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Abstract

Background

Stress and mitogen activated protein kinase (SAPK) signaling play an important role in glu-

cose homeostasis and the physiological adaptation to exercise. However, the effects of

acute high-intensity interval exercise (HIIE) and sprint interval exercise (SIE) on activation

of these signaling pathways are unclear.

Methods

Eight young and recreationally active adults performed a single cycling session of HIIE

(5 x 4 minutes at 75% Wmax), SIE (4 x 30 second Wingate sprints), and continuous moder-

ate-intensity exercise work-matched to HIIE (CMIE; 30 minutes at 50% of Wmax), separated

by a minimum of 1 week. Skeletal muscle SAPK and insulin protein signaling were mea-

sured immediately, and 3 hours after exercise.

Results

SIE elicited greater skeletal muscle NF-κB p65 phosphorylation immediately after exercise

(SIE: ~40%; HIIE: ~4%; CMIE; ~13%; p < 0.05) compared to HIIE and CMIE. AS160Ser588

phosphorylation decreased immediately after HIIE (~-27%; p < 0.05), and decreased to the

greatest extent immediately after SIE (~-60%; p < 0.05). Skeletal muscle JNK (~42%;

p < 0.05) and p38 MAPK (~171%; p < 0.05) phosphorylation increased, and skeletal muscle

AktSer473 phosphorylation (~-32%; p < 0.05) decreased, to a similar extent immediately after

all exercise protocols. AS160Ser588 phosphorylation was similar to baseline three hours after

SIE (~-12%; p > 0.05), remained lower 3 hours after HIIE (~-34%; p < 0.05), and decreased

3 hours after CMIE (~-33%; p < 0.05).

Conclusion

Despite consisting of less total work than CMIE and HIIE, SIE proved to be an effective stimu-

lus for the activation of stress protein kinase signaling pathways linked to exercise-mediated
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adaptation of skeletal muscle. Furthermore, post-exercise AS160Ser588 phosphorylation

decreased in an exercise-intensity and post-exercise time-course dependent manner.

Introduction

High-intensity interval-exercise (HIIE) and sprint-interval exercise (SIE) are reported to elicit

comparable, and in some cases, greater improvements in measures of glycemic control, oxida-

tive stress, and mitochondrial biogenesis, compared to continuous moderate-intensity exercise

(CMIE) [1–5]. The mechanisms for improved skeletal muscle adaptation after HIIE and SIE

are unclear, but may involve exercise-induced stress protein kinase signaling [6–9].

Physical inactivity and excess adipose tissue can lead to the sustained activation of mito-

gen and stress-activated protein kinases (SAPK), in-part through increased mitochondrial

electron leak and the subsequent production of reactive oxygen species (ROS) [10, 11].

Important ROS sensitive SAPK proteins include c-Jun N-terminal kinases (JNK), p38 mito-

gen-activated protein kinases (p38 MAPK), and nuclear factor kappa-light-chain-enhancer

of activated B cells (NF-κB). Sustained activation of these protein signaling pathways leads to

impaired insulin sensitivity in part through serine phosphorylation of the insulin receptor

substrate 1 (IRS-1), IRS-1 degradation and attenuation of distal insulin signaling proteins

such as Akt substrate 160 (AS160) [11–13]. Paradoxically, acute exercise also results in

increased ROS production [14], albeit transiently and predominantly through NADPH oxi-

dase superoxide anion production [15], which is reported to contribute to the transient acti-

vation of SAPK signaling in skeletal muscle [16]. In contrast to the sustained activation of

SAPK signaling, the transient activation following acute exercise coincides with greater

AS160 phosphorylation post-exercise and improved insulin sensitivity [17–19]. Further-

more, exercise-induced SAPK signaling is also linked to the activation of skeletal muscle

transcription factors and coactivators that lead to skeletal muscle adaptation and long-term

improvements in cardiometabolic health [2, 5, 16, 20].

Although HIIE and SIE training are reported to elicit equivalent and in some cases superior

exercise-mediated cardiometabolic adaptations when compared to CMIE [1, 2, 5], the effects

of acute HIIE and SIE on post-exercise skeletal muscle SAPK signaling are equivocal. For

example, greater metabolic fluctuations induced through intermittent exercise are considered

to elicit greater post-exercise p38 MAPK phosphorylation [21]. However, previous studies

have reported similar exercise-induced p38 MAPK phosphorylation after acute work-matched

HIIE, SIE, and continuous exercise [22, 23]. The effects of low-volume SIE, compared to

higher-volume HIIE work-matched to continuous exercise of moderate-intensity, on post-

exercise skeletal muscle p38 MAPK phosphorylation are unknown. Furthermore, skeletal mus-

cle JNK and NF-κB phosphorylation and post-exercise insulin protein signaling have yet to be

explored after acute HIIE and SIE.

We compared the effects of a single session of HIIE, SIE, and CMIE work-matched to the

HIIE, on skeletal muscle SAPK and insulin protein signaling. It was hypothesized that SIE and

HIIE would elicit greater skeletal muscle SAPK and distal insulin protein signaling.

Materials and methods

Participants

Eight recreationally active adults, 6 males and 2 females, volunteered to participate in this

randomized cross-over study. Participant characteristics are reported in Table 1. Exclusion
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criteria for participation included smoking, musculoskeletal or other conditions that prevent

daily activity, symptomatic or uncontrolled metabolic or cardiovascular disease, and females

taking oral contraception. To minimize the effect of hormonal fluctuations on outcome mea-

sures, females were tested in the early follicular phase of the menstrual cycle (2–7 days after

the onset of menses). Verbal and written explanations about the study were provided prior

to obtaining written informed consent. This study was approved by the Victoria University

Human Research Ethics Committee and carried out in accordance with The Code of Ethics

of the World Medical Association (Declaration of Helsinki) for experiments involving

humans [24].

Participants were asked to abstain from physical activity (~72 hours), alcohol and caffeine

consumption (~24 hours) prior to each trial. Twenty-four hours before their first trial volun-

teers were asked to consume their habitual diet which was recorded in a diet diary and repli-

cated in their subsequent trials. Participants completed a screening session prior to completing

the three different exercise protocols in a randomized crossover fashion, separated by a mini-

mum of 1 week for males and ~4 weeks for females (Fig 1).

Screening and preliminary testing

Participants were screened via a medical history and risk assessment questionnaire. Eligible

participants underwent anthropometric measurement (height and weight) and completed a

graded exercise test (GXT) on a cycle ergometer (Velotron, USA) to measure peak aerobic

capacity (VO2peak) and maximal power output (Wmax). The GXT protocol consisted of 1-min-

ute cycling stages at 50 watts which increased by 25 watts every minute until participants were

unable to maintain a cycling cadence of 60 RPM or greater. Expired gases were collected and

analyzed via an indirect calorimetry system (Moxus Modular VO2 System, USA). The Wmax

obtained during the GXT was used to calculate the workload for the three exercise protocols.

Experimental phase

On three separate occasions participants reported to the laboratory in the morning after an

overnight fast. A resting muscle biopsy and venous blood sample were taken prior to partici-

pants undergoing their randomized exercise protocol (SIE, HIIE or CMIE). Immediately fol-

lowing the acute session of exercise, a muscle biopsy and venous blood sample were taken, and

participants rested on a bed for three hours. A third muscle biopsy was taken 3 hours after

exercise and venous blood samples were taken in the middle of the exercise session, immedi-

ately after exercise, and 10 minutes, 30 minutes, 1 hour, 2 hours and 3 hours after exercise.

Table 1. Descriptive characteristics of participants.

Variable N = 8

Participants 6 males and 2 females

Age (years) 25 ± 2

Height (cm) 179.3 ± 2.9

Weight 79.4 ± 2.1

BMI (kg�m-2) 25 ± 1

Wmax during GXT (W) 327 ± 25

Max heart rate during GXT (BPM) 183 ± 4

VO2max (ml�kg-1�min-1) 48.4 ± 4.0

Values are mean ± SEM.

doi:10.1371/journal.pone.0171613.t001
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Exercise protocols

All exercise sessions were performed on a Velotron cycle ergometer. The SIE protocol con-

sisted of 4 x 30 second all-out (Wingate) cycling sprints, interspersed with 4.5-minute passive

recovery periods. Pedaling resistance for the SIE was determined as a torque factor relative to

body mass which was optimized during the familiarization session. The HIIE protocol con-

sisted of 5 x 4-minute cycling bouts at 75% of Wmax (~77% of VO2peak), interspersed with

1-minute passive recovery periods. The CMIE protocol consisted of continuous cycling for 30

minutes at 50% of Wmax (~54% of VO2peak), equating to the same total work performed

(294 ± 23 kJ) in the HIIE protocol.

Skeletal muscle and blood sampling

Muscle samples were obtained from the vastus lateralis under local anesthesia (Xylocaine 1%,

Astra Zeneca, Australia) utilizing a Bergström needle with suction [25]. The samples were

immediately frozen in liquid nitrogen and stored at -80˚C until analysis. Venous blood was

collected from an antecubital vein via an intravenous cannula and analyzed immediately for

blood glucose and lactate using an automated analysis system (YSI 2300 STAT Plus™ Glucose

& Lactate Analyzer).

Fig 1. Schematic overview of research methodology. After initial screening and determination of Wmax and VO2peak, participants

underwent three exercise sessions, separated by 7–14 days (~28 days for females), in a randomized crossover fashion. Venous

blood and skeletal muscle samples were taken at time-points indicated in the figure. CMIE: continuous moderate-intensity exercise.

HIIE: high-intensity interval exercise. SIE: sprint interval exercise. GXT: graded exercise test.

doi:10.1371/journal.pone.0171613.g001
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Skeletal muscle protein analysis

To avoid the potential loss of total cellular protein that can occur with centrifugation [26, 27],

phosphorylation and abundance of specific proteins in whole muscle lysate were determined

with all constituents present (i.e. no centrifugation). Whole muscle lysate was analyzed as previ-

ously reported [19]. In brief, thirty cryosections of skeletal muscle (20 μm) were homogenized in

buffer (0.125M TRIS-HCL [pH 6.8], 4% SDS, 10% Glycerol, 10mM EGTA, 0.1M DTT, and with

0.1% v/v protease and phosphatase inhibitor cocktail [#P8340 and #P5726, Sigma Aldrich]).

Total protein content of muscle lysate was determined using the commercially available Red 660

Protein Assay kit with SDS neutralizer as per the manufacturer’s instructions (Red 660, G-Biosci-

ences, St. Louis, MO, USA). Eight μg of protein was prepared in 3 μl of Bromophenol blue (1%),

heated for 5 minutes at 95˚C and separated by 7.5% Criterion™ TGX™ Pre-Cast Gels. The sepa-

rated proteins were transferred to a polyvinylidene difluoride membrane and blocked with Tris-

Buffered Saline-Tween (TBST) and 5% skim milk for 1 hour. Membranes were washed (4 x 5

minutes) with TBST and incubated at 4˚C overnight with the following primary antibodies: phos-

pho-SAPK/JNK (Thr183/Tyr185; CST #9251), SAPK/JNK (CST #9252), phospho-p38 MAPK

(Thr180/Tyr182; CST #9211), p38 MAPK (CST #9212), phospho-NF-κB p65 (Ser536; CST

#3033), NF-κB p65 (CST #8242), IκBα (CST #4814), phospho-IRS-1 (Ser307 in human; CST

#2384), phospho-AS160 (Ser588; CST #8730), AS160 (CST #2447), phospho-Akt (Ser473; CST

#9271), Akt (#9272), and IRS-1 (Millipore, 06–248). After incubation, membranes were washed

with TBST and incubated for 1 hour at room temperature with appropriate dilutions of horserad-

ish peroxidase conjugated secondary antibody. Membranes were re-washed and incubated in

SuperSignal West Femto Maximum Sensitivity substrate for 5 minutes prior to imaging. After

imaging, membranes were stained via a modified Coomassie staining protocol [19]. All densi-

tometry values are expressed relative to a pooled internal standard and normalized to the total

protein content of each lane obtained from the modified Coomassie staining protocol. Where

appropriate, phosphorylated proteins are expressed relative to specific total protein content.

Statistical analysis

Data were checked for normality and analyzed using Predictive Analytics Software (PASW

v20, SPSS Inc., Chicago, WI, USA). Comparisons of multiple means were examined using a

repeated measures analysis of variance (exercise protocol x time point). Post hoc analysis of

significant interaction and main effects were performed using Fisher’s protected LSD test. All

data are reported as mean ± standard error of mean (SEM) and statistical analysis conducted

at the 95% level of significance (p�0.05). Trends were reported when p-values were greater

than 0.05 and less than 0.1.

Results

Blood glucose and lactate

Significant interaction effects (p<0.05) were detected for blood glucose and lactate (p<0.05).

Post-hoc analysis revealed that compared to baseline, blood glucose was significantly elevated

(p<0.05) after HIIE, and to the greatest extent after SIE (Fig 2). Furthermore, post-hoc analysis

revealed that compared to baseline, blood lactate was elevated after CMIE, HIIE, and to the

greatest extent after SIE (Fig 2).

Skeletal muscle SAPK signaling

A significant interaction effect (p< 0.05) was detected for NF-κB p65 phosphorylation. Post-

hoc analysis revealed significantly greater (p< 0.05) NF-κB p65 phosphorylation immediately

Exercise-intensity, stress kinase and insulin protein signaling
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Fig 2. Blood lactate and blood glucose during and after exercise. (A) Blood lactate and (B) blood

glucose response to high-intensity interval exercise (HIIE), sprint-interval exercise (SIE), and continuous

moderate-intensity exercise (CMIE). a = p < 0.05 compared to baseline. Significantly different (p < 0.05) at

equivalent time point vs # = CMIE and † = HIIE

doi:10.1371/journal.pone.0171613.g002
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PLOS ONE | DOI:10.1371/journal.pone.0171613 February 9, 2017 6 / 15



after SIE compared to baseline, and greater phosphorylation immediately after SIE compared

to both HIIE and CMIE (Fig 3). Main time effects (p< 0.05) revealed greater phosphorylation

of p38 MAPK immediately after exercise, and greater JNK phosphorylation immediately after

and 3 hours after exercise compared to baseline (Fig 3). Main time effects (p< 0.05) revealed

lower protein abundance of IκBα immediately and 3 hours after exercise compared to baseline

(Fig 3).

Fig 3. Skeletal muscle SAPK signaling. Skeletal muscle protein phosphorylation relative to total protein content of (A) JNKThr183/

Tyr185, (B) NF-κB p65Ser536, (C) p38 MAPKThr180/Tyr182, and total protein content of (D) IκBα relative to Coomassie protein content,

after high-intensity interval exercise (HIIE), sprint interval exercise (SIE), and continuous moderate-intensity exercise (CMIE).

a = p < 0.05 compared to baseline; b = p < 0.05 compared to post-exercise. Significantly different (p < 0.05) at equivalent time point vs

# = CMIE and † = HIIE.

doi:10.1371/journal.pone.0171613.g003
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Skeletal muscle insulin protein signaling

A significant interaction effect (p< 0.05) was detected for IRS-1Ser307 phosphorylation. Post-

hoc analysis revealed significantly greater IRS-1Ser307 phosphorylation immediately after all

exercise bouts, and there was a trend for this to remain elevated at 3 hours after CMIE only

(Fig 4). IRS-1Ser307 phosphorylation was significantly greater immediately after HIIE compared

Fig 4. Skeletal muscle insulin protein signaling. Skeletal muscle total IRS-1 content (B) and phosphorylation relative to total

protein content of (A) IRS-1Ser307, (C) AktSer473, and (D) AS160Ser588, after high-intensity interval exercise (HIIE), sprint interval

exercise (SIE), and continuous moderate-intensity exercise (CMIE). a = p < 0.05 and (a) p<0.1 compared to baseline; b = p < 0.05

and (b) p < 0.1 compared to post-exercise. Significantly different (p < 0.05) or trend (p < 0.1 in parenthesis) at equivalent time point vs

# = CMIE and † = HIIE.

doi:10.1371/journal.pone.0171613.g004
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to CMIE, and greater 3 hours after CMIE compared to SIE. A significant interaction effect

(p< 0.001) was detected for AS160Ser588 phosphorylation. Post-hoc analysis revealed lower

phosphorylation of AS160Ser588 immediately after SIE and HIIE compared to baseline, and 3

hours after CMIE and HIIE compared to baseline (Fig 4). AS160Ser588 phosphorylation was

lower immediately after SIE compared to HIIE and CMIE, and was higher 3 hours after SIE

compared to CMIE. Phosphorylation of AktSer473 was lower immediately after exercise com-

pared to baseline and tended to remain lower 3 hours after exercise (Fig 4). Despite increased

IRS-1Ser307 phosphorylation, total IRS-1 protein was not significantly influenced by exercise

(Fig 4).

Discussion

We report that a single session of SIE elicited greater skeletal muscle NF-κB p65 phosphoryla-

tion compared to HIIE and CMIE, a similar increase in JNK and p38 MAPK phosphorylation,

and a similar decrease in skeletal muscle IκBα protein content. Thus, despite consisting of less

total work than CMIE and HIIE, SIE proved to be an effective stimulus for the activation of

stress protein kinase signaling pathways linked to exercise-mediated adaptation of skeletal

muscle.

Exercise intensity and skeletal muscle SAPK signaling

NF-κB p65 phosphorylation in human skeletal muscle was increased immediately after SIE,

but not after CMIE or HIIE. It is unclear why NF-κB p65 phosphorylation was not increased

after CMIE or HIIE, as NF-κB activity/phosphorylation is increased in skeletal muscle of

rodents after 1 hour of swimming and treadmill exercise [7, 28]. It is possible that only intense

supramaximal exercise provides sufficient stimulus to increase NF-κB p65 phosphorylation in

human skeletal muscle immediately after exercise. In support, Petersen et al. [29] reported no

change in human skeletal muscle NF-κB p65 phosphorylation immediately after 45-minutes of

continuous cycling (71% VO2peak) or after cycling to exhaustion (92% VO2peak). In addition to

NF-κB p65 phosphorylation, transcriptional activity of NF-κB requires ubiquitin-dependent

IκBα protein degradation, a process which permits inactive cytosolic NF-κB to translocate to

the nucleus [30, 31]. Our findings align with others reporting decreased IκBα protein abun-

dance in skeletal muscle after acute exercise [19, 29, 32]. This decrease appears to occur inde-

pendent of NF-κB p65 phosphorylation and exercise-intensity. It is possible that our biopsy

sampling times may not have captured peak NF-κB phosphorylation with CMIE and HIIE,

which is increased one hour after HIIE in human skeletal muscle [19], and is reported to peak

1–2 hours after exercise in human PBMC [31] and rat skeletal muscle [33].

Attenuation of the exercise-induced skeletal muscle NF-κB p65 signaling response in

humans and rodents, via allopurinol, apocynin, or n-acetylcysteine treatment/ingestion, coin-

cides with attenuation of PGC-1α, manganese superoxide dismutase, glutathione peroxidase,

citrate synthase, and mitochondrial transcription factor A gene expression [6, 7, 29]. As such,

greater NF-κB p65 phosphorylation after acute SIE may contribute to the equivalent or supe-

rior skeletal muscle and cardiometabolic adaptations previously reported with SIE training [1].

The p38 MAPK and JNK signaling pathways play an important role in exercise-mediated

mitochondrial biogenesis and antioxidant defense upregulation [34–38]. We provide evidence

that JNK and p38 MAPK phosphorylation are increased to a similar extent after SIE, CMIE,

and HIIE work-matched to CMIE. These findings support previous reports of similar post-

exercise p38 MAPK phosphorylation after continuous exercise work-matched to high-inten-

sity continuous cycling [39], HIIE [22], and SIE [23]. Furthermore, we showed that exercise-

induced skeletal muscle JNK phosphorylation in humans does not appear to occur in an

Exercise-intensity, stress kinase and insulin protein signaling
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exercise-intensity and/or volume manner, contradicting previous reports in rodents [40, 41].

Recently, Combes et al. [21] reported greater phosphorylation of p38 MAPK in human skeletal

muscle with intermittent cycling (30 x 1-min intervals at 70% VO2peak; 1-minute recovery

periods) compared to work and intensity matched continuous cycling (30 minutes at 70%

VO2peak). It was proposed that increased oscillations of the cytosolic NADH/NAD+ redox

state [42] elicited through intermittent exercise may play a larger role in p38 MAPK signaling

compared to the manipulation of exercise volume or intensity. It is possible that the metabolic

demands induced through HIIE and SIE in this and other studies were insufficient to increase

p38 MAPK, and potentially JNK phosphorylation, above that of continuous exercise [22, 23].

Further research is required to confirm these findings with exercise protocols that incorporate

greater metabolic disturbances.

The present findings suggest that superior skeletal muscle adaptation previously reported

with HIIE and SIE when compared to CMIE [1, 2, 4, 5], may occur through protein signaling

pathways independent of p38 MAPK and JNK. Nevertheless, SIE consisted of considerably less

total work than HIIE and CMIE, and therefore appears to be an effective exercise mode for

stimulating post-exercise skeletal muscle phosphorylation of p38 MAPK, JNK, and in particu-

lar NF-κB p65.

Exercise-intensity and phosphorylation of skeletal muscle insulin protein

signaling

We provide evidence that IRS-1Ser307 phosphorylation is increased immediately after CMIE

and SIE, and to a greater extent after HIIE. Interestingly, IRS-1Ser307 phosphorylation was simi-

lar to baseline 3 hours after HIIE and SIE. The physiological role of IRS-1Ser307 phosphoryla-

tion is unclear, as it is reported to both positively and negatively regulate downstream insulin

signaling and glucose uptake [19, 43]. AktSer473 phosphorylation, which is downstream of IRS-

1, decreased to a similar extent after all exercise protocols. Surprisingly, further probing of the

distal insulin signaling cascade revealed that phosphorylation of AS160Ser588 was attenuated in

an exercise-intensity and post-exercise time-course dependent manner.

Phosphorylation of AS160 (also known as TBC1D4) results in GTP loading and activation

of Rabs, releasing GLUT4 vesicles from intracellular compartments and promoting GLUT4

vesicle plasma membrane docking and glucose uptake [44]. Serine 588 specific phosphoryla-

tion of AS160 increases with human skeletal muscle contraction, insulin stimulation via the

hyperinsulinaemic-euglycaemic clamp, and may play a role in the acute post-exercise enhance-

ment of insulin sensitivity [17, 19, 45, 46]. Previous research is equivocal, with studies report-

ing no change [47, 48] or increased phosphorylation of AS160Ser588 after exercise in both

rodents and humans [17, 19, 49, 50]. We are the first to report decreased AS160Ser588 phos-

phorylation immediately after SIE and HIIE. Using the PAS160 antibody, which primarily

detects AS160Thr642 but also AS160Ser588 [51, 52], Treebak et al. [53] also reported a decrease in

AS160 phosphorylation immediately after high-intensity continuous cycling exercise (20 min-

utes, 80% VO2peak), whereas phosphorylation was unchanged immediately after CMIE (30

mins, ~67% VO2peak). We extend previous findings by reporting that AS160Ser588 phosphoryla-

tion is similar to baseline 3 hours after SIE, but remains lower after HIIE and CMIE.

The mechanism for the substantial decrease in AS160Ser588 phosphorylation immediately

after SIE is unclear. The reported elevation in blood glucose during and immediately after SIE,

and to a lesser extent after HIIE, suggests a transient counter-regulatory hormonal response

previously reported after higher-intensity exercise [54]. Certainly, resistance exercise and

extreme muscle damaging exercise inhibit insulin protein signaling [55, 56], likely through

mTOR inhibition of the PI3K signaling pathway [57]. However, mTOR signaling does not

Exercise-intensity, stress kinase and insulin protein signaling
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appear to be activated following acute SIE [9]. Alternatively, excess ROS such as hydrogen per-

oxide may override the potentiation of insulin signaling through the inactivation of protein

tyrosine phosphatases [58–60], by increasing JNK and NF-κB mediated inhibition of the

PI3K/Akt signaling pathway [61, 62]. In TNF-α/NF-κB induced insulin resistant human myo-

tubes, targeted interference of the NF-κB signaling pathway restores insulin stimulated AS160

and Akt phosphorylation and glucose uptake, despite minimal effect on JNK phosphorylation

[13]. Taken together, it is possible that SIE induced NF-κB signaling may transiently suppress

AS160 phosphorylation immediately after exercise. Whether the differential effect of exercise-

intensity on post-exercise AS160(Ser588) phosphorylation occurs at other AS160 phosphoryla-

tion sites, and whether these changes effect post-exercise insulin sensitivity, are unknown and

warrant further investigation.

Limitations

A potential limitation of the study is a small sample size. However, previous invasive human

studies have used similar sample sizes to detect significant changes in SAPK signaling [21, 29,

63]. The combined analysis of both males and females may limit interpretation of the results.

Nevertheless, exercise-induced p38 MAPK protein signaling appear to be similar between

sexes [64]. Furthermore, in the current study we did not undertake subcellular fractionation,

immunohistochemistry, and/or direct measurements of kinase activity due to limited tissue

availability. Protein kinase signaling is reported to be spatial-temporally sensitive [30, 65] and

as such future studies are required to determine the subcellular localization of protein kinase

phosphorylation and kinase activity before and after exercise of different intensities and mode.

It is also important to note that the acute activation of protein signaling pathways in skeletal

muscle do not always reflect functional changes in protein synthesis and/or adaptations with

chronic exercise training [23, 66]. Finally, findings in this study are delimited to young recrea-

tionally active adults, the specific exercise-protocols investigated, and the investigation of a sin-

gle session of exercise. Future research is required to confirm these findings with subsequent

bouts of exercise over a longer period of time, in more diverse populations with different exer-

cise protocols.

Conclusions

These findings demonstrate that p38 MAPK and JNK phosphorylation increase to a similar

extent after CMIE, HIIE and SIE. On the other hand, skeletal muscle NF-κB phosphorylation

was more responsive to intense exercise. Whether greater NF-κB phosphorylation post-SIE

contributes to the previously reported superior benefits of SIE on skeletal muscle adaption

warrants further investigation. Surprisingly, only CMIE and HIIE elicited a decrease in phos-

phorylation of the downstream glucose uptake signaling protein AS160 three hours after exer-

cise, despite substantially lower AS160 phosphorylation immediately after SIE. These findings

indicate that the time course of post-exercise AS160 phosphorylation, an important regulator

of contraction and insulin-stimulated glucose uptake, is influenced in an exercise-intensity

dependent manner. Taken together, exercise-intensity plays a role in regulating the complex

SAPK signaling pathways which are known to be involved in the adaptive cardiometabolic

responses to exercise.
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