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Abstract

The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG) is associated with brain activity in the
cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we
performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting
state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent
(BOLD) signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS) during 20-minute
EEG recordings, we divided the APTS into two components: fast fluctuation (0.04–0.167 Hz) and slow fluctuation (0–
0.04 Hz). Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation
component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the
thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the
thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different
subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.
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Introduction

Spontaneous electroencephalogram (EEG) is widely used as a

clinical tool to judge the general condition of the brain, such as the

stage of sleep or level of consciousness. The EEG rhythm that

ranges from 8 to 13 Hz when recorded from the occipital area

during a resting state with the eyes closed is termed the alpha

rhythm [1] or posterior dominant rhythm. The alpha rhythm is

generally considered an index of vigilance or arousal, and the

emergence of alpha oscillations is thought to represent an ‘‘idling’’

state of the relevant cortices [2,3]. In addition, the alpha rhythm is

now widely used as an index of evaluation for relaxation or

pleasure in various fields such as neuromarketing [4–6].

Previous studies using multimodal methods, especially simulta-

neous EEG recordings and neuroimaging procedures, have

attempted to identify the areas of the brain correlated with the

power of the alpha rhythm [7–17]. In general, negative

correlations between alpha power and brain activity have been

reported within the cerebral neocortex, especially the occipital,

parietal, and inferior frontal regions, whereas positive correlations

have been observed within the central deep-lying brain regions

such as the thalamus, amygdala, and insula as well as the anterior

cingulate cortex and cerebellum.

The negative correlation between cortical activation and the

EEG in the alpha frequency range is a relatively common finding

across previous studies. It is well established that the power of the

alpha rhythm decreases when cortical activity beneath the EEG

electrode increases, including alpha attenuation [1] and event-

related desynchronization (ERD) [18]. Recently, this relationship

was applied to the field of brain–machine/computer interface (e.g.

[19]). Conversely, positive correlations between the alpha rhythm

and brain activity by fMRI are not always reported and the causes

remain unclear, which may be partly due to inaccuracy in the

assumption of a fixed canonical HRF as shown by De Munck et al.

[20,21].

The spontaneous fluctuation of alpha power is likely to reflect a

mixture of multiple factors, each having a different dynamic

characteristic. First, the generation and modulation of alpha

rhythm is thought to involve different brain regions. Salek-

Haddadi et al. [22] reported that ‘‘alpha oscillations may be

related to three different types of areas: (1) the generators of the

cortical rhythm, such as the occipital cortex; (2) areas forming part

of the circuit but not directly generating the scalp-detectable

rhythms (e.g. thalamus); and (3) other areas correlated with alpha

but not causally linked, for example as linked to changes in arousal

only.’’ Second, the transition of alpha oscillation has some
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different dynamics. For example, a phenomenon known as

‘‘waxing and waning’’ of the alpha rhythm occurs for a period

of several seconds [23]. Moreover, the ERD occurs within seconds

after stimuli [3]. Furthermore, the arousal level characterized by

alpha oscillation [24] is altered very slowly and has a longer time

constant.

Thus, if different brain systems regulate alpha rhythm in

parallel, the alpha power time series (APTS) on EEG may consist

of different dynamic components of alpha power. To test this

hypothesis, we performed simultaneous EEG and fMRI to record

the alpha oscillation and brain activity during a resting state. By

applying a data-driven method known as empirical mode

decomposition (EMD) [25] and low and high pass filters to EEG

data to separate the APTS into several components, we examined

the relationship between the different frequency components of

the alpha power time series (APTS) on EEG and brain activity to

determine the dynamics of the relevant brain regions in alpha

power fluctuation.

In the present study, we focused on the positive correlation

between the alpha rhythm and brain activity for practical use of

EEG signals to monitor activity in deep-lying brain regions. These

regions of the brain are known to be involved in diffuse regulation

by means of widely modulating neuronal responses through diffuse

projections from the brain stem to various parts of the brain, such

as the reticular formation [26]. By determining the relationship

between EEG signals and deep-lying brain region activity, scalp

EEG may be used as a practical index of activity of deep brain

structures without functional magnetic resonance imaging (fMRI).

Materials and Methods

Subjects
Twenty healthy volunteers participated in this study (9 female

and 11 male subjects; mean age, 27.3 years). The subjects gave

written informed consent before the experiments, which were

approved by the institutional ethical review board of the National

Institute of Neuroscience, National Center of Neurology and

Psychiatry. According to the approved protocol, subjects with a

current or previous history of neurological or psychiatric disorders

and those with metal implantation were excluded from the study.

The subjects were asked to lie still on a scanner bed in the dark for

20 minutes with their eyes closed, but not fall asleep, to obtain

spontaneous variations in the alpha rhythm.

Measurements of simultaneous EEG and fMRI
EEGs were recorded with a 32-channel MR-compatible EEG

amplifier (Brain Products, Munich, Germany) and an EEG cap

with Ag/AgCl electrodes according to international standards (10/

20 system). To correct ballistocardiogram artifacts, electrocardio-

graphic data were also captured from electrodes on the backs of

subjects. The reference electrode for the EEG recording was

positioned between Fz and Cz. EEG data were acquired at a rate

of 5 KHz using BrainVision Recorder software (Brain Products).

The EEG amplifier had an amplitude resolution of 16 bits. A

vacuum cushion was used to fix the subject’s head within the head

coil to avoid artifacts originating from subject movement and the

ballistocardiogram [c.f.] [27]. The amplifier system was placed

beside the subject’s head within the scanner during fMRI to

shorten the cable between the EEG cap and the amplifier.

MRI was performed with a 3-Tesla scanner (Trio; Siemens,

Erlangen, Germany) using a standard transmitter-receiver coil.

The T1-weighted sequence, MPRAGE, was used for anatomic

referencing of the fMRI recordings and co-registration (TR,

2000 ms; TE, 4.4 ms; FA, 80 degrees; voxel size, 16161 mm; 196

slices). For functional scans, T2*-weighted, gradient-echo, echo

planar imaging was used (TR, 3000 ms; TE, 30 ms; FA, 90

degrees; voxel size, 36363 mm; 40 slices). A total of 404 image

volumes were acquired at the rate of one every 3 seconds. The first

four volumes were discarded to avoid magnetic saturation effects.

The total time per session was 20 minutes.

To establish time alignment between the EEG data and blood

oxygenation level-dependent (BOLD) signals, a SyncBox device

(Brain Products) was used to achieve phase synchrony between the

clock for digital sampling of the EEG data and that for driving the

MR systems gradient switching. Thus, the starting point of MR

image acquisition in each interval was marked in the EEG time

course data in which data sampling points were precisely

synchronized with MR image acquisition. These markers were

used for MRI scanner artifact correction, as described below.

Analysis of EEG data
To correct artifacts originating from the MRI scanner and

ballistocardiogram, the recorded EEG data were processed by

BrainVision Analyzer 2.0 (Brain Products) using the average

template subtraction method [28,29]. First, all data were filtered

by a low-pass filter with a cut-off frequency of 70 Hz. Because

MRI scanner artifacts were regularly repeated every TR interval,

the interval of these artifacts could be precisely identified from the

markers of the starting point of each MR image acquisition. A

template of MRI scanner artifacts in EEG signals was created by

averaging the MRI scanner artifacts over a set number of intervals

and subsequently subtracting this average from the data. The

sampling rate of the data was decreased to 250 Hz. Second, the

ballistocardiogram artifacts were removed in a similar fashion.

The peaks of the R-waves detected in the electrocardiographic

channel were marked by a cross-correlation between a semi-

automatically defined pulse peak and the data. A template was

created by averaging the EEG data time-locked to the timing of

the detected R-wave peaks, and then the averaged template was

subtracted from the original EEG data for each R-wave peak. We

also employed an independent component analysis (ICA) [30,31]

and obtained a similar result. This compared well with a report by

Grouiller et al. [32] showing that the template subtraction method

is efficient in removing artifacts for experimental data.

To avoid bias effects from the reference positions (e.g., TP9,

TP10, FCz), and to specify the alpha power of the parieto-occipital

regions, the corrected EEG data recorded from the parieto-

occipital regions (i.e., P3, P4, P7, P8, O1, and O2 in the

international 10/20 system) were reconfigured into four bipolar

derivations (i.e., P7–O1, O1–P3, P8–O2, and O2–P4) after

correction of the MRI scanner and ballistocardiogram artifacts.

The re-reference to the parieto-occipital regions emphasizes the

relevant local EEG sources over global EEG sources by removing

signals that are common between the neighboring electrodes. The

data were segmented every 3 seconds to match the TR of the

fMRI data. The powers of the frequency components in these four

channels were calculated by fast Fourier transformation (FFT) with

a frequency resolution of 0.5 Hz. A moving time window of 2-

second lengths with interpolation was used to calculate the FFT of

3-second analysis epochs to ensure the alpha frequency range from

8 to 12.5 Hz. The powers of the alpha rhythm band (8–12.5 Hz)

for each channel were averaged for each segment. Averaging the

powers across hemispheres emphasizes or assumes commonality in

this measure across hemispheres. This procedure resulted in an

average alpha band power every 3 seconds, denoted as the APTS

(Figure 1A). The data points in the APTS exceeding the standard

deviation by 3-fold or greater were excluded and replaced by

linearly interpolated values. To exclude systematic differences in

Dynamic Changes in Alpha Power Fluctuation
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the amplitude of the APTS across subjects, the APTS in each

subject was normalized to the range of 0 to 1, as follows [33]:

Normalized APTS~(Original APTS{APTS min )=APTS max

Here, APTSmin and APTSmax represent the minimum and

maximum values of APTS, respectively. The original APTS was

used as a regressor in the general linear model (GLM) for fMRI

analysis to explore the brain regions whose activity specifically

correlated with the original APTS. We assumed that the APTS

may reflect a different type of brain mechanism of generation or

modulation of the alpha EEG. To examine for such a mechanism,

we focused on the dynamic aspect of the APTS changes and

analyzed the frequency components of the APTS. To divide the

APTS into sub-frequency components, a data-driven method

termed empirical mode decomposition (EMD) introduced by

Huang et al. [25] was employed. The EMD is an algorithm

whereby a single time-course is decomposed into its oscillatory

components and is applied to non-stationary and nonlinear time

series analysis [25], such as APTS and BOLD signals. For

example, Niazy et al. [34] reported the ability of the EMD for

investigating time series of spontaneous BOLD signals during

resting-state. Each oscillatory component is called an intrinsic

mode function (IMF) that is defined by the following two

conditions. First, the number of zero-crossings and extrema must

be the same or differ at most by 1. Next, the mean between the

upper and lower envelopes must be close to zero according as

stopping criteria.

The algorithm of EMD [35] can be described as follows:

Given a signal x(t),

1. Identify all extrema of x(t)

2. Interpolate between minima (resp. maxima), resulting in an

envelope emin(t) (resp. emax(t))

3. Compute the mean m(t) = (emin(t)+emax(t))/2

4. Extract the detail d(t) = x(t)2m(t)

5. Iterate on the residual m(t)

Steps 1 to 4 are iterated until the detail satisfies the above two

conditions. This procedure is defined as a sifting process

[25,35,36]. The detail is referred to as an IMF after the sifting

process stops, the residual is calculated, and step 5 is followed.

The APTS was subjected to the EMD algorithm to explore its

IMFs. Figure 1B depicts the application of the EMD to the APTS

of a single subject. In the present study, we chose IMFs 1 to 5 for

further analyses. The IMFs were subjected to FFT analysis to

explore the frequency profile. The Nyquist frequency of the FFT

was 0.167 Hz as the APTS was sampled every 3 seconds.

Figure 2A depicts all the spectrums of the IMFs of each subject.

Each IMF group derived from different subjects roughly covered

the same frequency band (Figure 2A). Figure 2B shows the

averaged power spectrums of each IMF across all subjects. It is

worth noting that each IMF has a unique frequency band (the first

IMF covers the highest frequencies and the last IMF covers the

lowest one), and that each frequency band of the IMFs have

crossovers with each other. These IMFs were used as regressors in

the GLM for fMRI analysis to explore the brain regions whose

activity specifically correlated with each IMF.

Figure 1. Calculation of the EEG alpha power time series (APTS) and intrinsic mode functions (IMFs). A: After removal of the MRI and
ballistocardiogram artifacts, the EEG data from the four bipolar channels were subjected to frequency analysis using fast Fourier transform (FFT) for
each 3-second segment (gray in the upper panel). The powers of the alpha band across the four bipolar channels were averaged. The averaged
power values were then temporally aligned as the APTS, as shown in the bottom panel. A scalp topography of alpha power of a single subject is
shown in the right middle panel. Note that the topography is described by EEG data of a unipolar induction, and L indicates the left side of the brain.
B: An example of the IMFs for a single subject. An APTS of a single subject is shown in the upper panel. Next, the IMFs separated by the empirical
mode decomposition (EMD) from the APTS were shown from the first to the fifth IMF.
doi:10.1371/journal.pone.0066869.g001
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According to the results of the correlation between the IMFs

and brain activity, to verify the results we divided the APTS into

slow and fast fluctuation components of the APTS using low and

high pass filters. Based on the crossover between the averaged

power spectrum of IMF2 and IMF3, the two fluctuation

components of the APTS were defined as follows: slow

fluctuation(,0.04 Hz) and fast fluctuation (.0.04 Hz)

(Figure 2B). Each fluctuation component was then extracted by

filtering the original APTS with Butterworth low-pass and high-

pass filters (low-pass filter: passband ripple, 3 dB; passband

frequency, 0.04 Hz; slope, 249 dB per octave; high-pass filter:

passband ripple, 3 dB; passband frequency, 0.04 Hz; slope, 48 dB

per octave). These two fluctuation components were used as

regressors in the GLM for fMRI analysis to explore the brain

regions whose activity specifically correlated with each fluctuation

component, as described below. Note that the slow and fast APTS

components and the slow (8–10 Hz) and fast (10–13 Hz) alpha

rhythms should be not be confused with each other. The fast alpha

rhythm refers to the frequency components of the raw EEG

waveform, while the slow alpha rhythm refers to the frequency

components in the longer trend of the power of the alpha

frequency band of the EEG.

Analysis of fMRI data
fMRI data were analyzed with SPM5 on MATLAB (Math-

Works, Natick, MA, USA). Preprocessing of the fMRI included

slice timing correction, realignment, spatial normalization, and

spatial smoothing with an 8-mm, three-dimensional Gaussian filter

[37]. The brain regions whose BOLD signals were correlated with

the EEG components, namely the APTS and each of its

components, were statistically evaluated with a general linear

model [37] in which both the explanatory variables of interest and

those of non-interest were used as multiple regressors. Each

original APTS, its IMFs, and its slow and fast fluctuation

components were convolved with the canonical hemodynamic

response function to take into account hemodynamic delay and

dispersion of BOLD signals, and then used as an explanatory

variable. The six realignment parameters were used as variables of

Figure 2. Averaged power spectrums of the IMFs during 20 minutes of fMRI scanning. A: Distribution of the frequency of all IMFs for each
subject. Color illustrates the power of the IMFs from 0–0.01. Each line within IMFs represents the frequency spectrum of each subject (total of 20
subjects). B: The averaged power spectrum of the APTS and the IMFs across all subjects. The dashed line represents the averaged power spectrum of
the detrended APTS across all subjects. The colors of the profiles represent the spectrum of each IMF as follows. IMF1: blue, IMF2: green, IMF3: red,
IMF4: cyan, IMF5: violet. Slow and Fast indicate the frequency ranges of the slow and fast fluctuation components, respectively. 0.04 Hz was the
border of the segmentation.
doi:10.1371/journal.pone.0066869.g002
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non-interest to remove the effect of head motion on MRI signals.

The MRI signal of cerebrospinal fluid (CSF) was also used as an

explanatory variable of non-interest to exclude signals originating

from vessels and ventricular areas reflecting cardiac beats and

respiration [38–40] that were irrelevant to the neural activities.

The CSF signal was calculated by averaging the MRI signal in the

ventricles, which were anatomically defined by the segmentation

function of SPM5. When taken together, we conducted three types

of GLM, with (i) the GLM of the original APTS, (ii) its IMFs, and

(iii) its slow and fast fluctuation of the APTS, estimated separately.

Each GLM included the six realignment parameters and the CSF

signal as nuisance covariates.

For each GLM, at the first level the contrast images

corresponding to the regressors were created for each subject

and entered into a second level one-sample t test. Additionally, for

the third GLM, a paired t test was conducted to determine

whether the contrast weights were significantly different between

the slow and fast fluctuation components within regions of interest

inclusively masked by brain regions that positively correlated with

either the slow or fast fluctuation components. For all data, a

threshold of uncorrected p,0.001 for peak-level and a cluster-

level family-wise error (FWE) of 0.05 [41] were used for statistical

analyses. An atlas of the human brain was used as an anatomical

reference for the deep-lying brain regions [42].

Results

In this manuscript, we use the term ‘‘correlation’’ to explain the

relationships between the explainable values and the brain activity

in the GLM. The original APTS was positively correlated with

brain activity in the thalamus, anterior cingulate cortex, brain

stem, and cerebellum and was negatively correlated with activity

in the broad areas of the cerebral cortex (the superior parietal

lobule, cuneus, middle occipital gyrus, middle frontal gyrus, rectal

gyrus, and inferior temporal gyrus) (uncorrected p,0.001, extent

.103 voxels) (Figure 3, Table 1). These findings are generally

concordant with those of previous reports [7,11,12,15–17].

Figure 4 illustrates the brain regions with activities that

correlated with the IMFs. Tables 2 and 3 show the details of the

positive and negative correlated areas, respectively. While the

threshold of uncorrected p,0.001 for peak-level was used, the

extent threshold that was equal to a FWE of 0.05 was different

from each IMF (IMF1: extent .96; IMF2: extent .130; IMF3:

extent .114; IMF4: extent .166; IMF5: extent .128). The

results of the positive correlation with the IMFs are shown in the

upper part of Figure 4. The IMF1 was correlated with activity in

the anterior-lateral part of the thalamus, the anterior cingulate

cortex, the dorsolateral prefrontal cortex, the cerebellum, and the

caudate nucleus. Similarly, the IMF2 was correlated with activity

in the anterior cingulate cortex and the anterior part of the

thalamus. Conversely, the IMF3 was correlated with activity in the

medial part of the thalamus and the brain stem. The IMF4 was

correlated with activity in the medial dorsal part of the thalamus.

Furthermore, the IMF5 was correlated with activity in the lateral

and medial part of the thalamus and brain stem (Figure 4 and

Table 2). In summary, both IMF1 and 2, including the higher

frequency band of the APTS, were positively correlated with brain

activity in the anterior cingulate cortex and the anterior-lateral

part of the thalamus, whereas the IMF3, 4 and 5, including the

lower frequency band of the APTS, were positively correlated with

brain activity in the medial-dorsal part of the thalamus and/or the

brain stem.

The results of the negative correlation with the IMFs are shown

in the bottom part of Figure 4. The negative correlation with each

IMF component was found within the occipitoparietal cortex, but

not in all the IMF components. Although the results of the IMF1

and IMF2 showed a small amount of negative correlation in the

brain regions, IMF3, 4, and 5 were widely negatively correlated

with activity in the occipital-parietal cortex. The IMF1 was

correlated with activity in the left inferior frontal cortex, and the

IMF2 was correlated with activity in the superior parietal lobe and

precentral gyrus. Subsequently, the IMF3 was correlated with

activity in the occipitoparietal cortex, the inferior frontal cortex,

the orbitofrontal cortex, and the middle temporal gyrus. The

IMF4 was correlated with activity in the occipitoparietal cortex,

the inferior temporal gyrus, and the inferior frontal gyrus.

Furthermore, the IMF5 was correlated with activity in the middle

occipital gyrus, the precentral gyrus, the medial temporal pole,

and the middle orbital gyrus (Figure 4 and Table 3).

More importantly, the slow and fast fluctuation components of

the APTS showed a specific relationship with brain activity

(uncorrected, p,0.001 and extent .131 voxels for the slow

Figure 3. Group analysis of the correlations between alpha power fluctuation and the BOLD signal on fMRI. A: The positive (red-white)
and negative (blue-green) correlation maps in the multiple axial planes are superimposed on a standard brain template according to the Montreal
Neurological Institute (MNI) coordinate [61]. The number in the bottom right of each slice indicates a Z coordinate in the MNI space. B: The positive
and negative correlation maps in the sagittal planes at an X coordinate of +8 mm in the MNI coordinate. Only the areas with a peak-level uncorrected
p,0.001 and a cluster-level FWE of 0.05 by random-effect analysis are shown. The color bars show t-values between 3.5 and 6.5. The letters in the
figure indicate the direction of each brain image (L: left; R: right; P: posterior).
doi:10.1371/journal.pone.0066869.g003
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fluctuation and 75 voxels for the fast fluctuation, respectively).

Figure 5 illustrates the brain regions with activities that correlated

with either slow or fast fluctuation. Table 4 gives details of the

correlated areas. Slow fluctuation was correlated with activity in

the medial part of the thalamus and brain stem, the anterior

cingulate cortex, the amygdalae, and the cerebellum. By contrast,

the fast fluctuation component was correlated with activity in the

cerebellum, the anterior and middle cingulate cortex, the superior

frontal cortex, and the lateral part of the thalamus.

A comparison between the brain regions positively correlated

with the slow and fast fluctuation components (slow . fast) also

revealed a significant difference between components in the

middle part of the thalamus and the brain stem (Figure 6 and

Table 4, uncorrected p,0.001, extent .135 voxels). Conversely,

there was no significant difference in the comparison between the

fast and slow fluctuation components (fast . slow).

Discussion

We conducted simultaneous EEG/fMRI recordings to examine

the dynamic relationship between alpha power of EEG and brain

activity. We found that the slow and fast fluctuation components of

the APTS were correlated with different brain regions in the

thalamus, anterior cingulate cortex, and brain stem. These data

Table 1. Brain regions whose activity correlated with the power of the EEG alpha rhythm (p-value, cluster-level FWE of 0.05).

Correlation Brain region Side Local maximum point

t-value X Y Z P value Clustersize

positive brainstem – 9.65 4 226 218 ,0.001 4136

thalamus bilateral 7.47 22 222 10 ,0.001

7.07 2 26 2 ,0.001

anterior cingulate cortex bilateral 6.36 4 34 22 ,0.001 686

cerebellum left 5.65 210 254 240 ,0.001 395

cerebellar vermis right 5.34 4 256 232 ,0.001

negative superior parietal lobule, cuneus,
middle occipital gyrus

bilateral 7.94 34 250 56 ,0.001 28926

middle frontal gyrus left 7.32 244 46 0 ,0.001

rectal gyrus bilateral 6.46 212 44 216 ,0.001 608

middle frontal gyrus right 5.68 24 30 44 0.001 211

Inferior temporal gyrus bilateral 5.52 56 254 212 ,0.001 299

Inferior temporal gyrus right 5.19 62 212 226 ,0.001 162

doi:10.1371/journal.pone.0066869.t001

Figure 4. Group analysis of the correlations between IMFs and the BOLD signal on fMRI. In the upper panel, the positive (red-yellow)
correlation maps in the multiple axial planes are superimposed on a standard brain template according to the Montreal Neurological Institute (MNI)
coordinate [61]. The positive correlation maps for each IMF are shown in the sagittal planes at an X coordinate of +2 mm, a Y coordinate of 210 mm,
and a Z coordinate of 10 mm and 216 mm in the MNI coordinate. In the bottom panel, the negative (blue-green) correlation maps for each IMF are
rendered on a standard template brain image. Only the areas with a peak-level uncorrected p,0.001 and a cluster-level FWE of 0.05 by random-effect
analysis are shown. The color bars show t-values between 3.5 and 6.5. The letters in the figure indicate the direction of each brain image (L: left; R:
right; P: posterior; D: dorsal).
doi:10.1371/journal.pone.0066869.g004
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generally agrees with our hypothesis that the APTS contains

mixed dynamics of the alpha power, and suggests that different

brain systems may regulate alpha rhythm in parallel.

Brain regions associated with IMFs of the alpha EEG
We applied the EMD to the APTS to separate it into five IMF

components (Figures 1 and 2). In the fMRI analysis, the brain

regions positively correlated with each IMF must be categorized

Table 2. Brain regions whose activity positively correlated with the IMFs components of the EEG alpha power (p-value, cluster-
level FWE of 0.05).

IMF components Brain region Side Local maximum point

t-value X Y Z P-value Cluster size

IMF1 thalamus bilateral 6.31 20 214 14 ,0.001 1159

anterior cingulate cortex bilateral 6.24 4 34 26 ,0.001 1007

dorsolateral prefrontal cortex right 6.07 28 60 14 ,0.001 519

cerebellum left 5.69 236 258 238 0.001 202

caudate nucleus right 4.68 20 12 14 0.032 106

IMF2 anterior cingulate cortex bilateral 5.47 2 18 36 ,0.001 543

thalamus left 4.90 28 210 0 ,0.001 382

right 4.75 6 212 10

IMF3 thalamus left 6.47 26 210 0 ,0.001 1332

right 6.14 4 212 0

brain stem – 4.82 2 224 216

IMF4 thalamus bilateral 7.46 24 212 12 ,0.001 1248

left 7.32 24 24 4

IMF5 thalamus bilateral 7.20 0 220 10 ,0.001 2513

left 6.68 222 216 10

brain stem – 5.43 4 228 226

cerebellum left 5.66 228 270 232 0.003 225

supramarginal gyrus right 5.00 56 238 42 0.014 171

doi:10.1371/journal.pone.0066869.t002

Table 3. Brain regions whose activity negatively correlated with the IMFs components of the EEG alpha power (p-value, cluster-
level FWE of 0.05).

IMF components Brain region Side Local maximum point

t-value X Y Z P-value Cluster size

IMF1 inferior frontal cortex left 4.73 252 24 18 0.011 132

IMF2 superior parietal lobe left 6.07 238 248 58 ,0.001 320

right 5.05 48 230 42 ,0.001 555

precentral gyrus right 5.57 30 22 48 0.032 145

left 4.78 228 26 52 0.004 222

IMF3 occipitoparietal cortex right 10.35 30 260 32 ,0.001 31596

inferior frontal cortex left 7.14 246 4 30 ,0.001 1937

orbitofrontal cortex left 6.70 212 50 210 ,0.001 441

middle temporal gyrus right 6.11 64 212 216 ,0.001 300

IMF4 occipito-parietal cortex right 7.73 22 286 18 ,0.001 11545

inferior temporal gyrus right 6.30 52 250 210 0.006 266

inferior frontal gyrus right 5.16 46 10 22 0.036 180

IMF5 middle occipital gyrus left 9.43 244 276 6 ,0.001 17145

precentral gyrus right 7.73 240 214 58 ,0.001 433

medial temporal pole right 5.62 46 12 240 0.002 253

middle orbital gyrus bilateral 5.14 24 54 210 0.041 134

doi:10.1371/journal.pone.0066869.t003
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into two types of relevant brain regions (see Figure 4 and Tables 2

and 3). The first type mainly consisted of the anterior cingulate

cortex and the anterior and lateral part of the thalamus (the results

of the IMF1 and 2). The second type predominantly involved the

medial and dorsal part of the thalamus and the brain stem, (the

results of the IMF3, 4 and 5). The negative correlation between

the activity and the IMFs was also categorized into two types. The

results of the IMF1 and 2 showed almost no significant brain

regions, while that of the IMF3, 4, and 5 showed significant brain

regions spreading over the occipital and parietal cortex (see

Figure 4). Taken together, these data suggest that the IMF1 and 2

of the APTS are qualitatively different from the IMF3, 4, and 5.

There were noticeable differences between the two IMF groups

with regard to the thalamus, the anterior cingulate, and the brain

stem, supporting the hypothesis that different brain systems may

be regulating alpha rhythm in parallel.

Interestingly, the IMF3, 4, and 5 showed no correlation with the

activity in the ventral anterior cingulate (vACC), whereas the slow

fluctuation of the APTS that corresponded to the IMF3, 4, and 5

explained the brain activity in the vACC (Figures 4 and 5). Thus,

the activity in the vACC must include the broad frequency

component extending in the range 0–0.04 Hz.

Brain regions associated with slow and fast fluctuations
of the alpha EEG

Our results suggest that the correlation between brain activity

and the IMFs must be categorized into two types. The brain

regions that correlated with the IMF1 and 2 were noticeably

different from that of the IMF3, 4, and 5. Furthermore, the

profiles of the power spectrums of the second and the third

components had an obvious crossover at 0.04 Hz (see Figure 2B

and Figure 4). Therefore, we separated the APTS into slow and

fast fluctuation components using a low and high pass filter at

0.04 Hz. Fast fluctuation corresponded to instantaneous increases

and decreases in alpha power oscillation, while slow fluctuation

corresponded to slower changes depending upon the prominence

of alpha oscillation. In the fMRI analysis, the brain regions that

correlated with slow and fast fluctuations differed from each other

(Figure 5). There were noticeable differences among the thalamus,

anterior cingulate cortex, and brain stem, supporting the notion

that the brain regions involved in alpha rhythm generation and

those indirectly affecting alpha rhythm might coexist and

modulate alpha oscillation independently.

Salek-Haddadi et al. [22] stated that ‘‘alpha oscillations may be

related to three different types of areas: (1) the generators of the

cortical rhythm, such as the occipital cortex; (2) areas forming part

of the circuit but not directly generating the scalp-detectable

rhythms (e.g. thalamus); and (3) other areas correlated with alpha

but not causally linked, for example as linked to changes in arousal

only.’’ Brain regions with activity that is positively correlated with

fast fluctuation of the alpha rhythm may be located in the lateral

part of the thalamus, which is thought to form the thalamocortical

circuit that generates the alpha rhythm [43]. These regions may

correspond to the second mechanism proposed by Salek-Haddadi

et al. [22]. The brain regions that are positively correlated with

slow fluctuation may indirectly affect the generation of alpha

oscillations through slow changes in brain states, corresponding to

the above-mentioned third mechanism.

The arousal level plays an important role in the emergence of

the alpha rhythm. Traditionally, the existence of alpha and beta

oscillations on the EEG has indicated a wakeful state (e.g [ 24]).

Therefore, the positive correlation between brain activity and the

slow fluctuation of the APTS may reflect the arousal level. In fact,

the brain stem and medial part of the thalamus, the activity of

which were correlated with slow fluctuation, form part of the

reticular formation that is associated with the arousal level [26]. In

the present study, we evaluated the arousal level of the subjects

during the experiment using a traditional method [24] (data not

shown) and found that the experimental period comprised both

awake and drowsy states. Regarding cortical activity during the

drowsy state, Horovitz et al. [44] showed increased BOLD

fluctuations in the visual cortex during light sleep. We found a

negative correlation between the slow fluctuation of the APTS and

the occipital-parietal cortex, as the alpha power decreases during

the drowsy state. These evidences suggest that the decrease of

alpha power during drowsy state may reflect the increase of

BOLD signal fluctuations.

In addition to the arousal level, we considered another

possibility for the involvement of monoaminergic neurons in the

brain stem. The efferent nerves of the monoaminergic systems

Figure 5. Positive correlation maps between the slow and fast
fluctuation of the APTS and the BOLD signal. Only the areas with
a peak-level uncorrected p,0.001 and a cluster-level FWE of 0.05 are
shown in the random-effect analysis. Statistical results are superim-
posed on an averaged MRI. The green and orange colors on the brain
images indicate the correlation between the BOLD signals and the slow
and fast fluctuation components, respectively. The color bars at the
bottom of the figure show t-values between 3.5 and 6.5. Numbers in
the bottom right of each slice show the coordinates according to the
MNI space. Upper: Sagittal and coronal planes. Lower: Multiple axial
planes. The letters in the figure indicate the direction of each brain
image (L: left; P: posterior).
doi:10.1371/journal.pone.0066869.g005
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convey impulses from the brain stem to broad areas of the cerebral

cortex [2,26,45,46]. The cortical state changed by monoamine

neurotransmitters can occasionally be maintained for seconds to

minutes (e.g. [47–51]). Considering the time scale of the slow

fluctuation component of the alpha power, in which the frequency

is below 0.04 Hz (i.e., a period of time longer than 25 seconds), we

suggest that this component may also reflect the activity of the

diffuse modulator system in the brain stem.

Most monoamine neurons project from the brain stem

structures to diffuse brain areas: dopamine from the ventral

tegmental area and substantia nigra of the midbrain; serotonin

from the raphe nuclei extending throughout the medulla, pons,

and midbrain; and noradrenaline from the locus coeruleus in the

rostral pons [52]. Although the relevant activation cluster in the

brain stem was mainly located in the ventral part of the midbrain

and the rostral pons, it is difficult to infer which of the monoamine

transmitters might be responsible as the monoamine neurons have

reciprocal interactions. However, the cluster explored in the

present study is likely to cover these structures.

The positive correlation between the activity in the brain stem

and the slow fluctuation, but not the fast fluctuation, suggests that

the slow fluctuation may be useful as an index of brain activity in

the brain stem. For instance, activity in certain areas of the brain

stem, such as the raphe nucleus, is correlated with symptoms of

depression [53]. Thus, scalp EEG signals may be useful as

biomarkers for such psychiatric symptoms through indirect

monitoring of brain stem activity, including that in the raphe

nucleus.

The regions of the thalamus that are correlated with slow

fluctuation are thought to include the nuclei situated in the

dorsomedial part. These nuclei are likely considered to be part of a

nonspecific projection system and have a functional role in

modulating the degree of activity in the cerebral neocortex [54].

By contrast, regions that are correlated with fast fluctuation are

situated more laterally (Figure 5) and are likely to include nuclei

with specific projections to the cerebral neocortex and form a

thalamocortical loop involved in the generation of alpha

oscillations [26,43,54]. Furthermore, Schreckenberger et al. [55]

reported that the activity of the lateral part of the thalamus was

tightly coupled with the alpha power under lorazepam treatment

in a PET/EEG study. In that study the correlation of the alpha

rhythm to thalamic activity was suggested to reflect thalamic

generation of cortical alpha power by the changing of firing

Table 4. Brain regions whose activity correlated with the slow and fast fluctuation components of the EEG alpha power and the
comparison between the slow and fast fluctuation components (p-value, cluster-level FWE of 0.05).

Fluctuation component Brain region Side Local maximum point

t-value X Y Z P-value Cluster size

slow thalamus bilateral 7.58 6 224 10 ,0.001 2861

brainstem bilateral 5.69 0 222 222

anterior cingulate cortex bilateral 7.29 6 32 20 ,0.001 658

amygdala right 7.18 24 24 28 0.004 258

left 7.09 216 0 28 0.004 261

cerebellum bilateral 5.38 210 254 236 0.006 241

fast cerebellum left 7.51 210 238 226 0.024 134

anterior and middle
cingulate cortex

bilateral 5.95 6 18 38 ,0.001 489

superior frontal cortex right 5.37 28 54 24 0.002 222

thalamus right 5.07 18 216 16 ,0.001 487

left 4.67 212 28 0

slow . fast thalamus bilateral 7.97 4 226 8 ,0.001 848

5.35 24 210 28

brainstem bilateral 5.79 2 220 222 0.045 139

doi:10.1371/journal.pone.0066869.t004

Figure 6. Comparison between the brain regions positively
correlated with the slow and fast fluctuation components.
Statistical results are superimposed on an averaged MRI (Uncorrected
p,0.001, a cluster level FWE of 0.05). The yellow-red color on the brain
images indicates the significant difference between the slow and fast
fluctuation components (slow . fast). The color bars at the bottom of
the figure show t-values between 3.5 and 6.5. The number in the upper
right of each slice indicates a MNI coordinate. The letters in the figure
indicate the direction of each brain image (L: left; R: right; P: posterior).
doi:10.1371/journal.pone.0066869.g006
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patterns in the lateral thalamic nuclei. The coordinates of the

lateral thalamus nuclei seem close to the regions that correlated

with the fast fluctuation in the present study.

In the present study, the particular regions that were correlated

with the fast fluctuation components in contrast to the slow

fluctuation components were the superior frontal cortex, and the

cerebellum (Figure 5). We believe that the cortical regions in the

frontal cortex might be involved in the thalamocortical circuit

because of their direct connection with the thalamus [43,56,57]. A

conclusion is more difficult to reach in terms of the cerebellum,

although it is possible that the correlation between the fast

fluctuation and the activity in the cerebellum might reflect activity

of cerebrocerebellar interaction, as the cerebral cortex and

cerebellum have a crossed connection and the regions in the

cerebral cortex and cerebellum illustrated in the present study

were lateralized to the right and left, respectively. Of course, these

interpretations should be explicitly tested in the future.

The cingulate cortex has a direct connection with various

thalamic nuclei [58–60]. Although it was difficult to precisely

identify the thalamic nuclei in detail using the low spatial

resolution of the present study, we believe that the differential

involvement of the fast and slow components in the cingulate

cortex might reflect differences in thalamic connections. Further-

more, the slow and fast fluctuation components were associated

with the brain activity in the dorsal and ventral part of anterior

cingulate cortex (dACC/vACC), respectively (Figure 5). The

dACC is considered to be involved in cognitive processes, while

the vACC in emotional regulation [61,62]. This implies that the

fast fluctuation of the APTS may be associated with cognitive

processes, and the slow fluctuation may be relevant to emotional

processes.

Comparison with previous simultaneous recording
experiments

The results in Figure 3 are mostly consistent with those of

previous studies [7,10–12,15–17]. Although some studies reported

no correlation between BOLD signals in the thalamus and alpha

oscillations [13,63] and a negative correlation between the glucose

metabolic rates in the thalamus and averaged alpha power [8,9],

recent studies have generally shown positive correlations between

alpha power fluctuation and BOLD signals in the thalamus and

negative correlations in the occipitoparietal cortex.

Characteristics of APTS fluctuations
In the present study, we tried to characterize two different

aspects of alpha power fluctuation, that is, the fast fluctuation

corresponding to instantaneous increases and decreases in alpha

power oscillation, such as waxing and waning [23], and the slow

fluctuation corresponding to slower changes depending upon the

ease of alpha oscillation. The cutoff frequency between the fast

and slow components was determined based on the brain patterns

associated with IMFs using the EMD (see Figures 2 and 4).

However, since the occupied frequency of each IMF varied across

the subjects, the border of the slow and fast components must be

considered as a rough indication.

Brain activity in a resting state, with eyes closed or while looking

at a fixed point, was recently examined by looking at changes in

BOLD signals (cf. [64]). The majority of the studies postulate that

BOLD signal fluctuation of the default mode network, including

the posterior cingulate cortex and the medial frontal cortex, is in a

frequency range of less than 0.1 Hz [64–68]. Niazy et al. [34]

reported that resting-state networks are not merely described by

slow spontaneous fluctuations (,0.015 Hz), but by broadband

processes that indicate temporal coherences across a frequency

spectrum, especially in the range of 0.02–0.05 Hz. Interestingly,

the frequency range in the present study (,0.04 Hz) is included in

that of the default mode network.

In terms of the relationship between spontaneous fluctuation of

BOLD signals and EEGs, using a concurrent EEG and fMRI with

group independent component analysis, Bridwell et al. [69]

reported positive associations with alpha rhythm within the

thalamus and medial frontal gyrus, and negative associations

between frontal, parietal, temporal, and limbic fMRI regions, and

EEG alpha. Furthermore, an MEG study demonstrated that the

default mode network was identified using alpha band data [70].

In addition, He et al. [71] reported that the slow cortical potentials

measured by electrocorticography in humans show a correlation

structure similar to that of the resting state network in BOLD

fluctuations. These findings suggest that the brain network

affecting alpha rhythm generation and the resting state may share

a common fluctuation mechanism.

Although we have discussed the physiological aspects of the

APTS and spontaneous BOLD fluctuation, it is unlikely that alpha

power fluctuation solely reflects spontaneous fluctuation. In

general, the alpha rhythm is changed by spontaneous fluctuation,

and both the internal state of subjects and external stimuli. Alpha

oscillation was reportedly increased by sounds containing inaudi-

ble high-frequency components associated with activation of the

deep-lying brain regions, and both were significantly correlated

[10]. Therefore, the slow fluctuation of alpha oscillation may be

useful as a convenient objective marker to monitor the deep-lying

brain structures, including the brain stem and medial thalamus.

Conclusions

We showed that the dynamics of the alpha power were

positively correlated with brain activity in the deep-lying brain

regions, the thalamus and brain stem. Moreover, we showed that

the slow and fast fluctuation components of the transient alpha

power were correlated with particular brain regions (the slow

component with the medial part of the thalamus and the brain

stem, and the anterior cingulate cortex; the fast component with

the lateral part of the thalamus and the anterior and middle

cingulate cortex). These results support our hypothesis that the

APTS consist of different dynamics of modulation of alpha

oscillation, and that different subcortical structures contribute to

slow and fast modulations of alpha spectra.
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