
Fingerprinting of URL Logs: Continuous
User Authentication from Behavioural

Patterns

Jakub Nowak1 , Taras Holotyak2, Marcin Korytkowski1 ,
Rafa�l Scherer1(B) , and Slava Voloshynovskiy2

1 Czȩstochowa University of Technology, Al. Armii Krajowej 36,
42-200 Czȩstochowa, Poland

{jakub.nowak,marcin.korytkowski,rafal.scherer}@pcz.pl
2 Department of Computer Science, University of Geneva, Geneva, Switzerland

svolos@unige.ch

Abstract. Security of computer systems is now a critical and evolv-
ing issue. Current trends try to use behavioural biometrics for contin-
uous authorization. Our work is intended to strengthen network user
authentication by a software interaction analysis. In our research, we use
HTTP request (URLs) logs that network administrators collect. We use a
set of full-convolutional autoencoders and one authentication (one-class)
convolutional neural network. The proposed method copes with exten-
sive data from many users and allows to add new users in the future.
Moreover, the system works in a real-time manner, and the proposed
deep learning framework can use other user behaviour- and software
interaction-related features.

Keywords: URL logs · Computer networks · Continuous
authentication · Behavioural biometrics · Software interaction ·
Autoencoder · Convolutional

1 Introduction

For the past twenty years, the Internet and its utilisation have grown at an explo-
sive rate. Moreover, for several years computer network users have been using
various devices, not only personal computers. We also have to manage with
many appliances being constantly online and small Internet of Things devices.
Efficient computer network intrusion detection and user profiling are substantial
for providing computer system security. Along with the proliferation of online
devices, we witness more sophisticated security threats. It is possible to enumer-
ate many ways to harm networks, starting from password weakness. Malicious
software can be illicitly installed on devices inside the network to cause harm,
steal information or to perform large tasks. Another source of weakness can be
Bring Your Own Device schemes, where such devices can be infected outside

c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12140, pp. 184–195, 2020.
https://doi.org/10.1007/978-3-030-50423-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50423-6_14&domain=pdf
http://orcid.org/0000-0002-1572-3426
http://orcid.org/0000-0002-6002-2733
http://orcid.org/0000-0001-9592-262X
http://orcid.org/0000-0003-0416-9674
https://doi.org/10.1007/978-3-030-50423-6_14


Fingerprinting of URL Logs 185

the infrastructure. At last, social engineering can be used to acquire access to
corporate resources and data.

Each network user leaves traces, some of them are generated directly by the
user, e.g. on social networks, others are closely related to the computer network
mechanisms. Thanks to network traffic-filtering devices, network administrators
nowadays have an enormous amount of data related to network traffic at their
disposal. Authorising users based on their behaviour can be done in many ways,
depending on the available data and methods. Identification can be based on
facial features [15,17] or based on spoken instructions [2]. In [3,11] data from
smartphone sensors were used to analyse user behaviour. Similarly, the way how
the user unlocks the smartphone [4] can be explored, and based on the collected
data, they show the uniqueness of using the phone. This is related to certain
user preferences, habits as well as to the physical conditions of individual users,
i.e. the way the phone is held. Another option is to authenticate the user with
the signature [16]; in this solution, a signature is not only analysed as an image
but also the dynamics of the signature creation using a haptic sensor.

In our solution, we test whether the logged-in user has access to a given
resource and does not impersonate someone else by breaking initial security
measures based on, e.g., a password. Our research can be used in new generation
firewall devices working in layer 7 of the OSI model however, in our case, the
security rules will be based on the analysis of the pages visited. Our method
provides a continuous authentication based on software interaction patterns.

Last years brought learned semantic hashes to information retrieval. Semantic
hashing [13] aims at generating compact vectors which values reflect semantic
content of the objects. Thus, to retrieve similar objects, we can search for similar
hashes which is much faster and takes much less memory than operating directly
on the objects. The term was coined in [13]. They used for the first time a
multilayer neural network to generate hashes and showed that semantic hashing
obtains much better results than Latent Semantic Analysis (LSA) [7] used earlier.
A similar method for generating hashes can be using the HashGAN network [5];
this solution is based on generative adversarial networks [8].

In the presented solution, we use autoencoders to create semantic compact
hashes for the behaviour of computer network users from their URL request
sequences. Our approach is sparked by the aforementioned studies that use
hashes to analyze data, especially in NLP. After training the autoencoders, we
use the encoder parts to generate hashes and fed them to the input of a one-class
convolutional network that performs the final user authentication (Architecture
2). Schematic diagram of the system located in the computer network infrastruc-
ture is presented in Fig. 1. We also propose two smaller systems (Architecture
1 and 3) with worse accuracy. Through this research, we highlight the following
features and contributions of the proposed system.

– We present three different approaches to URL-based computer network user
software interaction behavioural continuous authentication. Up to now, the
network traffic was usually analysed by some hand-crafted statistics.



186 J. Nowak et al.

– Our work provides new insights, showing that the system of autoencoders and
convolutional neural network can be trained efficiently for one-class authen-
tication for nearly any number of users.

– The method can use nearly any kind of data as a features.
– The proposed system is fast and can be used in real-time in various IT

scenarios.

The remainder of the paper is organised as follows. In Sect. 2, we discuss the
problem of behavioural authenticating users in computer networks. The proposed
data representation and three Architectures are presented in Sect. 3. Experiments
on real-world data from a large local municipal network, showing accuracy and
a comparison of three presented Architectures, are shown in Sect. 4. Finally,
conclusions and discussions of the paper are presented in Sect. 5.

2 Problem Formulation

The aim is to create an additional security layer to verify users in IT systems
using data collected by computer network administrative infrastructure. The
additional authorisation is carried out without the user’s knowledge. The pro-
posed system constantly monitors HTTP request patterns for every computer in
the network. The requests come from browsing websites or applications sending
queries with URL addresses. In other words, the method provides a software
interaction-based behavioural biometrics. It should be remembered here that
the addresses stored in the firewall logs apply to both pages opened in WWW
browsers and programs running in the background, such as anti-virus or operat-
ing system updates. This article is based on data collected from a LAN network
infrastructure, which is used by residents of four districts in Poland, as well
as network users who are employees of the local government offices and their
organisational units, e.g. schools, hospitals, etc. Internet access to the analysed
network is done with the help of two CISCO ASR edge routers that route packets
using RIP version 2. The data for neural network training was collected between
June 2017 and January 2018, and for testing in February 2018. The size of raw
logs was approximately 460 GB, and 0.9 GB after preprocessing (selecting time,
date, user ID and URL).

Based on the previously collected data, we examine whether an anomaly
occurred, which is supposed to indicate a possible attack or use of the account
by another user. To solve the problem, we use autoencoders and convolutional
networks using various methods of data representation. We divided the task into
several stages. The first is to create a session based on registered URL logs from
the database. In our case, a session means a set of consecutive, non-repeating
URLs for a given user. Each URL address was truncated to 45 characters. This
size comes from the average length of addresses and observation of their construc-
tion. We have assumed that the most important information is at the beginning
of the address. We primarily care about the domain of the website visited, the
protocol that was used, and the basic parameters of the GET method. When
creating a session, it happened that a query consisting of several URLs was sent



Fingerprinting of URL Logs 187

URL Logs

Internet

LAN Users

Server (firewall) + OC-NN

Fig. 1. System location in the computer network infrastructure.

at the same time. In this case, certain sets of addresses were associated in a very
specific way; between two identical addresses, another one different from the oth-
ers was added. To remove duplicate addresses, an additional sorting by address
name was used. An example of a set requested at the same time is “address1
address2 address1 address3 address1”. We tend rather to have the set “address1
address2 address3”. This is an exceptional case; however, omitting increases the
authenticating CNN error. The session to be analyzed consists of a minimum
of 20 different URLs with a maximum length of 45 characters included in the
dictionary. Another limitation was the maximum size of the session to be ana-
lyzed. We used up to 200 different URLs for fast neural network operation. The
interval between the recorded addresses in one session cannot be longer than
30 min. If this time has been exceeded, successive addresses form a new session.

3 Neural Network Architecture

We scrutinized three neural configurations: Architecture 1 with a convolutional
network (CNN) with two-dimensional filters used for text classification, Archi-
tecture 2 consisting of one-class CNN with unique autoencoder for every user,
and Architecture 3 with one-class CNN network and one autoencoder for all the
users.

3.1 Data Representation

A URL is an address that allows locating a website on the Internet. The user
encounters it mainly when using a web browser. However, URLs can be requested
by applications running in the background such as antiviruses, system updates,
etc. Each user’s computer uses different applications and at a different time,
which allows to even better distinguish them. Very often text is represented by
some dictionaries. The construction of the URL has been repeatedly addressed
in various articles [1,20]. The majority of the previous works created some hand-
crafted features based on URL statistics. URLs do not consist regular words; thus
using word dictionaries is not viable. In our experiment, we encode the entire



188 J. Nowak et al.

address without dividing its subsequent parts. The condition is that the charac-
ters that constitute the URL should be in the previously defined set containing
64 unique characters. We were inspired here by Zhang et al. [19] to present text
data in the form of a one-hot vector at the character level. The dictionary con-
sisted of the following characters:

abcdefghijklmnopqrstuvwxvyz 0123456789
-;.!?:/\| @#$%^& * ~’+=<>()[]

If a character was not from the above alphabet it was removed. At the input of
the neural network, in addition to the session of addresses used for classification,
we also provide user identification data. In our case, we concatenate the user
ID data with the URL input session. Therefore, in one input column, we have
two values equal to 1, the rest of the rows of one column are filled with zeros.
The first one is placed on the position in the range <1, 64> which defines the
letter from the dictionary, the second one on the position in the range <65, 119>
denoting the user ID, because each user has its unique number. The input size
to the CNN network in Architecture 1 was 119 × 4096, where 4096 means the
maximum length of the session we can provide at the network input. The coding
scheme is presented in Fig. 2.

UR
L S

es
sio

n
Us

er
 ID

URL session length

Fig. 2. URL text coding scheme for convolutional networks in Architectures 1–3. The
upper part is one-hot character-level text encoding, and the lower part is one-hot user
ID encoding.

3.2 Architecture 1

Our first attempt was to use a convolutional neural network with two-
dimensional filtering presented in Fig. 3, similar to [10]. The network architecture
is as follows:



Fingerprinting of URL Logs 189

ConvLayer 128 FMs, filter 7x119, stride 3, ReLU
MaxPoolingLayer 3
ConvLayer 256 FMs, filter 5x128, stride 2, ReLU
MaxPoolingLayer 3
ConvLayer 256 FMs, filter 3x256, stride 1, ReLU
MaxPoolingLayer 3
Fully connected 512 + Dropout, ReLU
Fully connected 256 + Dropout, ReLU
Output 2 softmax

This method proved to be a weak solution to the problem because the sin-
gle convolutional neural network had to cope with a highly complex problem
and demonstrated a significant classification error. The accuracy of the anomaly
recognition exceeded barely 63%, which is slightly higher than the random
response and not viable in real-world computer network infrastructure.

CONV MP F
C

URLs

User ID

F
C...

O
UTPUT

Filters

Filters

stride

stride

Fig. 3. Convolutional network used in Architecture 1. Detailed meta-parameters are
provided in the text. All the filters are large enough to use a one-directional stride.
CNNs in Architecture 2 and 3 are similar with different meta-parameters, and the
autoencoder latent space instead of the URL session.

3.3 Architecture 2

Architecture 2 was inspired by the one-class neural network [6], and here each
user (class) has a different autoencoder. The task of the network is to detect
an anomaly in a given class. In our case, we add the user ID to “ask” the
network whether given network traffic belongs to this particular user. Initially,
we tried to use modified convolutional networks of the U-Net [12] structure
without connections between feature maps of the same size (skip connections),
what transpired to have an unacceptable training error. In the decoder part of the
autoencoder, we implemented a sub-pixel convolutional layer in one dimension
inspired by [14]. It changes the size of the input to the convolutional layer by
increasing the width of the channels at the expense of their number.



190 J. Nowak et al.

Training data for the autoencoder is created similarly to one sentence in NLP
consisting of URLs instead of words. We do not use a separator between URLs;
addresses are given as words in a sentence. The structure of the autoencoder for
text is different from the structure of the autoencoder for images; here we were
inspired somehow by [18]. In our case, the latent space (bottleneck) layer in the
autoencoder is 128×64. In the adopted architecture with pooling, each addition
of a layer reduces the size of the smallest, latent space layer in the autoencoder.
The size of the latent space is a trade-off determined experimentally between the
accuracy and the input size to the one-class CNN. The autoencoder structure
used in the article is presented in Fig. 4a), and the detailed meta-parameters are
as follows:

– Encoding part
1. ConvLayer1 64 FMs, filters 3 × 64, stride 1, ReLU + padding + MaxPooling

Output 64 × 2048
2. ConvLayer1 64 FMs, filters 3 × 64, stride 1, ReLU + padding + MaxPooling

Output 64 × 1024
3. ConvLayer1 64 FMs, filters 3 × 64, stride 1, ReLU + padding + MaxPooling

Output 64 × 512
4. ConvLayer1 64 FMs, filters 3 × 64, stride 1, ReLU + padding + MaxPooling

Output 64 × 256
5. ConvLayer1 64 FMs, filters 3 × 64, stride 1, ReLU + padding + MaxPooling

Output 64 × 128 (after training, it is the input for the discriminator)
– Decoding part

1. ConvLayer1 64 FMs, filters 3 × 32, stride 1, ReLU + padding + UpPooling
Output 64 × 512

2. ConvLayer1 64 FMs, filters 3 × 32, stride 1, ReLU + padding + UpPooling
Output 64 × 512

3. ConvLayer1 64 FMs, filters 3 × 32, stride 1, ReLU + padding + UpPooling
Output 64 × 1024

4. ConvLayer1 64 FMs, filters 3 × 32, stride 1, ReLU + padding + UpPooling
Output 64 × 2048

5. ConvLayer1 64 FMs, filters 3 × 32, stride 1, ReLU + padding + UpPooling
6. ConvLayer1 64 FMs, filters 3 × 32, stride 1, Sigmoid activation

Output 64 × 4096

Our solution also utilizes a discriminator as a convolution network. The prob-
lem posed by us was to check whether the recorded session belongs to the user
and whether a given set of URLs could be generated by a specific user. It was,
therefore, necessary to create a suitable discriminator for the autoencoder. The
idea of the discriminator is similar to the GAN network [8]; we only care about
assessing the mapping of data in the autoencoder and whether the given set
could be created by a specific user.

The user identifier has been moved in relation to Architecture 1 from the
system input to the discriminator input, i.e. the last coding (latent space) layer
in the autoencoder, the user coding method is identical as in the case of Archi-
tecture 1. The autoencoder, in this case, is unique for each user (unlike in Archi-
tecture 3). The discriminator input in Architecture 2 and 3 was 183× 64, where
183 is made up from 128 (column size with hash from the autoencoder latent



Fingerprinting of URL Logs 191

space) and 55 (user ID added in the same way in Architecture 1). The value 64
comes from the number of feature maps from the autoencoder. Detailed meta-
parameters of the discriminator in Architecture 2 and 3 are as follows:

Full CN
N

64x
128

Se
ss

io
n_

U1
_n

Full CN
N

64x
128

Se
ss

io
n_

U5
5_

n

Full CN
N

64x
128

U
RL

 S
es

si
on

55x 
128ONE-HOT USER ID

CN
N2 

(CN
N + FC)

0

1
1/0 depending on 
the input session 

55 encoders for all users one for all users

55X for all users

.

.

.

a)

Se
ss

io
n_

U1
_n

Fu
ll 

de
CN

N

Se
ss

io
n_

U1
_n

Fu
ll 

de
CN

N

b)

Fig. 4. Architecture 2 consists of many autoencoders and one convolutional network
(discriminator). The left part a) is a set of as many autoencoders as the users in the
network. The right part b) is the authenticating infrastructure using encoders from a)
and the convolutional network with fully connected authentication layer.

– Input from autoencoder + User ID 183 × 64
– ConvLayer 32 FM, filters 5 × 183, stride 2, batch normalization, ReLU
– MaxPoolingLayer 2
– ConvLayer 64 FM, filters 3 × 32, stride 1, batch normalization, ReLU
– MaxPoolingLayer 2
– ConvLayer 128 FM, filters 3 × 64, stride 1, batch normalization, ReLU
– MaxPoolingLayer 2
– Fully connected 512 + dropout 0.5, ReLU
– Fully connected 128 + dropout 0.5, ReLU
– Output 2 softmax

3.4 Architecture 3

We combined the two previous frameworks to create something in between in
terms of size and complexity. Creating separate autoencoders for each user is
somehow problematic in terms of logistics, where it is easy to make a mistake in
processing sessions for the user. Here we use one autoencoder as a uniform way
of representing URLs for all users. The size of the autoencoder is the same as
in the previous Architecture 2. This solution improved the results of the CNN
from Architecture 1; however, it was worse than Architecture 2 with user-wise
unique autoencoders.



192 J. Nowak et al.

4 Experiments

We performed experiments on a database with logs of visited URLs for 55 users.
In the case of our database, the most active user had 6,137 training sessions,
and the least active user had 440 URL sessions, which was about 14 times less
(details are presented in Table 3. In training all Architectures 1–3, we had to
generate illegitimate user sessions for the training purposes. We did not decide
to create synthetic user sessions because this is a challenging issue, and it could
result in generating data different from the existing distribution. In our research,
the data that the discriminator has to evaluate negatively was created based on
existing sessions. However, we provide them to the network as if they belonged
to another user. These sessions are randomly selected from among the entire
dataset.

The cross-entropy with softmax loss function from the CNTK package was
used to train CNNs (discriminators). The training coefficient for CNNs was taken
on as follows: 0.0008 for 5 epochs, 0.0002 for 10, 0.0001 for 10, 0.00005 for 10
epochs, and 0.00001 from then on to a maximum of 300 learning epochs.

We used the binary cross-entropy loss function for training all the autoen-
coders. The best universal effects for each user were obtained when the learning
coefficient was 0.0001 for the first two epochs then 0.00001 for 200 epochs. We
trained all the architectures with the momentum stochastic gradient descent
(SGD) algorithm with momentum set at 0.9 for both autoencoder and CNN.

To assess the accuracy of the autoencoder (Table 2), the Sørensen similar-
ity coefficient QS = 2C

A+B was used, where A and B are compared elements,
in our case the output and input to the autoencoder and C is the number of
elements common for both layers. After each convolutional layer we used Batch
Normalization [9] with RELU activation function. The results are summarized
in Table 1.

Table 1. Overall accuracy of the three presented Architectures

Architecture Accuracy

1. CNN 61.00 %

2. OC and 1 autoencoder 68.00 %

3. OC and 55 autoencoders 84.24 %

The best solution turned out to be Architecture 2 using dedicated autoen-
coders and one discriminator. The detailed results for each user are presented in
Table 3. The number of training sessions for a given user does not affect accuracy.

During the implementation of neural networks, the only limitation turned
out to be the available GPU memory. We used four Nvidia GTX 1080 Ti graph-
ics cards with 11 GB of memory. In the case of training autoencoders, we could
divide each task into four graphics cards without the need for special techniques
enabling multiprocessing on multiple graphics cards. Autoencoder networks can



Fingerprinting of URL Logs 193

Table 2. Accuracy of the encoders trained on user URL sessions. After training, the
encoder parts are fed to the one-class CNN (discriminator).

User ID 1 2 3 4 5 6 7 8 9 10

Accuracy 87.4% 83.4% 87.5% 83.3% 83.5% 89.8% 85.9% 79.0% 87.3% 87.3%

User ID 11 12 13 14 15 16 17 18 19 20

Accuracy 87.1% 88.1% 89.0% 77.5% 85.0% 87.0% 86.2% 83.5% 85.1% 86.7%

User ID 21 22 23 24 25 26 27 28 29 30

Accuracy 83.4% 87.5% 85.9% 83.2% 75.9% 82.9% 82.5% 84.1% 86.3% 80.5%

User ID 31 32 33 34 35 36 37 38 39 40

Accuracy 77.1% 79.8% 80.4% 77.9% 80.9% 90.8% 72.8% 87.4% 79.9% 88.9%

User ID 41 42 43 44 45 46 47 48 49 50

Accuracy 86.2% 84.7% 78.4% 86.8% 81.9% 87.3% 91.6% 77.8% 79.2% 80.5%

User ID 51 52 53 54 55

Accuracy 73.9% 74.9% 82.0% 88.5% 85.4%

Table 3. Number of training and testing sessions, and accuracy of detecting anomalies
by the global, one-class CNN for every computer network user.

User ID 1 2 3 4 5 6 7 8 9 10

Training 6137 5199 3184 2892 2434 2368 2120 1928 1841 1674

Testing 1534 1299 795 723 608 591 530 481 460 418

Accuracy [%] 93.82 85.84 82.92 70.59 80.13 93.06 78.05 84.98 83.93 89.24

User ID 11 12 13 14 15 16 17 18 19 20

Training 1663 1650 1266 1236 1206 1181 1168 1091 1047 987

Testing 415 412 316 308 301 295 292 272 261 246

Accuracy [%] 73.67 90.46 84.22 83.08 90.92 80.85 83.44 90.97 87.54 88.80

User ID 21 22 23 24 25 26 27 28 29 30

Training 984 969 948 920 920 840 835 817 810 731

Testing 246 242 237 229 230 209 208 204 202 182

Accuracy [%] 82.96 83.26 81.97 71.10 80.37 79.10 80.62 87.08 87.60 79.19

User ID 31 32 33 34 35 36 37 38 39 40

Training 715 705 705 703 686 670 664 643 1303 604

Testing 178 176 176 175 171 167 166 160 325 151

Accuracy [%] 79.04 88.11 74.16 94.25 76.32 86.47 92.65 84.94 72.86 87.57

User ID 41 42 43 44 45 46 47 48 49 50

Training 588 579 573 567 544 500 479 474 470 446

Testing 147 144 143 141 136 125 119 118 117 111

Accuracy [%] 86.79 80.73 86.93 84.86 86.09 91.97 92.07 86.35 88.92 85.18

User ID 51 52 53 54 55

Training 440 621 637 885 1267

Testing 110 155 159 221 316

Accuracy [%] 81.53 76.91 80.47 87.48 85.23



194 J. Nowak et al.

be trained independently of each other. To speed up the learning of the dis-
criminator, we use data from the autoencoder training instead of computing the
encoder output again. Otherwise, only 40 users could be trained on the aforemen-
tioned equipment without using this technique. To train more users, a machine
with more GPU memory is required. This limitation, however, was not valid
after training and if we had a machine with more memory only for training, it
would be possible to use the trained system on the equipment we had at our
disposal. Another indicator is the number of URL sessions processed by the sys-
tem in a specific time. Using the above-mentioned GPU, we are able to process
a set (mini-batch) of 200 sessions in 36.8 ms per package, which shows that the
system can be used in real-time scenarios. This is the number of sessions that
can be loaded at once on a GPU with 11 GB memory.

5 Conclusion

Our system based on autoencoders and one-class CNN, is a new approach to
system security and anomaly detection in user behaviour. It provides continuous
authentication of computer network users by software interaction analysis. We
used real text data from the network traffic instead of hand-crafted traffic statis-
tics as in the case of the previous approaches. Moreover, the proposed framework
is a universal anomaly detection system applied in the paper for user authenti-
cation. We proposed three architectures that differ in size and complexity. The
best architecture presented in the paper allows to add and remove any user
without having to retrain the whole system. Thanks to this, we can save both
time and computational resources. The presented solution can be used for other
behavioural security solutions to create user profiles utilizing other available
data. Future research would involve alternate methods to create autoencoders
to improve accuracy. In the presented article, we used the same way of training
the autoencoder for each user. To obtain better results, it would be beneficial to
create a dedicated autoencoder architecture for each user, but this would involve
a change in the implementation of the discriminator.

Acknowledgement. The project financed under the program of the Polish Minister
of Science and Higher Education under the name “Regional Initiative of Excellence”
in the years 2019–2022 project number 020/RID/2018/19, the amount of financing
12,000,000.00 PLN.

References

1. Blum, A., Wardman, B., Solorio, T., Warner, G.: Lexical feature based phishing
URL detection using online learning. In: Proceedings of the 3rd ACM Workshop
on Artificial Intelligence and Security, pp. 54–60. ACM (2010)

2. Boles, A., Rad, P.: Voice biometrics: deep learning-based voiceprint authentication
system. In: 12th System of Systems Engineering Conference (SoSE), pp. 1–6, June
2017



Fingerprinting of URL Logs 195

3. Buriro, A., Crispo, B., Delfrari, F., Wrona, K.: Hold and sign: a novel behavioral
biometrics for smartphone user authentication. In: IEEE Security and Privacy
Workshops (SPW), pp. 276–285, May 2016

4. Buriro, A., Crispo, B., Conti, M.: AnswerAuth: a bimodal behavioral biometric-
based user authentication scheme for smartphones. J. Inf. Secur. Appl. 44, 89–103
(2019)

5. Cao, Y., Liu, B., Long, M., Wang, J.: HashGan: deep learning to hash with pair
conditional Wasserstein GAN. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1287–1296 (2018)

6. Chalapathy, R., Menon, A.K., Chawla, S.: Anomaly detection using one-class neu-
ral networks. arXiv preprint arXiv:1802.06360 (2018)

7. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inform. Sci. 41(6), 391–407 (1990)

8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

10. Kwon, D., Natarajan, K., Suh, S.C., Kim, H., Kim, J.: An empirical study on
network anomaly detection using convolutional neural networks. In: IEEE 38th
International Conference on Distributed Computing Systems (ICDCS), pp. 1595–
1598. IEEE (2018)

11. Mahfouz, A., Mahmoud, T.M., Eldin, A.S.: A survey on behavioral biometric
authentication on smartphones. J. Inf. Secur. Appl. 37, 28–37 (2017)

12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

13. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reason-
ing 50(7), 969–978 (2009). Special Section on Graphical Models and Information
Retrieval

14. Shi, W., et al.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

15. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint
identification-verification. In: Advances in Neural Information Processing Systems,
pp. 1988–1996 (2014)

16. Xiao, G., Milanova, M., Xie, M.: Secure behavioral biometric authentication with
leap motion. In: 4th International Symposium on Digital Forensic and Security
(ISDFS), pp. 112–118, April 2016

17. Zhang, P., You, X., Ou, W., Chen, C.P., Cheung, Y.M.: Sparse discriminative
multi-manifold embedding for one-sample face identification. Pattern Recognit.
52, 249–259 (2016)

18. Zhang, X., LeCun, Y.: Byte-level recursive convolutional auto-encoder for text.
arXiv preprint arXiv:1802.01817 (2018)

19. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 1. NIPS 2015, pp. 649–657. MIT Press,
Cambridge (2015)

20. Zouina, M., Outtaj, B.: A novel lightweight URL phishing detection system using
SVM and similarity index. Hum. Cent. Comput. Inf. Sci. 7(1), 17 (2017)

http://arxiv.org/abs/1802.06360
http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1802.01817

	Fingerprinting of URL Logs: Continuous User Authentication from Behavioural Patterns
	1 Introduction
	2 Problem Formulation
	3 Neural Network Architecture
	3.1 Data Representation
	3.2 Architecture 1
	3.3 Architecture 2
	3.4 Architecture 3

	4 Experiments
	5 Conclusion
	References




