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Abstract

Beside locomotion, search movements are another important type of motor

activity of insects. They are very often performed by the front legs of the ani-

mals. They consist of cyclic stereotypical leg movements that can be modified

by sensory signals. The details of the local organization of these movements

have however not yet been studied. In this paper, we, using an appropriate

variant of our existing one-leg model, present a scheme of how these search-

ing movements might be organized and performed on the level of local neuro-

muscular control networks. In the simulations with the model, we attempted

to mimic the experimental results by Berg et al. (J. Exp. Biol. 216:1064–1074,
2013) in which an obstacle was put in the way of the search movements of

the front leg for a very short while, and then the recovery to the usual search

movements was observed and analyzed. Our simulation results suggest that

the recruitment of the fast levator and depressor muscles play a crucial part in

resuming the search movements after removal of the obstacle. The interplay

between the levator and depressor, and the extensor and flexor local control

networks can, according to the model, bring about a large variety of search

movements upon removal of the obstacle. A number of these movements are

comparable with those seen in the experiments.

Introduction

Search movements are, beside locomotion, the other

characteristic leg movement type of insects. They are most

often carried out by the front legs of the animals. The stick

insect can perform them, while it continues walking on its

four other legs. The result is a complex three-dimensional

movement of the front legs. Search movements in different

insects have been studied by a number of authors: in stick

insects (Karg et al. 1991; B€assler, 1993; D€urr, 2001; Bl€asing

and Cruse, 2004a,b; Sch€utz and D€urr 2011), in locusts

(Pearson, 1972), cockroaches (Delcomyn, 1987), and in

fruit flies (Pick and Strauss, 2005). Here, the work by D€urr

(2001) should especially be mentioned. He carried out

detailed investigations on the three-dimensional search

movements of the stick insect’s legs.

However, it is quite difficult to study the details of search-

ing leg movements in three dimensions, in a freely moving

animal. In many experiments, the movement of a front leg is

therefore restricted. The constraint most often used is that

the front leg is only allowed to move in a plane perpendicular

to the body’s longitudinal axis (e.g., Berg et al., 2013). A pro-

tractor–retractor movement becomes thus impossible. How-

ever, vertical movements of the femur controlled by the

levator-depressor local neuromuscular network, and move-

ments of the tibia that are governed by the local extensor-

flexor neuromuscular network remain unaffected by this

constraint. This constrained system is much easier to study
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than the unconstrained one. Berg et al. (2013) used this

arrangement for their experimental investigation. Adhering

to this arrangement, we also used a restricted one-leg model

in our modeling studies (T�oth et al. 2013a).

Our main aim in this study was to use the experimen-

tal results, mainly by Berg et al. (2013), and our existing

one-leg model of a stick insect (T�oth et al., 2013a,b) to

mimic the search movements seen in the experiments.

We formulated a hypothesis on the role the specific local

networks of the model might play during search move-

ments. We implemented it as specific properties of the

model, and tested it in simulations. Achieving good quali-

tative agreement between experimental and simulation

results, we could gain insight into the workings and coor-

dination of the local neuromuscular control networks,

which shape the movements during search.

In what follows, we first introduce the model used in

these investigations. We then describe the results, we

obtained with the model tailored to the task of simulating

search movements. Finally, we shall discuss the merits

and shortcomings of our approach and model.

Methods

Summary of the experiments

Here, we give a summary of the experiments by Berg et al.

(2013). For details, refer to the aforementioned paper.

Figure 1A illustrates the basic experimental arrange-

ment. The thorax-coxa joint of the front leg of the stick

insect was fixed such that the leg could only move in a

plane perpendicular to the longitudinal axis of the animal.

However, no constraints were applied either to the coxa-

trochanter joint or to the femur-tibia joint. Thus, the ani-

mal could freely carry out up and down movements and

could flex or extend its tibia in the vertical plane just

described.

In the experiments, the angles a, b and c, as indicated in

Figure 1A, were measured. Note that they fully characterize

the leg movements. Moreover, the angle a is not an inde-

pendent quantity. It can be computed from the two other

angles and the lengths of the femur and tibia. Nevertheless,

it was often used for describing the leg position in the

experiments, as it clearly identifies the angular position of

the tarsus (end of the leg). The leg carried out periodic

(search) movements before an obstacle at a given position

was put in its way (Fig. 1A) for a very short period

( < 100 ms). Upon removal, the recovery to the periodic

movements, that is, the transitional movements of the leg

were recorded in the experiments. Four examples of this

process are displayed in Figure 1B–E. As these panels illus-
trate, the properties of the transitional movements

depended on the position of the obstacle. They were thus

indicative of the neuromuscular control mechanisms that

brought about those transitional movements. These panels

also show that the contact of the tarsus with the obstacle

was indeed very short (arrows in Fig. 1B–E). The experi-

mental records supplied for comparison with the simula-

tion results were selected to be of good technical quality

but otherwise basically random.

The one-leg model of the stick insect

In this work, we used a reduced version of our existing

model of a single leg of the stick insect. The full model was

originally conceived to elucidate the role of fast and slow

muscles during locomotion and maintaining the posture

(T�oth et al. 2013a). It comprises the three main antagonis-

tic muscle pairs of the leg: the protractor–retractor (PR),

levator-depressor (LD) and extensor-flexor (EF) muscle

pairs, which are the most important for movements of the

leg. They are controlled by a local network each (PR, LD

and EF system). These networks are coupled by sensory sig-

nals from the LD system (b signals) and from the EF system

(c signals). In the model, they are somewhat abstract repre-

senting both position and load signals. As the leg’s horizon-

tal position was fixed in the experiments by Berg et al.

(2013), and the PR system thus rendered ineffective, we

could reduce the model by omitting the PR system from it.

The resulting reduced model is displayed in Figure 2. This

model contains both fast and slow muscle fibers and the

corresponding motoneurons (MNs) that drive them. The

activity of the MNs, in turn, is controlled by a uniform cen-

tral drive (gMN) and the (rhythmic) signals of the central

pattern generators (CPGs) of each local network. The latter

signals pass through and can be modified by the inhibitory

premotor interneurons (INs) such as IN7, IN8 etc. The

activity of these INs is controlled by (descending) inhibi-

tory synaptic inputs (gd7, gd8 etc.). The local networks (LD

and EF system) are coupled via the sensory signals b and c
encoding position. Their synaptic pathways converge on

INs (IN12, IN18) that directly affect the actual function of

the corresponding CPG via the conductances gb and gc
(Fig. 2). By appropriate tuning of the coupling mechanism,

the model can attain a state of sustained rhythmic activity,

which would correspond either to normal locomotion or to

search movements. In the former case, sensory signals rep-

resenting load and ground contact and generated by the

tibial campaniform sensilla are also present (Zill et al.

2004, 2011). The central inputs to the CPG (gapp3 etc.) and

to the premotor inhibitory INs (gd7 etc.) are kept constant.

We implemented the coupling in this model in a simple

way: the conductances gb and gc had either a “high” or a

“low” value. The transition from “high” to “low” or in the

other direction took place at a threshold value of b and c,
respectively. Thus the function of the model crucially
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depends on the choice of these threshold values. (We

denote them bthr and cthr, respectively.) They therefore play
a central role throughout this study. We also included mus-

cle recruitment into the model for muscles where it made

sense (especially for the fast levator and depressor muscle

pair) (T�oth et al., 2013a) based on experimental results by

Goldammer et al. (2012). Further details concerning this

model can be found in T�oth et al. (2013a,b).
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Figure 1. (A) Schematic illustration of the experimental arrangement. (Original Fig. 1C from Berg et al. (2013) with permission.) Note the

definitions of the angles a, b and c in the panel. The large dots labeled with PO = +25∘ etc. are the positions of the obstacles applied to the leg

movements. The number indicates the angular position of the obstacle with respect to the horizontal axis. CTr, coxa-trochanter joint; FTi,

femur-tibia joint. (B–E) Typical recovery time courses of the leg movement to the initial search movement after putting an obstacle in the way

of the leg tarsus for a very short period of time. The arrows in the panels (B–E) indicate the instant of time of hitting the obstacle by the

insect’s leg. The horizontal line segments show the angular position of the obstacle (e.g., +25∘ in B). Note that the transition depends on the

angular position of the obstacle. Modified from Berg et al. (2013), Figure 2, with permission.
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Results

In the experiments in which the front leg movement was

artificially restrained in the vertical plane perpendicular to

the longitudinal axis of the body, we found that the angle

a varied in the range [�80�,40�], b in [�30�,50�], and c
in [70�,170�]. These angles were defined as shown in Fig-

ure 1A. In the simulations, we tried to produce similar
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Figure 2. The reduced model. Both local networks, the LD and EF neuromuscular systems, have the same structure as follows. Box with label

CPG, central pattern generator consisting of two neurons (C3–C4) and (C5–C6), respectively. The CPGs are (centrally) driven by the excitatory

synaptic connections gapp3–gapp4 and gapp5–gapp6, respectively. Four motoneurons (MNs): MN(LF), MN(LS), MN(DF), MN(DS) and MN(EF), MN

(ES), MN(FF), MN(FS), respectively, drive the corresponding fast and slow muscles: fast depr. m., slow depr. m. etc. as indicated. The MNs are

uniformly centrally driven by the excitatory connections gMN. Four inhibitory premotor interneurons in each of the networks: IN7–IN10 in the LD

system, and IN13–IN16 in the EF system. They are individually inhibited by the (central) synaptic connections gd7–gd10 and gd13–gd16. Finally, the

activity of the interneurons IN11–IN12 directly affects that of the CPG neurons (C3, C4) in the LD system. In the EF system, the interneurons

IN17 and IN18 have an analogous function. At synapses, empty triangles mean excitatory, whereas filled circles inhibitory synaptic connections.

Greek letters b and c in hexagons: sensory signals between the local networks encoding position; gb and gc: actual values of synaptic

conductances on IN18 and IN12, respectively, generated by the corresponding sensory signals. Adapted from T�oth et al. (2013a) with

permission.
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ranges for the individual angles. Thus we typically had

the range [�50�,20�] for a, [�5�,30�] for b, and

[85�,170�] for c. These ranges are somewhat narrower

than those in the experiments. We could have had a bet-

ter approximation of the angular ranges seen in the

experiments, if we had changed some mechanical proper-

ties of the muscle fibers (e.g., minimal length, range of

spring constants, contraction kinetics etc.). But this would

have come with the loss of the ability of the model to

produce “normal” stepping behavior with these new

parameter values. By this, we would, in fact, have had

two models: one for stepping and another for search

movements. To avoid this, we simply used the angular

ranges, which the “stepping” model yielded.

In any case, our main aim was to achieve good agree-

ment of the qualitative properties of the experimental and

simulation results. At first sight, this may seem a rather

weak requirement but closer inspection shows that it has

been the proper choice in our case. Firstly, the same

mechanisms can, and probably would, produce different

quantitative results, if the values of (some of) the system

parameters differ. These values are certainly different in

the animal and the model, and may not even correspond

to each other. At the same time, it does not appear viable

to construct a model in which the correspondence

between the parameters of the animal and the model is

strong, let alone that the parameter values are approxi-

mately equal. Secondly, even more importantly, one often

tacitly accepts models to be quantitative ones, whereas, in

fact, they are qualitative ones because the simulation

results they produce differ in a number of quantitative

characteristics. Yet, they are accepted, and rightly so, since

the results produced by them, carry the hallmark of the

behavior of the original system (e.g., activity of a neu-

ronal network). For these reasons, we used qualitative cri-

teria, only, to judge whether our simulation results were

acceptable. We think that we could achieve sufficiently

good approximations of the experimental results by

means of our model, using the original value set of its

parameters.

Moreover, we identified four main physiological factors

that have a bearing on the search movements and their

recovery. These are (1) the workings of the fast or slow

muscles during these movements; (2) the activity patterns

and recruitment of the MNs driving these muscles; (3)

the flow of sensory signals between the LD and EF local

control networks; and (4) the properties of the couplings

between them, in particular, the threshold values bthr and
cthr of the angles b and c at which the coupling conduc-

tances gb and gc change their values (cf. Methods).

Making use of the main physiological factors just listed,

we formulated the following hypothesis of how the recov-

ery of the search movements might take place in the stick

insect and what mechanisms might participate in this

process. We implemented the details in the model and

tested them by using simulation results produced by the

reduced model. Thus our hypothesis on the recovery pro-

cess is as follows:

(1) Before hitting the obstacle, both the slow and fast

muscle fibers are active, that is, both carry out rhyth-

mic contractions but the activity of the fast muscle

fibers determine the search movement.

(2) Upon hitting the obstacle, the activity of all slow and

fast MNs ceases. Note that because of the inherent

rigidity of the muscles (Hooper et al. 2007), the posi-

tion of the leg remains constant for approximately

100 ms.

(3) After removal of the obstacle, all slow muscle fibers

become activated via the activation of their MNs

within 200 ms. The fast extensor and flexor MNs,

hence muscles are immediately activated. Since there

is just a single slow and a single fast extensor MN

(B€assler and Storrer, 1980; Goldammer et al. 2012), a

gradual increase of the muscle activity by recruitment

of more and more MNs is not possible.

(4) Most importantly, the fast levator and depressor mus-

cle fibers and their MNs are gradually recruited over

a longer period of time, which can reach more than

1 sec of duration. Gradual recruitment of the MNs

and muscle fibers is, in this case, possible, because

there are several fast levator and depressor MNs

(Goldammer et al. 2012). The time course of the

recruitment of these muscles depends on the angular

position of the obstacles.

The experimental records in Figure 1B–E seem to support

this hypothesis but at least they do not contradict it. They

show a gradual shift of the oscillatory minima after

removal of the obstacle depending on the obstacle’s posi-

tion, and a gradual increase of oscillatory amplitude in

the vertical plane.

We implemented the properties and mechanisms listed

in the hypothesis. Some of them had been part of the

original model, especially the properties of the slow and

fast muscles and their residual rigidity (T�oth et al.

2013a).

Since a theoretical approach is, because of the complex-

ity of the model, not practicable, we carried out simula-

tions to determine the range of threshold values of c and b
at which the model displays autonomous rhythmic (peri-

odic) activity. We found two disjoint intervals: cthr≤86�,
and 144�≤cthr≤149�. The two ranges implied two qualita-

tively different driving mechanisms for the rhythmic (peri-

odic) leg movements (see below). In the former case, since

the oscillations of the c angle hardly cross into the region

cthr≤86� Fig. 3A), no switch to the low value of gc can take
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place. Hence, gc permanently remains at its high value, and

the LD system receives steady excitation via IN12 (Fig. 2).

In the latter case (144�≤cthr≤149�), periodic switching

between low and high values of gc takes place during the

leg movements (Fig. 3A). Thus, the excitation the LD sys-

tem receives via IN12 is also periodic. We found that we

could obtain best simulation results if we used different

recruitment kinetics for high threshold values of b
(bthr > 10�) and low ones (bthr≤6�). This proved especially

important when the second range of cthr (144�≤cthr≤149�)
was used in the simulations. Here, the range of high bthr
values at which periodic leg movement was produced was

narrow: [14.5�≤bthr≤16�]. No restriction applied to the low

bthr values in the interval [�4�,6�]. The b threshold values

were not subjected to constraints, if cthr was selected from

the first range (cthr≤86�) of threshold values. One can easily

guess that this is because of the permanent excitation of the

LD system by the EF system via IN12. In Figure 3A, two

values of cthr are displayed, along with the time evolution

of c during periodic leg movements, that we used through-

out the simulations (cthr = 83�, 145�). Similarly, Figure 3B

shows b(t) with the three values of bthr = �4�, 4�, 16� used
in the simulations. The actual threshold values were chosen

such that the simulation yielded the best (qualitative)

approximation of the experimental results at a given angu-

lar position of the obstacle.

In the following, we shall present the corresponding

simulation results. Figure 4 displays the first such example.

In this figure, the time course of all three angles, c, b, and
a both in the experiment (middle column) and in the sim-

ulations (left and right columns) are shown. In the bottom

row of panels, the state diagrams b�c obtained in the

experiments and the simulations are exhibited. The time

courses of the angles a and b of both simulations show

close qualitative similarity to that of the experimental

traces. Both angles show small-amplitude oscillation upon

removal of the obstacle, where the amplitude of the oscil-

lations increases with time. This is a property of both the

experimental and the simulated time courses. Taking these

properties alone, both simulations appear to yield satisfac-

tory results, even though the threshold values used in

them are completely different. We encounter, to some

extent, a similar situation when inspecting the behavior of

the angle c. Here, c changes very little after removal of the

obstacle in the experiment, at least in the interval shown,

(Fig. 4, middle column), and permanently remains (al-

most) constant (Fig. 4, left column) or, at least, for a

longer period of time (Fig. 4, right column) in the simula-

tions. Since the value of c at which this happens is about

150�, the leg is in a stretched position. Only its vertical

position changes all the time (because of oscillating b).
Thus the qualitative agreement between experiment and

simulation, here too, appears to be satisfactory. Now, con-

sidering the state diagrams in the bottom row, it should

be noted that in all three trajectories, the direction of time

is the same (as indicated by arrows in the three panels). A

further common property of theirs is the presence of the

(almost) horizontal blue lines, expressing the (almost)

constant values of c after removal of the obstacle. At the

same time, substantial differences between them can also

be discovered. A comparison between the simulation and

experimental results therefore remains inconclusive. One

can, however, immediately recognize that the two sets of

threshold values in the simulations lead to qualitatively
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different state diagrams. In this case, neither the time

courses of the angles nor the state diagrams show which

set of parameter values yield better results. We obtained

similar results at an obstacle position of 0� with sets of

threshold values (cthr = 83�, bthr = 4�), and

(cthr = 145�, bthr = 4�) (not shown).

80

90

100

110

120

130

140

150

160

170

0 1000 2000 3000 4000 5000 6000 7000 8000

–20

–10

0

10

20

30

0 1000 2000 3000 4000 5000 6000 7000 8000

–70

–60

–50

–40

–30

–20

–10

0

 10

 20

 30

0 1000 2000 3000 4000 5000 6000 7000 8000

80

90

100

110

120

130

140

150

160

170

–20 –10 0 10 20 30

simulation (83°,−4°)

–70

–60

–50

–40

–30

–20

–10

0

 10

 20

 30

 40

 4000  6000  8000 10,000 12,000 14,000

80

90

100

110

120

130

140

150

160

170

–20 –10 0 10 20 30 40 50

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

4000 6000 8000 10,000 12,000 14,000

–20

–10

0

 10

 20

 30

 40

 50

4000 6000 8000 10,000 12,000 14,000

experiments

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

0  1000  2000  3000  4000  5000  6000  7000  8000

–20

–10

0

10

20

30

0 1000 2000 3000 4000 5000 6000 7000 8000

–70

–60

–50

–40

–30

–20

–10

0

 10

 20

 30

0  1000  2000  3000  4000  5000  6000  7000  8000

80

90

100

110

120

130

140

150

160

170

–20 –10 0 10 20 30

simulation (145°,4°)

PO = 15°
γ 

(°
)

α 
(°

)
β 

(°
)

γ 
(°

)

t (ms)t (ms)

β (°) β (°)

t (ms)

β (°)

Figure 4. Comparing experimental results (middle column of panels) to simulation ones with two different sets of threshold values (left and

right columns of panels) at an obstacle position of 15∘. The time courses of the angles a, b and c are illustrated in the rows of panels as

indicated. Bottom row of panels: b�c state diagrams. The red trajectories apply before placing the obstacle, the blue ones after its removal.

We use the notation “simulation (cthr, bthr)” to show which threshold values were used in the simulations. Note that the time interval is

somewhat longer, and the angular ranges somewhat larger in the experiments than in the simulations. That is, the simulated angle variables

oscillate faster and with smaller amplitudes than the experimental ones. The arrows in the a panels point to the angle position at the time

instant of the leg (tarsus) hitting the obstacle. The arrows in the b�c state diagrams show the direction of time the trajectories follow. Note

that they are the same in the experiment and the simulations.

ª 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
The Physiological Society and the American Physiological Society

2017 | Vol. 5 | Iss. 22 | e13489
Page 7

T. I. T�oth et al. Modeling Search Movements



The experimental results varied, even for the same

obstacle position, a great deal across the experiments

(Berg et al., 2013). Thus, for example, at the obstacle

position of 0�, we found several, qualitatively different

time courses of the angles a, b, and c in the transition

process. We carried out simulations in order to mimic

the experimental results that differed from those just

mentioned above but were obtained at the same obstacle

position (0�). The results are displayed in Figure 5. Here,

again judging by the time courses of the angular variables,

one cannot decide which simulation results should be

preferred to the other. With both sets of threshold values,

(83�,16�) and (145�,16�), respectively, we obtained basi-

cally the same time courses of the angles a, b and c.
However, the comparison of state diagrams has a different

outcome. Here, when setting cthr = 83�, the simulated

state diagram exhibits a much closer similarity to the

experimental one than the other simulated one. In fact,

the experimental state diagram is of a triangle-like form

both before placing the obstacle (red trajectory) and after

removing it (blue trajectory). Specifically, both trajectories

have an almost horizontal segment that is bent into an

almost vertical segment, the points of bending being

approximately at the most negative value of b. The two

endpoints of these segments are then connected by an

almost linear curve. Qualitatively, the same properties can

be discerned in the simulated state diagram on the left-

hand side, although the absolute ranges of the angles

somewhat differ from those found in the experiments.

Note that both the experimental and this simulated state

diagram preserve their triangular shape after collision

with the obstacle. By contrast, the other simulated state

diagram (right-hand side panel) has quite different char-

acteristics: it is roughly of a shape of a quadrilateral, also

both before and after the leg touches the obstacle. In this

case, the “goodness” of the simulation result can be

judged by using the state diagrams rather than the time

courses of the angle variables alone.

A further example of mimicking experimental results is

illustrated in Figure 6. In this case, the simulations carried

out with the same obstacle position as in the experiment

(0�) did not yield sufficiently good qualitative similarity

between experimental and simulation results. We thus

looked at simulation results obtained with other obstacle

positions. These positions had to remain as close as possi-

ble to the experimental one (0�). Under this constraint,

we found that the best results were achieved when the

obstacle position was 20�. This obstacle position was thus

the nearest to 0� among the good simulation results. The

peculiarity of the experimental records is that the angles,

especially c, exhibit oscillations of alternating amplitudes

after removal of the obstacle. This was successfully simu-

lated by the model for c but the aforementioned property

is missing from the oscillation of b in the simulation.

Hence, it is weaker in the simulated oscillation of a than

in the experimental one. Nevertheless, there is still a suffi-

cient qualitative agreement between the experimental and

simulated time courses of the three angle variables. Com-

paring the state diagrams in the bottom row of Figure 6,

we see that they show good agreement before the place-

ment of the obstacle. After removal of the obstacle, the

characteristics of the simulated state diagram clearly

changes: from the so-called triangle-like shape to a

quadrilateral-like one. This kind of change can, however,

not be discerned with certainty in the experimental state

diagram. We shall return to this point later.

In the experiments, data could not be collected from

every animal at every position of the obstacle. Moreover,

there are considerable gaps between the specific obstacle

positions where no measurements were done. In a series

of simulations, we tried to fill in these gaps. We thus

changed the position of the obstacle in the model and

computed the time courses of the three angles with six

different combinations of threshold values selected earlier:

cthr = 83�, 145�; bthr = �4�, 4�, 16�. The main problem

to be solved was to connect the obstacle positions to

some model properties. At the beginning of this section

(Results), we made the assumption as part of our hypoth-

esis, that the recruitment of the fast levator and depressor

muscles was involved in the transitional process after

removal of the obstacle. In the simulations reported here,

we included a quantitative dependence of the rate of

recruitment of these muscles on the position of the obsta-

cle. To keep things simple, we assumed linear relationship

between the obstacle position and the factor by which the

recruitment process of the muscles was slowed down.

Thus, the actual value of the recruitment factor of both

the fast levator and the fast depressor muscles could be

calculated by linear interpolation; formally:

rf ¼ rf 1 � rf 0
PO1 � PO0

ðPO� PO0Þ þ rf 0

where rf is the actual value of the recruitment factor at

obstacle position PO. It is the factor of slow-down of the

muscle recruitment during the transition period. By defi-

nition, the “normal” recruitment rate occurs at rf = 1.

Then at rf > 1, this rate is diminished by the factor rf.

For example, rf = 2 means that the recruitment happens

twice as slow as at the “normal” recruitment rate (see also

T�oth et al., 2013a,b). rf0 and rf1 are known values of rf at

(the known) obstacle positions PO0 and PO1, respectively.

rf0 and rf1 can be determined (estimated) in the experi-

ments by measuring the duration of the nonzero trend in

the transition process (Berg et al., 2013). However, we

found qualitatively different behavior of the animal’s leg
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at the same obstacle position for some positions. For

example, for PO = 0�, the time courses of a in Figure 2C

and Figure 4 in Berg et al. (2013) are quite different.

Running altogether a few hundreds of simulations with

all six combinations of the threshold values bthr and cthr,
and using various linear interpolation functions, we found

that the above differing behavior, as well as the cases at

other PO values could satisfactorily be modeled by using

only two different sets of linear interpolation functions.

They are displayed in Figure 7. Thus the leg’s behavior as

shown in Figure 2C in Berg et al. (2013) could qualita-

tively be replicated by the linear interpolation functions
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for rf in Figure 7A and using the low values of

bthr = �4�,4�. The leg movement in Figure 4 in Berg

et al. (2013) could be best described when we used the

high value of bthr = 16� and the linear interpolation func-

tions displayed in Figure 7B. Using these relationships, we

could compute the (simulated) time courses of all three

angles at any obstacle position (PO). This enabled us to

carry out systematic simulations over the whole range of

obstacle positions at various value combinations of bthr
and cthr. As before, we used cthr: 145�, 83�, and
bthr:�4�, 4�, 16�. This resulted in a large number, more

than 300, simulation runs.

In the two following figures (Figs. 8 and 9), we illus-

trate the occurrence of two interesting properties com-

mon to several values or sub-ranges of the obstacle

positions. They of course depend on the actual threshold

values used in the simulations. In Figure 8, all (PO) inter-

vals are shown in which the oscillation of c (blue traces)

or b (green traces) ceases completely or at least for a

longer period of time at a given pair of bthr and cthr. As
it can be seen, these intervals for c comprise almost the

whole range of PO values, if bthr = �4� irrespective of

the value of cthr. They become somewhat shorter when

bthr = 4�. By contrast, the c oscillation continues but that

of b stops in a short interval of PO values: [�31�,�29�]
if bthr = 16� and cthr = 145�. The physical interpretation

of these phenomena is quite obvious. If angle c stays

nearly at the same position (Fig. 8), only up-down move-

ments of the leg take place. Interestingly, in all cases in

which the c oscillation ceases c is kept at a high value.

This corresponds to a stretched leg. One could indeed

observe in some experiments up-down movements of a

stretched leg in the stick insect (Berg et al., unpubl.

observ.). The permanently constant value of b would

mean that the tibia carries out periodic extension-flexion

movements at a fixed vertical position, constant b angle,

of the femur. This was observed in experiments, in those

special cases, when the femoral chordotonal organ (fCO)

was cut (Karg et al. 1991) but not in intact animals. It

may be possible that the sensory signal from the fCO can

reversibly be blocked by some appropriate internal neu-

ronal mechanism. In such a case, one would observe this

type of leg movement. Finally, we found two discrete val-

ues of PO (4� and 10�) at which both the b and the c
oscillation simultaneously ceased (Fig. 8 bottom right

panel). This also implies a � const., that is, a standstill of

the leg (in a nearly horizontal, stretched position). This

behavior of a stick insect leg has not been observed. Note

also that this happened in the simulation only when

bthr = 16� and cthr = 83�.
Figure 9 shows a different property of the search move-

ments and of its distribution over the range of the obstacle

positions (PO values). In this figure, all c traces have the

common property that, after removal of the obstacle and a

quiescent period, they exhibit an oscillation with alternat-

ing amplitude, that is, a large amplitude is followed by a

smaller one, which, in turn, is followed by a larger one and

so on. The length of the quiescent period before the restart

of the oscillation strongly depends on the threshold values

used but, to some extent also on the obstacle positions (cf.

the right-hand side panels of Fig. 9). The ranges of PO val-

ues where the c oscillation has these properties are rather

small, except for the case in the bottom, right-hand panel

PO: [�15�,19�]. On the other hand, the quiescent period
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Figure 7. Relationship between obstacle position and recruitment kinetics. Two types of linear relationships between obstacle position (PO)

and the so-called recruitment factor (rf) were used in the simulations. rf expresses the change of the recruitment rate depending on the

obstacle position (PO); rf > 1: slow-down, and rf = 1: “normal” recruitment rate. (A) linear relationship used with low values of bthr(≤6
∘); (B)

linear relationship used with high values of bthr( > 10∘); red lines: rf of the fast depressor muscle; blue lines: rf of the fast levator muscle.
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is the longest in this range. As far as the threshold values

are concerned, bthr = 16� is conspicuously absent. That is,

no such c oscillation could be produced in the simulations

when bthr = 16�. This also means that the interpolation

functions in Figure 7A were used throughout these simula-

tions.

Also, we had to use bthr = 4� with cthr = 83� in order

to achieve the most animal-like dynamics. It is notewor-

thy that the angle b did not show oscillatory activity with

alternating amplitude. However, this type of oscillation is

reflected in the time course of the angle a in the cases in

which cthr = 83� and bthr = 4� (Fig. 9, right-hand side

panels) but is absent if cthr = 145�.
We now return to the b�c state diagrams. Figure 10

illustrates some typical state diagrams, which we obtained

in the simulations. Each pair of threshold values is repre-

sented. Inspecting these diagrams, one can gain important

information on the role of the threshold values in shaping

the state diagrams, hence the activity of the local control

networks underlying them. First of all, it can clearly be

seen that the shape of the state diagrams before placing

the obstacle (red lines) is completely determined by the

value of cthr irrespective of that of bthr. In particular, if

cthr = 83�, we obtain the triangular form of the state dia-

gram regardless of the value of bthr. At cthr = 145�, the
shape of the diagram becomes a quadrilateral. Looking at

Figure 3A, the reason for the difference between the two

cases becomes apparent. cthr = 83� is a threshold value at

which the conductance gc has a constant high value,

hence there is a permanent high-conductance excitatory
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input from the EF to the LD system. When cthr = 145�,
then gc is periodically switched between its high and low

value (cf. Fig. 3A). As to the functional role of bthr, it can
substantially change the shape of the state diagram after

removal of the obstacle (blue lines). Specifically, at

bthr = �4�, the c oscillation ceases, and the leg continues

moving in a vertical plane, while it remains stretched.

This happens independently of the actual value of cthr.
When bthr = 4�, a qualitative change of the state diagram

occurs at cthr = 83� from the triangular quadrilateral

shape, whereas at cthr = 145�, a quiescent period of c
appears before the oscillation re-starts (see also Fig. 9, left

bottom panel). Finally, at bthr = 16�, no qualitative

change of the state diagram occurs, whatever value cthr
has. In the aforementioned systematic simulations (Figs. 8

and 9) that used all six selected pairs of threshold values,

and the obstacle positions that most often appeared in

the experiments, the qualitative properties of the state

diagrams could be classified the same way as those of the

state diagrams in Figure 10. In particular, the dependence

on the threshold values was the same.

To carry on along these lines, we compared experimental

state diagrams with suitable simulated ones having the

same, or nearly the same obstacle position as the experi-

mental one. Here, “suitable” means that we selected the

simulated state diagram that was (qualitatively) the most

similar to the corresponding experimental one. In most

cases, we could choose from six simulated diagrams, since

there were six pairs of threshold values for which the time

course of the angles, hence the state diagrams were com-

puted at each PO value. Representative examples of these

comparisons are shown, in graphic form, in Figure 11. The

first thing to be noticed is that all experimental state dia-

grams are of triangular shape before application of the

obstacle. This fact restricted the choice of suitable simu-

lated state diagrams to those obtained with cthr = 83�. On
the other hand, all three threshold values of b are present

among the selected simulated state diagrams. The best

(qualitative) agreement between experiment and simula-

tion is in the panel pairs A and C. In the former pair of

panels, the state diagram is clearly triangular before place-

ment of the obstacle, and c oscillation ceases upon its

removal. In panel C, both state diagrams are triangular

prior placement of the obstacle but this shape appears to

have qualitatively changed after its removal. The two other

panel pairs show less conclusive results after removal of the

obstacle but the simulated state diagrams still resemble

their experimental counterpart. In summary, we could

establish good qualitative agreement between experimental

and simulated state diagrams.

Discussion

Search movements constitute an important type of leg

movements in insects, in particular, in the stick insect.

We set out to model these movements and to try to
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identify and to explain the underlying mechanisms that

produce such movements. To this end, we used a version

of our existing one-leg model of the stick insect (T�oth

et al., 2013a,b).

We restricted the leg movement in the model to that in

a vertical plane perpendicular to the longitudinal axis of

the stick insect, like in the experiments by Berg et al.

(2013). Admittedly, this is a considerable constraint on

the leg movements, especially when compared to the con-

ditions in the study by D€urr (2001). However, we con-

sider ground contact or the lack of it to be the crucial

factor for the absence or presence of search movements

(cf. also, D€urr, 2001). The levator-depressor (coxa-tro-

chanter) neuromuscular system therefore plays a central

role in search movements. But this system remained

intact and fully functional both in Berg et al.’s experi-

ments (Berg et al., 2013) and in our model.

We formulated a hypothesis concerning the recovery of

the search movements in the stick insect and implemented

its details in the model (cf. Results). We found that we

could reproduce, qualitatively, many of the search move-

ment patterns that were discerned in the experiments. By

so doing, we mimicked the experimental conditions, espe-

cially putting an obstacle in the way of the moving leg for a

very short period of time and recording the transient time

courses of the angles a, b and c. The qualitative properties
we used for comparisons of these time courses were oscilla-

tion or the lack of it, trend and kinetics of the oscillatory

behavior. Unfortunately, we could not use stronger com-

parison criteria than these qualitative ones, since the exper-

imental time courses themselves exhibited a wide range of

variations in amplitude and frequency of the oscillations

during search movements. Thus a statistical description of

the results (average values etc.), for example, would not

have provided us with useful information on the process of

recovery of the search movements in the animal. Moreover,

we do, at present, not know anything substantial of the ori-

gin of the wild fluctuations seen in the experiments. Their

comparison among themselves on a quantitative basis

would therefore have proved already impracticable. Because

of this, we think that the qualitative comparison between

experimental and simulation results we used is justified and

sufficient.

The qualitative agreement between experimental and

simulation results lets us conclude that the assumptions

made in our hypothesis may constitute one possible way

of how search movements emerge and are performed in

the animal. The central role, here, is played by the levator
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Figure 11. Comparison of experimental (upper row) and simulated (bottom row) state diagrams. The positions of the obstacle are given as

follows. (A) 15∘, (B) �40∘, (C) 25∘, and (D) �40∘. Suitable simulated state diagrams were selected to have the best qualitative similarity to, and

the same or nearly the same PO value as the corresponding experimental diagram. The value of bthr at which a simulated state diagram was

obtained is indicated at the bottom of each pair of panels; in all cases cthr = 83∘. In the experimental and simulated state diagrams, red curves:

before placement, blue curves after removal of the obstacle. In the pairs of panels A and C, the experimental and simulated state diagrams

show a good qualitative agreement. In A, c oscillation ceases upon removal of the obstacle, in C, the shape of the loop appears to have

changed after removal of the obstacle. But also in the panel pairs B and D, a weak resemblance of the experimental state diagrams can still be

discerned in the corresponding simulated ones after removal of the obstacle. The direction of time for all trajectories is the same as in Figure 4.
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and depressor neuromuscular network that governs the

vertical movement of the femur. Making the rate of

recruitment of the fast levator and depressor muscles

dependent on the (actual) position of the obstacle, angu-

lar time courses in the model, similar to their experimen-

tal counterparts, could be produced in the simulations. A

very much simplified description of such a mechanism is

provided in Figure 7 in form of linear approximations

(interpolations). It also enabled us to compute angular

time courses at any obstacle position. The mechanisms

underlying this dependence are, as yet, unknown but

position and tactile sensory signals, most likely, play a

part in them. No recruitment mechanism can be present

in the extensor-flexor neuromuscular system, since here

there is only a single fast extensor MN (B€assler, 1983;

B€assler and Storrer, 1980; Goldammer et al. 2012).

We were led to carry out systematic simulations of

search movements over the whole range of obstacle posi-

tions (PO values) used in the experiments. This was

done with six different pairs of angular threshold values

bthr and cthr, which had been selected such as to enable

autonomous periodic leg movements in our existing

one-leg model. The results showed qualitatively the same

behavior of the model over large ranges of obstacle posi-

tions (Figs. 8 and 9). The oscillations of the a and c
angles with alternating amplitude, which we encountered

during the simulations, might be of particular interest.

They may namely hint at the existence of period-dou-

bling bifurcations in the model, which might eventually

lead to chaotic behavior, that is, to disruption of peri-

odic search or stepping movements. At present, it is

unclear what the bifurcation parameter might be. We

also found isolated positions (PO values) at which the

oscillation of all three angles ceased (Fig. 8, bottom right

panel). This has not been observed in the experiments,

and it is not likely that it reflects a real physiological

property. This seems to be some kind of singularity of

the model, which, from the practical point of view, can

be neglected. A more general point is that the stick

insect must be able to perform full search movements at

any obstacle position, at least after a transitory period.

Some of the simulation results in Figs. 8 and 9 seem to

suggest the contrary (e.g., Fig. 8, upper row of panels).

However, the appropriate premotor INs can disinhibit

the extensor-flexor MNs in order to revive the oscilla-

tory activity of the EF local network (cf. Fig. 2). Thus

the overall movement can show a different pattern. We

did not carry out such simulations though in order to

keep the effects related to the obstacle positions “clean”,

that is, not to confuse them with those of the premotor

INs. The results of the systematic simulations do there-

fore not contradict to the above claim.

State diagrams, produced by plotting the b and c angles

against each other, seem to contain important informa-

tion on the type of movement the leg is performing. In

several cases, the similarity between experimental and

simulation results could only be decided after comparing

the corresponding state diagrams (e.g., Figs. 4–6). We

found that state diagrams have triangular form during

search movements both in the experiments and the simu-

lations. Upon removal of the obstacle, this can substan-

tially change, for example, when the c oscillation ceases

(Fig. 11A). The qualitative shape of the loops in the state

diagram can also change after removal of the obstacle

(Fig. 11C), or can remain the same (Fig. 10 right upper

panel). In fact, experimental findings show a different

shape of the b�c diagrams when the animal is stepping

on a treadmill (von Uckermann and B€uschges, 2009; Berg

et al., 2015). They bear some similarity to a quadrilateral

one, even though they are not convex, but are markedly

different from the triangular-like ones, seen during search

movements.

In the simulations, the triangular shape could only be

produced if cthr = 83�. This is the case when the LD sys-

tem receives a permanent excitation from the EF system

(cf. Figs. 2 and 3). This steady excitation keeps the CPG

of the LD system in its oscillatory state. The CPG, in

turn, drives the EF system periodically. Thus, no load sig-

nal or other kind of sensory signal representing ground

contact is required for periodic leg movement in this

case.

If cthr = 145�, a switch between high and low value of

gc periodically takes place (cf. Fig. 3). In this case, the

b�c diagrams have a quadrilateral shape (Fig. 10). Since

the state diagram is of triangular shape during search

movements, we can assign the threshold value cthr = 83�
to this condition. We thus suggest that a sensory signal,

generated by the campaniform sensilla upon ground con-

tact, changes this threshold value to cthr = 145� in an as

yet unknown way. During stepping, ground contacts peri-

odically occur, hence the threshold value remains the

same (cthr = 145�). If, however, during up and down

movements of the leg, no ground contact is encountered

any more, cthr will change to 83�. The state diagrams (ex-

perimental or simulated) thus signify by their shape

whether the leg is in “search” or “stepping” mode. The

load signal, mostly produced by the campaniform sensilla,

plays a crucial part in these processes. Its absence leads to

search movements, whereas its presence to proper step-

ping. This is in good agreement with the findings by D€urr

(2001), since he also claims that the absence of ground

contact transforms stepping into search movement (D€urr,

2001). The absence of ground contact, in turn, means

that the campaniform sensilla are not activated. Hence,
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their activity or inactivity decides whether the animal per-

forms stepping or search movements.

It is, of course, a rudimentary approximation that we

used but a few discrete threshold values to modify the

searching behavior in the model. It would seem more

natural to assume that the admissible threshold values fill

in whole intervals instead. A very recent paper by

Szczecinski and Quinn (2017) points exactly in that direc-

tion. At present, however, the available data related to

this point appears to be insufficient to implement such a

version of our model.

Anyway, our results remain, for the time being at least,

mainly hypothetical and will need a great deal of further

experimental and theoretical support. But even so, they

have already proved their physiological relevance by pro-

viding a prospective tool to tell apart and characterize dif-

ferent functional modes of an insect leg.
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