax, B = m − Cmax and the maximization problem is C = 0, B = m.

• 0<m� Cmax� Bmax< (Bmax + Cmax): The optimal solution for the minimization problem

is C = m, B = 0 and the maximization problem is C = 0, B = m.

• 0<m� Bmax� Cmax< (Bmax + Cmax): The optimal solution for the minimization problem

is C = m, B = 0 and the maximization problem is C = 0, B = m.

For all of the above six cases, Λ(a)max 6¼ Λ(a)min, hence, the solution is not absolute-robust.

Therefore, the total number of discordant pairs m have to be Bmax + Cmax to get an absolute-

robust estimate.

As we can see from the Proposition 2, the optimization problem has become a counting

problem and can be solved efficiently for big data. However, the optimal solution calculated

with Proposition 2 disregards the assignment constraints Eqs (9 and 10) and additional user-

defined constraints. To find the optimal solution using the result from Proposition 2 that

is feasible, we take a two-step approach. At the first step, we handle the user-defined con-

straints to find a good set of matchM as a pre-processing step. We can use any off-the-shelf

matching algorithm for that purpose or define a separate pair assignment model with differ-

ent covariate balance measure to findM . At the second step, we partition the set of good

matchM into P partitions such that within a partition p 2 f1; 2; � � � ;Pg, any treatment

unit t can be matched with any control unit c. A formal definition of a partition is provided

below.

Definition 6. (Partition ofM ) p �M is a partition if any treatment unit t 2 f1; 2; � � � ;N p
t g

is a good match to any control unit c 2 f1; 2; � � � ;N p
cg and ðt; cÞ 2M . The reverse has to hold as

well.
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Construction of partitions under Definition 6 ensures that only good matches are consid-

ered for assignment. In addition, Definition 4 calculates Bmax by pairing negative outcomes

of treatment units and positive outcomes of control units which inherently satisfies the pair

assignment constraints Eqs (9 and 10). Similarly, we calculate Cmax by assigning a pair between

samples with positive treatment outcomes and negative control outcomes. Therefore, none of

the treatment or control unit is used more than once in the pair assignment process which sat-

isfies the pair assignment constraints Eqs (9 and 10).

Now, using the above mentioned results, we propose Algorithm 1 which identifies the

robustness condition and corresponding absolute-robust test statistic Λ(a)robust.

Algorithm 1: Absolute-robust test statistic Λ(a)robust at robustness condition

Require: Vector of outcomes ðY1;Y0Þ
1
; ðY1;Y0Þ

2
; � � � ; ðY1;Y0Þ

P

Bmax  0
Cmax  0
for p ¼ 1 : P do
Bp  min(|Y1 = 0|, |Y0 = 1|)p

Cp  min(|Y1 = 1|, |Y0 = 0|)p

Bmax  Bmax + Bp

Cmax  Cmax + Cp

end for
return

LðaÞrobust ¼
Bmax � Cmax � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bmax þ Cmax

p

By the sketch of the Algorithm 1, it seems like we are only matching the discordant pairs

and ignoring the other possible pair assignments in the data, which is not true. In Proposition

4, we show that we match maximum possible pairs.

Proposition 4. Algorithm 1 ensures that the maximum possible pairs (t, c) are matched inM .

Proof. To prove this Proposition, we only need to show that in any partition p, Algorithm 1

matches maximum possible pairs. Then, we can sum the maximum pair assignments across

the partitions to achieve maximum possible pairs (t, c) assignment inM .

Lets consider a partition p where N p
t denotes the number of treatment samples and N p

c

denotes the number of control samples. Hence, the maximum number of pairs we can assign

in p is minðN p
t ;N

p
cÞ. We will use N pþ

:
to represent the number of samples with positive out-

comes (Y� = 1) and N p�
:

to represent the number of samples with negative outcomes (Y� = 0).

After assigning the discordant pairs (Bpmax) and (Cp
max) as we did in Algorithm 1, we are left with

ðN pþ
t � C

p
maxÞ þ ðN

p�
t � B

p
maxÞ treatment samples and ðN pþ

c � B
p
maxÞ þ ðN

p�
c � C

p
maxÞ control

samples. Now, we can assign the remaining treatment and control samples into the other two

types of pairs A and D to their limit:

Ap
max ¼ minððN pþ

t � C
p
maxÞ; ðN

pþ
c � B

p
maxÞÞ

Dp
max ¼ minððN p�

t � B
p
maxÞ; ðN

p�
c � C

p
maxÞÞ

It is trivial to show that the for partition p,

minðN p
t ;N

p
cÞ ¼ Bpmax þ C

p
max þ D

p
max þ A

p
max

An example of maximum pair assignment is provided in Fig 3 where treatment outcomes

(t) are sorted in descending order and control outcomes (c) are sorted in ascending order. In

the left panel, we can have minðN p
t ;N

p
cÞ ¼ 5 pairs at maximum. After assigning Bmax = 2 and
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Cmax = 2 according to Algorithm 1, we can assign only one pair to Dmax and Amax = 0. There-

fore, we achieve the maximum number of pair assignments. We follow the similar procedure

in the middle and right panels.

In the Algorithm 1, we calculate the absolute-robust test statistics at robustness condition

which an experimenter can use to find the corresponding p-value and compare with a pre-

defined level of significance α to make conclusion on the hypothesis of no causal relation.

Decisions made in this process will be free of uncertainty and robust to the choice of matching

algorithms. If different experimenters perform matching on same data using different match-

ing algorithms but follow the above mentioned procedure, all of their conclusions will be

exactly the same.

Regarding the computational complexity arises due to big data, our proposed algorithm

only involves counting elements in vectors and few algebraic operations. The counting pro-

cessing can be done with the summation of vectors as we are dealing with only binary out-

comes: summation implies the total number of positive outcomes and we can calculate the

negative outcomes by subtracting it from the size of the vector. In addition, we only need to

solve the problem once—at robustness condition. Therefore, the proposed algorithm will be

highly efficient for big data.

While the Algorithm 1 directly calculates test statistics at robustness condition, a researcher

might be interested in exploring the degree of uncertainty in the causal inference test. She may

want to see how the uncertainty changes towards the robust estimate with respect to the num-

ber of discordant pairs matched. For this purpose, we propose the following two algorithms (2,

3) following the result of Proposition 2.

Algorithm 2: Maximizing the test statistics Λ(a)

Require: Vector of outcomes ðY1;Y0Þ
1
; � � � ; ðY1;Y0Þ

P and increment in m: IB,
C  0
while m � Bmax + Cmax do
for p ¼ 1 : P do
if m < Bmax then
Cp, Bp  0, m

else
Cp, Bp  m − Bmax, Bmax

end if
B  B + Bp

C  C + Cp

if (B + C) � m then
break

end if
end for

Fig 3. Example of maximum pair assignments between treatment and control group. t represents the treatment

group and c represents the control group. An arrow connects a treatment unit with a control unit which forms a pair.

https://doi.org/10.1371/journal.pone.0223360.g003
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m  m + I
end while
return

LðaÞmax ¼
B � C � 1
ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p

Algorithm 3: Minimizing the test statistics Λ(a)

Require: Vector of outcomes ðY1;Y0Þ
1
; � � � ; ðY1;Y0Þ

P and increment in m: IB,
C  0
while m � Bmax + Cmax do
for p ¼ 1 : P do
if m < Bmax then
Cp, Bp  m, 0

else
Cp, Bp  Cmax, m − Cmax

end if
B  B + Bp

C  C + Cp

if (B + C) � m then
break

end if
end for
m  m + I

end while
return

LðaÞmin ¼
B � C � 1
ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ C
p

Now, to show the worst case time complexity for the proposed algorithms, we first define

q = maxp2P (|(Y1)p|, |(Y0)p|), where (Y1)p and (Y0)p denote the outcome vector for partition p
for the treatment and control group, respectively. Then, by definition, the number of opera-

tions needed in Algorithm 1 for calculating the term min(|Y1 = 0|, |Y0 = 1|) is 2q. The time

complexity becomes T(p) = p(4q + 2). Therefore, Algorithm 1 has a time complexity of OðpqÞ.
Again, using the same definition of q, we can write Bmax + Cmax� q + q = 2q. Since the time

complexity for the loop (p = 1: P) is just 2 arithmetic operations, the overall time complexity of

Algorithm 2 and 3 become T(p) = (Bmax + Cmax){p(2)}� (2q).(2p) = 4pq. Therefore, Algorithm

2 and 3 have a time complexity of OðpqÞ.

Numerical experiment

In this section, we present the efficiency of the proposed algorithms with data from the State of

California Patient Discharge Database and address an interesting hypothesis on the effective-

ness of the HRRP implemented in October 2012.

A hospital’s readmission rate is considered an important measure of its care quality. As

noted, to increase the care quality and hold hospitals accountable, US Congress introduced the

HRRP under the PPACA in 2012 [27]. The most important feature of this program is that the

index hospital (the hospital that discharged the patient) is penalized if patients with pneumo-

nia, congestive heart failure (CHF), and acute mayocardial infraction (AMI) are readmitted

(to the index hospital or any other hospital) within 30 days of discharge. During the post

HRRP period, the overall rate of readmission has been decreasing, which the proponents of
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HRRP are attributing to the success of the policy. However, in this period, readmission to dif-

ferent hospitals (non-index readmission) has been increasing [31, 33]. Non-index readmis-

sions have been found to be associated with longer lengths of stay and higher in-hospital

mortality rates [34]. Hospitals are possibly discouraging patients seeking readmission to avoid

penalties introduced by the HRRP. To examine the increase in non-index readmission post

HRRP, we advance the following hypothesis and test it with the proposed algorithms with the

level of significance α = 0.05.

H0: HRRP has no causal relation with the increase in non-index readmission

H1: HRRP has a positive causal relation with the increase in non-index readmission

Data description and covariate balance

In this research, we primarily used patient discharge data between 2010 to 2014 from Califor-

nia. We obtained this nonpublic data set from the California Office of Statewide Health Plan-

ning and Development (OSHPD), which collects in-patient data from California licensed

hospitals. Each patient in this data set has a unique identifier that can be used to determine if a

patient is readmitted. In addition, the data set also contains patient level information such as

ICD-9 codes for clinical diagnosis, comorbidities, age, gender, discharge destination, patients’

Zip code, and insurance information. When a readmission was identified, we ascertained

the destination hospital of that readmission. Then, a binary variable was created with 0 if the

patient was readmitted to the same hospital or 1 if different hospital. To test the hypothesis, we

used this variable as our outcome: Y = 1 if readmitted to a different hospital or Y = 0 if readmit-

ted to the same hospital.

Moreover, the OSHPD data set was merged with publicly available data from the Centers

for Medicare and Medicaid Services, American Association Annual Hospital Survey and the

Area Resource file. From these additional data sources, we obtained important hospital-level

information including teaching status (membership in the Council of Teaching Hospitals),

ownership type (public, non-profit, investor owned), hospital size based on number of beds

(small: below 100 beds, medium: 101 to 399 beds, and large: 400 and above beds) and hospital

location (rural, metro). We also included a proxy for patient household incomes based on the

median income of a patient’s residence Zip code. We divide the data into two sets: before and

after October 1, 2012, the implementation date of HRRP. The treatment here is the implemen-

tation of HRRP, readmissions between February 1, 2010 and September 30, 2012 is considered

as control group C (treatment T = 0) and readmissions from October 1, 2012 to November 30,

2014 is considered the treatment groupT (treatment T = 1). To capture any potential read-

mission within 30 days of an index discharge, admissions before February 1, 2010 and beyond

November 30, 2014 were excluded. A descriptive view of readmitted patients’ characteristics is

presented in Table 2.

We matched the patients based on the following covariates: age, gender, primary diagnosis,

household income, Charlson Comorbidity Index, hospital location, hospital teaching status,

hospital ownership status, and hospital size. We divided the covariates into two groups: 1) dis-

crete and 2) continuous. The discrete covariates (i.e., gender, primary diagnosis, hospital loca-

tion, hospitals’ teaching status, hospitals’ ownership status, and hospital size) are matched

exactly. The continuous covariates (i.e., age, household income, and Charlson Comorbidity

Index) were first divided into categories as shown in Table 2, then, the categories were

matched exactly. This matching strategy resulted in 1822 partitions of data; within a partition

any treatment sample can be matched with any control sample. The number of possible

matched pairs in each partition can be calculated by taking the minimum number of treated
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Table 2. Characteristics of readmitted patients in the State of California Patient Discharge Database from 2010 to 2014.

Variable All Readmission Index Hospital Non-index Hospital Before HRRP After HRRP

Readmitted Patients 90553 67341 23212 53353 37200

Demographic Characteristics

Age

0-20 635 (0.70) 505 (0.75) 130 (0.56) 427 (0.8) 208 (0.56)

21-30 1073 (1.18) 717 (1.06) 356 (1.53) 566 (1.06) 507 (1.36)

31-40 2186 (2.41) 1471 (2.18) 715 (3.08) 1269 (2.38) 917 (2.47)

41-50 6336 (7.00) 4196 (6.23) 2140 (9.22) 3714 (6.96) 2622 (7.05)

51-65 21018 (23.21) 14470 (21.49) 6548 (28.21) 11950 (22.4) 9068 (24.38)

65 and above 59305 (65.49) 45982 (68.28) 13323 (57.4) 35427 (66.4) 23878 (64.19)

Gender

Female 45124 (49.80) 34240 (50.80) 10884 (46.9) 27049 (59.94) 18075 (40.06)

Male 45429 (50.20) 33101 (49.20) 12328 (53.1) 26304 (57.9) 19125 (42.1)

Household Income

Quartile 1 22428 (24.77) 15640 (23.23) 6788 (29.24) 13108 (24.57) 9320 (25.05)

Quartile 2 22629 (24.99) 16633 (24.70) 5996 (25.83) 13331 (24.99) 9298 (24.99)

Quartile 3 22450 (24.79) 17160 (25.48) 5290 (22.79) 13165 (24.68) 9285 (24.96)

Quartile 4 23046 (25.45) 17908 (26.59) 5138 (22.14) 13749 (25.77) 9297 (24.99)

Clinical Characteristics

Primary Diagnosis

CHF 50151 (55.40) 37404 (55.50) 12747 (54.9) 29351 (55.01) 20800 (55.91)

AMI 11917 (13.20) 8148 (12.10) 3769 (16.2) 6865 (12.87) 5052 (13.58)

Pneumonia 28485 (31.40) 21789 (32.40) 6696 (28.9) 17137 (32.12) 11348 (30.51)

Charlson Comorbidity Index

Low (0-2) 35394 (39.09) 25884 (38.44) 9510 (40.97) 21282 (39.89) 14112 (37.94)

Medium (3-6) 51301 (56.65) 38454 (57.10) 12847 (55.35) 29850 (55.95) 21451 (57.66)

Medium High (7-10) 3396 (3.75 2628 (3.90) 768 (3.31) 1944 (3.64) 1452 (3.9)

High (10 and above) 462 (0.51) 375 (0.56) 87 (0.37) 277 (0.52) 185 (0.5)

Hospital Characteristics

Teaching Status

Teaching Hospital 10261 (11.30) 7706 (11.40) 2555 (11) 5882 (11.02) 4379 (11.77)

Non-teaching Hospital 80272 (88.70) 59635 (88.50) 20657 (89) 47471 (88.98) 32821 (88.23)

Ownership Type

Non-profit Hospital 58592 (64.70) 45210 (67.10) 13382 (57.6) 34252 (64.2) 24340 (65.43)

Investor Hospital 17902 (19.80) 11389 (16.90) 6513 (28.1) 10839 (20.32) 7063 (18.99)

Public Hospital 14059 (15.50) 10742 (16.00) 3317 (14.3) 8262 (15.49) 5797 (15.58)

Hospital Size

Small (below 100 beds) 4982 (5.50) 3453 (5.10) 1529 (6.6) 2979 (5.58) (5.38)

Medium (100-399 beds) 61167 (67.60) 45149 (67.10) 16018 (69) 36314 (68.06) 24853 (66.81)

Large (400 and above beds) 24404 (26.90) 18739 (27.80) 5665 (24.4) 14060 (26.35) 10344 (27.81)

Hospital Location

Rural 2426 (2.68) 1809 (2.69) 617 (2.66) 1348 (2.53) 1078 (2.90)

Metro 88127 (97.32) 65532 (97.31) 22595 (97.34) 52005 (97.47) 36122 (97.10)

The entries in each cell is presented as Number of patients “N (%)” form. From February 1, 2010 to September 30, 2012 is considered “Before HRRP” period. From

October 1, 2012 to December 31, 2014 is considered “After HRRP” period. CHF-Congestive Heart Failure, AMI-Acute Mayocardial Infraction.

https://doi.org/10.1371/journal.pone.0223360.t002
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or control samples in that partition. Among the 1822 partitions, we had 35,584 possible pairs.

Though this matching approach seems ad hoc in nature, it is very similar to the well known

method called Coarsed Exact matching (CEM) [29] with 1822 bins. Traditionally, CEM is

implemented with a much lower number of bins due to the lack of common support between

treatment and control groups but a higher number of bins makes for a finer covariate balance

[40, 41], which is the objective of any matching method. However, to implement the proposed

algorithms, an experimenter is not limited to CEM or the matching method we used. Given a

good set of matches created under Definition 1, we can always create the partitions under Defi-

nition 6.

Experiment and result

To test the hypothesis H0, first, we performed the matching operations in R [42] to obtain

matched sets. Then, using the matched sets of data, we calculated the test statistic Λ(a)max and

Λ(a)min using the 1) optimization model with an Integer Programming solver and 2) with the

proposed algorithms. The integer programming model was implemented in AMPL [43] and

solved with the commercial solver CPLEX [44]. We implemented the Algorithm 1, 2, and 3 in

R [42]. All the experiments were performed in a Dell Precision workstation with 64 GB RAM,

Intel(R) Xeon(R) CPU E5-2670 v3 processor running at 2.30 GHz.

Table 3 shows the comparison of solutions obtained using an optimization model with

CPLEX iterating over different values of discordant pairs (m) and proposed algorithm at

robustness condition. The range of p-value achievable corresponding to the test statistics Λ
(a)max and Λ(a)min is presented in Fig 4. The proposed Algorithm 1 directly identifies the

robustness condition which is Bmax = 12082 and Cmax = 9448 and calculates the absolute-

robust test statistics Λ(a)robust. Including all four types of discordant pairs (A, B, C, D), Algo-

rithm 1 generates 35,584 matched pairs. Regarding the efficiency of the hypothesis test, for a

5% level of significance we would need at least 942 pairs to have 90% power (calculated using

result from Connor [45]) wherein we have 35,584 matched pairs. The computation time

Table 3. Test statistic Λ(a) calculated using optimization model and algorithm 1.

Optimization Model Algorithm 1

m Λ(a)min Λ(a)max CPU time Robustness Condition CPU time

50 -7.21 6.93 918.69

100 -10.10 9.90 982.23

300 -17.38 17.26 1203.68

500 -22.41 22.32 2037.37

800 -28.32 28.25 2204.52

1000 -31.65 61.60 2218.27

5000 -70.72 70.69 2563.32

10000 -88.97 99.99 2934.47

15000 -31.82 74.82 2386.53

20000 7.80 21.83 2659.94

21000 14.51 21.83 2640.60

21500 17.75 18.16 2219.23

21530 17.94 17.94 3246.64 17.94� 1.13�

The optimization model is solved iteratively over different values of discordant pairs (m) until a robust solution is reached.

�Algorithm 1 identifies the robustness condition (Bmax = 12082 and Cmax = 9448) and calculates the test statistic for that condition only. CPU times are presented in

seconds: time required to solve both minimization and maximization problem.

https://doi.org/10.1371/journal.pone.0223360.t003
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required by the proposed algorithm is very insignificant compared to the time required by

the optimization model. A major implication of the robust McNemar’s test is that if the same

experiment is conducted with as many as 19,000 discordant pairs, we can achieve any p-value

between 0 to 0.23 (see Fig 4); some experimenter might reject the hypothesis and some might

fail to reject the null hypothesis. Both experimenters, in this case, are right but their conclu-

sions differed due to the fact that they choose different pairs. Any policy decision made using

the matching method without considering this uncertainty has a possibility to fail.

In regards to the hypothesis we made at the beginning of this section, we can reach a con-

clusion by using the p-value calculated at the robustness condition or the result from Table 3

and corresponding p-values from Fig 4. We can see that both the maximum and minimum p-

value < α when we match more than 20,000 discordant pairs. Therefore, we can reject the null

hypothesis of no causal effect and conclude that the HRRP is a cause for increase in the non-

index readmissions. This result also suggests that not only the readmission rate but also the

non-index readmission rate should be considered as a measure of health care quality.

Conclusion

Any policy decision or evaluation requires identifying the causal relation between policy alter-

natives and potential outcomes. Matching methods have become very popular in identifying

such causal relations. However, in one-to-one matching, when we have multiple pair assign-

ment options, matching method is vulnerable to uncertainty as the pair construction process

does not consider outcomes. In this paper, we consider the integer programming model for

robust causal inference testing approach with binary outcomes proposed by Morucci et al. [26]

and develop scalable algorithms that can be used for large-scale observational studies. We

identify a robustness condition that combines the maximization and minimization problem

proposed in [26]. Instead of solving two computationally expensive integer programming

models iteratively by increasing the number of discordant pairs until a robust estimate is

achieved, we convert the problems into counting problems through a series of propositions. In

addition, the proposed Algorithm 1 solves one problem instead of two separate problems and

it is computationally efficient. Quadratic time complexity and the numerical experiment con-

ducted on the State of California Patient Discharge Database show that the proposed algo-

rithms are highly scalable. The numerical experiment shows an interesting result regarding a

highly visible health care policy—HRRP—adopted as part of the PPACA in 2012 to improve

health care quality. We identify that the HRRP is a cause of the increase of non-index readmis-

sions, which has been shown to be associated with higher in-hospital mortality rate and a

longer length of stay. Though the numerical experiment is performed with around 100,000

Fig 4. The range of p-value achievable for different number of discordant pairs m. The p-values were calculated

using the test statistics presented in Table 3. The red line represents minimum possible p-value (corresponding to Λ
(a)max) and the blue line represents the maximum possible p-value (corresponding to Λ(a)min).

https://doi.org/10.1371/journal.pone.0223360.g004
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samples, the algorithms proposed in this paper can handle observational studies with millions

of samples efficiently without further modification. In the future, we plan to develop similar

robust causal inference testing algorithms with continuous outcomes for large-scale observa-

tional studies.

Supporting information

S1 File. Popularity of matching method. Google Scholar search results to show the popularity

of matching method in causal inference.

(DOCX)

Acknowledgments

We thank Mr. Tasnim Ibn Faiz, PhD candidate, MIE, Northeastern University for his help and

advice on programming in AMPL. We also thank Mr. Md Mahmudul Hasan, PhD candidate,

MIE, Northeastern University for sharing his knowledge on the OSHPD database and sup-

porting us throughout the data analysis process.

Author Contributions

Conceptualization: Md Saiful Islam, Md. Noor-E-Alam.

Data curation: Gary J. Young.

Formal analysis: Md Saiful Islam, Md. Noor-E-Alam.

Investigation: Md. Noor-E-Alam.

Methodology: Md Saiful Islam, Md Sarowar Morshed, Md. Noor-E-Alam.

Project administration: Md. Noor-E-Alam.

Resources: Md. Noor-E-Alam.

Supervision: Md. Noor-E-Alam.

Validation: Md Saiful Islam, Md Sarowar Morshed, Md. Noor-E-Alam.

Visualization: Md Saiful Islam.

Writing – original draft: Md Saiful Islam.

Writing – review & editing: Md Saiful Islam, Md Sarowar Morshed, Gary J. Young, Md.

Noor-E-Alam.

References
1. Nssah BE. Propensity score matching and policy impact analysis: A demonstration in EViews. vol.

3877. World Bank Publications; 2006.

2. Pearl J. Causal inference in statistics: An overview. Statistics Surveys. 2009; 3:96–146. https://doi.org/

10.1214/09-SS057

3. Kleinberg J, Ludwig J, Mullainathan S, Obermeyer Z. Prediction policy problems. American Economic

Review. 2015; 105(5):491–95. https://doi.org/10.1257/aer.p20151023 PMID: 27199498

4. Zajonc T. Essays on causal inference for public policy; 2012.

5. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal

of Educational Psychology. 1974; 66(5):688. https://doi.org/10.1037/h0037350

6. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in

Observational Studies. Multivariate Behavioral Research. 2011; 46(3):399–424. https://doi.org/10.

1080/00273171.2011.568786 PMID: 21818162

Robust policy evaluation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0223360 October 11, 2019 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0223360.s001
https://doi.org/10.1214/09-SS057
https://doi.org/10.1214/09-SS057
https://doi.org/10.1257/aer.p20151023
http://www.ncbi.nlm.nih.gov/pubmed/27199498
https://doi.org/10.1037/h0037350
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1080/00273171.2011.568786
http://www.ncbi.nlm.nih.gov/pubmed/21818162
https://doi.org/10.1371/journal.pone.0223360


7. Rosenbaum PR, Rubin DB. The Central Role of the Propensity Score in Observational Studies for

Causal Effects. Biometrika. 1983; 70(1):41–55. https://doi.org/10.1093/biomet/70.1.41

8. Athey S, Imbens GW. The state of applied econometrics: Causality and policy evaluation. Journal of

Economic Perspectives. 2017; 31(2):3–32. https://doi.org/10.1257/jep.31.2.3

9. Rosenbaum PR. Observational studies. In: Observational Studies. Springer; 2002. p. 1–17.

10. Stuart EA. Matching Methods for Causal Inference: A Review and a Look Forward. Statist Sci. 2010; 25

(1):1–21. https://doi.org/10.1214/09-STS313

11. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observa-

tional studies in epidemiology: a proposal for reporting. JAMA. 2000; 283(15):2008–2012. PMID:

10789670

12. Hansen BB. Full Matching in an Observational Study of Coaching for the SAT. Journal of the American

Statistical Association. 2004; 99(467):609–618. https://doi.org/10.1198/016214504000000647

13. Zubizarreta JR. Using Mixed Integer Programming for Matching in an Observational Study of Kidney

Failure After Surgery. Journal of the American Statistical Association. 2012; 107(500):1360–1371.

https://doi.org/10.1080/01621459.2012.703874

14. Rosenbaum PR, Rubin DB. Constructing a Control Group Using Multivariate Matched Sampling Meth-

ods That Incorporate the Propensity Score. The American Statistician. 1985; 39(1):33–38. https://doi.

org/10.2307/2683903

15. Holland PW. Statistics and Causal Inference. Journal of the American Statistical Association. 1986; 81

(396):945–960. https://doi.org/10.2307/2289069

16. Morgan SL, Harding DJ. Matching estimators of causal effects: Prospects and pitfalls in theory and

practice. Sociological Methods & Research. 2006; 35(1):3–60. https://doi.org/10.1177/

0049124106289164

17. Christakis NA, Iwashyna TJ. The health impact of health care on families: a matched cohort study of

hospice use by decedents and mortality outcomes in surviving, widowed spouses. Social Science &

Medicine. 2003; 57(3):465–475. https://doi.org/10.1016/S0277-9536(02)00370-2

18. Akematsu Y, Tsuji M. Measuring the effect of telecare on medical expenditures without bias using the

propensity score matching method. Telemedicine and e-Health. 2012; 18(10):743–747. https://doi.org/

10.1089/tmj.2012.0019 PMID: 23072633

19. Kiil A. Does employment-based private health insurance increase the use of covered health care ser-

vices? A matching estimator approach. International Journal of Health Care Finance and Economics.

2012; 12(1):1–38. https://doi.org/10.1007/s10754-012-9104-3 PMID: 22367625

20. Sari N, Osman M. The effects of patient education programs on medication use among asthma and

COPD patients: a propensity score matching with a difference-in-difference regression approach. BMC

Health Services Research. 2015; 15(1):332. https://doi.org/10.1186/s12913-015-0998-6 PMID:

26277920

21. Zubizarreta JR, Keele L. Optimal multilevel matching in clustered observational studies: A case study of

the effectiveness of private schools under a large-scale voucher system. Journal of the American Statis-

tical Association. 2017; 112(518):547–560. https://doi.org/10.1080/01621459.2016.1240683

22. Hong G, Raudenbush SW. Evaluating kindergarten retention policy: A case study of causal inference

for multilevel observational data. Journal of the American Statistical Association. 2006; 101(475):901–

910. https://doi.org/10.1198/016214506000000447

23. Dehejia RH, Wahba S. Causal effects in nonexperimental studies: Reevaluating the evaluation of train-

ing programs. Journal of the American statistical Association. 1999; 94(448):1053–1062. https://doi.

org/10.1080/01621459.1999.10473858

24. Epstein L, Ho DE, King G, Segal JA. The Supreme Court during crisis: How war affects only non-war

cases. NYUL rev. 2005; 80:1.

25. Herron MC, Wand J. Assessing partisan bias in voting technology: The case of the 2004 New Hamp-

shire recount. Electoral Studies. 2007; 26(2):247–261. https://doi.org/10.1016/j.electstud.2006.02.004

26. Morucci M, Noor-E-Alam M, Rudin C. Hypothesis Tests That Are Robust to Choice of Matching Method.

arXiv preprint arXiv:181202227. 2018.

27. McIlvennan CK, Eapen ZJ, Allen LA. Hospital readmissions reduction program. Circulation. 2015; 131

(20):1796–1803. https://doi.org/10.1161/CIRCULATIONAHA.114.010270 PMID: 25986448

28. Austin PC. Some methods of propensity-score matching had superior performance to others: results of

an empirical investigation and Monte Carlo simulations. Biometrical Journal: Journal of Mathematical

Methods in Biosciences. 2009; 51(1):171–184. https://doi.org/10.1002/bimj.200810488

29. Iacus S, King G, Porro G, et al. CEM: software for coarsened exact matching. Journal of Statistical Soft-

ware. 2009; 30(13):1–27.

Robust policy evaluation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0223360 October 11, 2019 18 / 19

https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1257/jep.31.2.3
https://doi.org/10.1214/09-STS313
http://www.ncbi.nlm.nih.gov/pubmed/10789670
https://doi.org/10.1198/016214504000000647
https://doi.org/10.1080/01621459.2012.703874
https://doi.org/10.2307/2683903
https://doi.org/10.2307/2683903
https://doi.org/10.2307/2289069
https://doi.org/10.1177/0049124106289164
https://doi.org/10.1177/0049124106289164
https://doi.org/10.1016/S0277-9536(02)00370-2
https://doi.org/10.1089/tmj.2012.0019
https://doi.org/10.1089/tmj.2012.0019
http://www.ncbi.nlm.nih.gov/pubmed/23072633
https://doi.org/10.1007/s10754-012-9104-3
http://www.ncbi.nlm.nih.gov/pubmed/22367625
https://doi.org/10.1186/s12913-015-0998-6
http://www.ncbi.nlm.nih.gov/pubmed/26277920
https://doi.org/10.1080/01621459.2016.1240683
https://doi.org/10.1198/016214506000000447
https://doi.org/10.1080/01621459.1999.10473858
https://doi.org/10.1080/01621459.1999.10473858
https://doi.org/10.1016/j.electstud.2006.02.004
https://doi.org/10.1161/CIRCULATIONAHA.114.010270
http://www.ncbi.nlm.nih.gov/pubmed/25986448
https://doi.org/10.1002/bimj.200810488
https://doi.org/10.1371/journal.pone.0223360


30. Diamond A, Sekhon JS. Genetic matching for estimating causal effects: A general multivariate match-

ing method for achieving balance in observational studies. Review of Economics and Statistics. 2013;

95(3):932–945. https://doi.org/10.1162/REST_a_00318

31. Chen M. Reducing excess hospital readmissions: Does destination matter? International Journal of

Health Economics and Management. 2018; 18(1):67–82. https://doi.org/10.1007/s10754-017-9224-x

PMID: 28948445

32. Hasan MM, Noor-E-Alam M, Wang X, Zepeda ED, Young GJ, et al. Hospital Readmissions to Nonindex

Hospitals: Patterns and Determinants Following the Medicare Readmission Reduction Penalty Pro-

gram. Journal for Healthcare Quality. 2019. https://doi.org/10.1097/JHQ.0000000000000199 PMID:

31135609

33. Chen M, Grabowski DC. Hospital readmissions reduction program: intended and unintended effects.

Medical Care Research and Review. 2017; p. 1077558717744611.

34. Burke RE, Jones CD, Hosokawa P, Glorioso TJ, Coleman EA, Ginde AA. Influence of nonindex hospital

readmission on length of stay and mortality. Medical care. 2018; 56(1):85–90. https://doi.org/10.1097/

MLR.0000000000000829 PMID: 29087981

35. Rubin DB. Bayesian Inference for Causal Effects: The Role of Randomization. The Annals of Statistics.

1978; 6(1):34–58. https://doi.org/10.1214/aos/1176344064

36. Nikolaev AG, Jacobson SH, Cho WKT, Sauppe JJ, Sewell EC. Balance Optimization Subset Selection

(BOSS): An Alternative Approach for Causal Inference with Observational Data. Operations Research.

2013; 61(2):398–412. https://doi.org/10.1287/opre.1120.1118

37. King G, Nielsen R. Why propensity scores should not be used for matching. Political Analysis. 2019.

https://doi.org/10.1017/pan.2019.11

38. Zubizarreta JR. Stable weights that balance covariates for estimation with incomplete outcome data.

Journal of the American Statistical Association. 2015; 110(511):910–922. https://doi.org/10.1080/

01621459.2015.1023805

39. McNemar Q. Note on the sampling error of the difference between correlated proportions or percent-

ages. Psychometrika. 1947; 12(2):153–157. https://doi.org/10.1007/BF02295996 PMID: 20254758

40. Iacus SM, King G, Porro G. Causal inference without balance checking: Coarsened exact matching.

Political analysis. 2012; 20(1):1–24. https://doi.org/10.1093/pan/mpr013

41. Iacus SM, King G, Porro G. Multivariate Matching Methods That Are Monotonic Imbalance Bounding.

Journal of the American Statistical Association. 2011; 106(493):345–361. https://doi.org/10.1198/jasa.

2011.tm09599

42. Ihaka R, Gentleman R. R: a language for data analysis and graphics. Journal of Computational and

Graphical Statistics. 1996; 5(3):299–314. https://doi.org/10.2307/1390807

43. Fourer R, Gay DM, Kernighan BW. AMPL: A mathematical programming language. AT & T Bell Labo-

ratories Murray Hill, NJ 07974; 1987.

44. CPLEX II. V12. 1: User’s Manual for CPLEX. International Business Machines Corporation. 2009; 46

(53):157.

45. Connor RJ. Sample size for testing differences in proportions for the paired-sample design. Biometrics.

1987; p. 207–211. https://doi.org/10.2307/2531961 PMID: 3567305

Robust policy evaluation framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0223360 October 11, 2019 19 / 19

https://doi.org/10.1162/REST_a_00318
https://doi.org/10.1007/s10754-017-9224-x
http://www.ncbi.nlm.nih.gov/pubmed/28948445
https://doi.org/10.1097/JHQ.0000000000000199
http://www.ncbi.nlm.nih.gov/pubmed/31135609
https://doi.org/10.1097/MLR.0000000000000829
https://doi.org/10.1097/MLR.0000000000000829
http://www.ncbi.nlm.nih.gov/pubmed/29087981
https://doi.org/10.1214/aos/1176344064
https://doi.org/10.1287/opre.1120.1118
https://doi.org/10.1017/pan.2019.11
https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1007/BF02295996
http://www.ncbi.nlm.nih.gov/pubmed/20254758
https://doi.org/10.1093/pan/mpr013
https://doi.org/10.1198/jasa.2011.tm09599
https://doi.org/10.1198/jasa.2011.tm09599
https://doi.org/10.2307/1390807
https://doi.org/10.2307/2531961
http://www.ncbi.nlm.nih.gov/pubmed/3567305
https://doi.org/10.1371/journal.pone.0223360

