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TherapeuTic advances in 
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Introduction

Prognosis and current treatment for T-cell 
malignancies
T-cell malignancies are a highly heterogeneous 
group of diseases with poor prognoses that stem 
from T-cell precursors as well as mature T-cells 
and can be classified into T-cell leukemia and 
peripheral T-cell lymphomas (PTCLs).1 T-cell 
acute lymphoblastic leukemia (T-ALL) accounts 
for approximately 15% to 25% of ALL cases, and 
PTCLs account for approximately 15% of non-
Hodgkin’s lymphoma (NHL) cases.2,3 Overall, 
traditional chemotherapy remains the first-line 
treatment for T-cell malignancies.

A study showed that after induction therapy, 
T-ALL had a similar rate of complete remission 
(CR) (94% versus 93%) and 5-year overall sur-
vival (OS) (48% versus 42%) as B-cell acute 

lymphoblastic leukemia (B-ALL). But the rate of 
relapse at 5 years after CR was as high as 42%, 
and only 8 of 123 relapsed patients survived after 
5 years of follow-up.4 This showed that although 
the response rate was nearly 50%, patients with 
T-ALL were prone to relapse. The salvage chem-
otherapy regimen for relapsed T-ALL varies and 
includes nelarabine, anthracycline-based regi-
mens, methotrexate-based regimens, etc. In a 
study that enrolled 118 patients with R/R T-ALL 
who received nelarabine salvage therapy, the OS 
at 1 year of the patients was 37%, and the median 
survival was 8 months.5

Generally, the patients who underwent relapse 
had dismal outcomes with no more than 10% of 
them surviving at 5 years.6 Allogeneic hematopoi-
etic stem cell transplantation is a potential method 
for curing leukemias; however, the 3-year OS 
after HSCT was only about 30%.7
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Another study demonstrated that PTCL was also 
prone to relapse. The median time from primary 
therapy to relapse or progression was 6.7 months. 
Moreover, the OS and progression-free survival 
after relapse were only 5.5 months and 3.1 
months, respectively.8 Current treatments for 
T-cell lymphomas other than traditional cyto-
toxic chemotherapy include histone deacetylase 
inhibitors (HDACi), such as chidamide, romidep-
sin, and belinostat; monoclonal antibodies, such 
as brentuximab vedotin (BV) and mogamuli-
zumab; and other agents, such as pralatrexate and 
nelarabine.9–13 Using the anti-CD30 monoclonal 
antibody BV plus CHP (cyclophosphamide + 
doxorubicin + prednisone) as the primary ther-
apy for CD30 + PTCLs has been demonstrated 
to be effective and superior to CHOP (cyclophos-
phamide + doxorubicin + vincristine + pred-
nisone) chemotherapy.14 However, a study found 
that no improvement in FFS1 and OS1 was 
observed after the administration of romidepsin 
and pralatrexate in patients with R/R diseases.15 A 
similar result was reported in another study in 
which adding romidepsin to the CHOPE (cyclo-
phosphamide + doxorubicin + vincristine + 
prednisone + etoposide) regimen in the first-line 
treatment of PTCLs did not exhibit benefits.16 
The OR and CR of the anti-CCR4 antibody 
mogamulizumab for relapsed PTCLs were only 
35% and 14%, respectively, in a phase II study.17 
HSCT is the only probable method to cure this 
disease, but approximately 1/4 to 1/3 of patients 
are not eligible for HSCT. Moreover, patients 
who undergo HSCT are confronted with graft-
versus-host disease that could lower the quality of 
life and even be lethal.18 A study showed that the 
5-year OS rates of salvage therapy through autol-
ogous and allogeneic HSCT were 32% and 52%, 
respectively, whereas the OS rate for patients who 
did not accept transplants was only 10%.15 The 
dismal outcomes of R/R T-cell malignancies call 
for more efficient therapies to ameliorate the cur-
rent therapeutic situation.

Chimeric antigen receptors
Chimeric antigen receptors are fusion receptors 
that comprise the antigen-recognition domain 
and T-cell signaling domain.19 The antigen-rec-
ognition domain (the extracellular part) is the 
antibody-derived single-chain variable fragment 
(scFv) that can target the tumor antigen and  
thus navigate T-cells to the tumor site. The intra-
cellular part is composed of a T-cell receptor 

CD3ζ subunit in the first generation of chimeric 
antigen receptors (CARs). In the second and later 
generations of CARs, a costimulatory domain is 
introduced into the cells to enhance their activation 
and function20–22 [Figure 1(a)–(c)]. Manufacturing 
sufficient numbers of functional chimeric antigen 
receptor T-cell (CAR-T) cells is the first step of 
CAR-T therapy. T-cells are collected by leuka-
pheresis and then genetically transduced with a 
gene that contains CAR sequences by retrovirus or 
lentivirus.23 After CAR-T-cell proliferation and 
lymphodepletion chemotherapy, eligible patients 
receive CAR-T-cell infusion. Currently, anti-
CD19 CAR-T-cells have been successfully admin-
istered and improved the prognoses of patients 
with R/R B-cell malignancies, such as CD19+ dif-
fuse large B-cell lymphoma (DLBCL), mantle cell 
lymphoma (MCL), and B-ALL.24–27 Anti-BCMA 
(B-cell maturation antigen) CAR-T products 
were approved by Food and Drug Administration 
(FDA) for treating R/R multiple myeloma. In the 
clinical trials, they demonstrated impressive effi-
cacy and acceptable adverse events (Table 1).

Comparison of CAR-T-cells targeting B-cell 
and T-cell malignancies
The most significant difference in structure 
between CAR-T-cells targeting B-cell malignan-
cies and T-cell malignancies is the target antigen. 
CD19 and BCMA molecules are not expressed in 
T-cells so the CAR-T-cells and normal T-cells 
would not be recognized. However, the CAR-T-
cells targeting T-cell malignancies may also recog-
nize and kill the normal T-cells and CAR-T-cells 
due to their mutual T-cell antigen. The transmem-
brane domain usually contains CD28 or CD8α 
molecules. In most clinical trials for T-cell malig-
nancies, investigators use CAR-T-cells with 4-1BB 
costimulatory domain [Figure 1(d)–(f); Table 2]. 
Although there was preclinical study found that 
4-1BB-costimulated CAR-T-cells have greater 
persistence while CD28-costimulated CAR-T-
cells have a higher level of cytokines release,39 
more studies are still needed to verify it.

Challenges for CAR-T therapy in T-cell 
malignancies
These successes inspired investigators to apply 
this therapy to T-cell malignancies. However, the 
administration of CAR-T therapy for T-cell 
malignancies is confronted with several obstacles 
and challenges40 (Figure 2).
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T-cell aplasia and fratricide
Given that potential target antigens should be 
widely expressed on the T-cell surface, they are 
also likely expressed on normal T-cells and CAR-
T-cells.40 Thus, after infusion, the CAR-T-cells 
are directed to not only the tumor cells but also 
normal T-cells and CAR-T-cells that have the 
same target antigens on their surface. These cells 
will be destroyed once they are recognized by the 
infused cells. The rupture of normal T-cells 
would give rise to serious T-cell aplasia and 
immunodeficiency and further cause severe 
opportunistic infections that could be fatal.41

The rupture of CAR-T-cells, which is known as 
fratricide, can seriously hinder the persistence, 
proliferation, and antitumor efficacy in vivo, lead-
ing to unsatisfactory therapeutic efficacy.40,42

Tumor contamination
Moreover, circulating tumor cells exist in periph-
eral blood; thus, the collection of T-cells could  
be contaminated with these malignant cells. 

Circulating malignant cells have a construct and 
function similar to those of normal T-cells that 
can also be transduced by exogenous genes. As a 
consequence, the ultimate CAR-T products 
would be contaminated with ‘CAR-tumor cells’. 
Given attempts to inhibit the expression of the 
target antigen on the CAR-T-cell surface (dis-
cussed below) to ameliorate the fratricide, the 
mixed malignant cells would be modified simi-
larly and subsequently result in antigen escape. 
This event has been reported in a patient with 
B-cell leukemia who relapsed by expressing anti-
CD19 CAR-tumor cells. The CD19 CAR was 
transduced in malignant cells in error and led to 
the combination of CAR and CD19 antigens. 
This combination prevents CAR-T-cells from 
recognizing malignant cells and induces antigen 
escape.43

Promising target antigens and solutions to 
the challenges
Choosing an appropriate target antigen for devel-
oping CAR-T-cells is extremely significant for 

Figure 1. Structure of CARs: (a) The intracellular part of the first-generation CAR comprises a T-cell activation domain and, in most 
cases, is CD3ζ. (b) Costimulatory domain 4-1BB or CD28 is introduced in second-generation CAR. (c) The third-generation CAR contains 
both of the molecules. (d) CARs design of the FDA-approved anti-CD19 CAR-T-cell products. (e) CARs design of the FDA-approved  
anti-BCMA CAR-T-cell product; (f) CARs design of the CAR-T-cells for T-cell malignancies. CAR-T, chimeric antigen receptor T-cell.
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Table 1. The FDA-approved CAR-T products and the major published trials. 

Target antigen CAR design Disease Adverse events Response rate Study detail

CD19 Axicabtagene 
ciloleucel; CD28 
co-stimulation

Relapsed or 
refractory 
DLBCL

Neutropenia (78%);
Anemia (43%);
Thrombocytopenia (38%)
Grade 3–5 CRS (13%)
Grade 3–5 NTX (28%)

Complete 
response = 54%;
Objective 
response = 82%

ZUMA-1;
NCT02348216;
n = 101;
Neelapu et al.24

CD19 Brexucabtagene 
autoleucel; CD28
co-stimulation;

Mantle cell 
lymphoma

Cytopenia (94%)
Infection (32%)
Grade 3–5 CRS (15%)
Grade 3–5 NTX (31%)

Complete 
response = 67%
Objective 
response = 93%

ZUMA-2;
NCT02601313;
n = 68
Wang et al.26

CD19 Brexucabtagene 
autoleucel; CD28
co-stimulation

B-ALL Anemia (49%);
Pyrexia (36%);
Grade 3–5 CRS (24%);
Grade 3–5 NTX (25%)

Complete 
remission = 56%

ZUMA-3;
NCT02614066;
n = 55
Shah et al.27

CD19 Tisagenlecleucel; 
4-1BB
co-stimulation

Refractory 
B-cell 
lymphomas

Grade 3–5 CRS (18%);
Grade 3–5 NTX (11%)

Complete 
remission (43% in 
DLBCL; 71% in FL)
Overall 
response = 64%

NCT02030834;
n = 28
Schuster et al.28

CD19 Lisocabtagene
maraleucel;
4-1BB
co-stimulation

Relapsed or 
refractory 
DLBCL

Neutropenia (48%);
Leukopenia (21%);
Thrombocytopenia (20%);
Any-grade CRS (38%);
Any-grade NTX (31%)

Overall 
response = 80%

PILOT;
NCT03483103;
n = 61
Sehgal et al.29

BCMA Idecaptagene 
cicleucel;
4-1BB
co-stimulation

Relapsed or 
refractory 
multiple 
myeloma

Neutropenia (85%);
Leukopenia (58%);
Anemia (45%);
Thrombocytopenia (45%);
Any-grade CRS (76%);
Grade 1–2 CRS (70%);
Grade 3 CRS (6%);
Any-grade NTX (42%)
Grade 1–2 NTX (39%);
Grade 4 NTX (3%)

Complete 
response = 45%;
Objective 
response = 85%

NCT02658929;
n = 33
Raje et al.30

BCMA Ciltacabtagene 
autoleucel;
4-1BB
co-stimulation

Relapsed or 
refractory 
multiple 
myeloma

Neutropenia (95%);
Leukopenia (61%);
Anemia (68%);
Thrombocytopenia (60%);
Any-grade CRS (95%)
Grade 3–4 CRS (4%)
Any-grade NTX (21%)
Grade 3–4 NTX (9%)

Complete 
response = 67%

CARTITUDE-1
NCT03548207
n = 97
Berdeja et al.31

B-ALL, B-cell acute lymphoblastic leukemia; BCMA, B-cell maturation antigen; CAR-T, chimeric antigen receptor T-cell; CRS, cytokine release 
syndrome; DLBCL, diffuse large B-cell lymphoma; FDA, Food and Drug Administration; FL, follicular lymphoma; NTX, neurotoxicity.

this treatment. The ideal target antigen should be 
expressed on most malignant cells but minimally 
expressed on normal T-cells and other tissues. 
We expect that the selection of a target antigen 

could minimize the adverse events caused by frat-
ricide or on-target off-tumor effects. Herein, we 
summarize promising target antigens and the out-
comes of clinical trials (Table 2). The ongoing 
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Table 2. Results of CAR-T therapy clinical trials in T-cell malignancies.

Target 
antigen

Disease Reference Co-stimulation Response 
rate

Adverse events ID

CD7 Relapsed or refractory 
T-lymphoblastic 
Leukemia/lymphoma

Zhang 
et al.32

NR ORR 100%; 
CR 75%

Not mentioned NCT04004637
(n = 8)

Relapsed or refractory
T-ALL (n = 22);
T-LBL (n = 3); MPAL 
(n = 5)

Zhang 
et al.33

NR CR/CRi =  
83.3%

Any-grade CRS 
(7/30)

NCT04572308
NCT04796441
NCT04938115
(n = 30)

Relapsed or refractory
T-ALL (n = 14);  
T-LBL (n = 6)

Lu et al.34 NR CR 95% 
(19/20)

Grade 1–2
CRS (18/20)

NCT04572308
(n = 20)

Relapsed or refractory
T-LBL

Yang et al.35 4-1BB CR/CRi =  
100%

Grade 1–2 CRS 
(7/8)

NCT04916860
(Donor-derived 
CAR-T-cells)
(n = 8)

Relapsed or refractory
T-ALL

Pan et al.36 4-1BB CR = 90% Grade 1–2 CRS 
(18/20);
Grade 3–4
CRS (2/20);
GVHD (12/20)

NCT04689659 
(Donor-derived 
CAR-T-cells)
(n = 20)

CD5 Relapsed or refractory 
(r/r) T-cell leukemia 
and lymphoma

Rouce 
et al.37

CD28 Response 
rate = 44% 
(4/9)

Cytopenia
Grade; 0–2 CRS

NCT03081910
(n = 9)

CD37 2 HGBCL
1 relapsed cutaneous 
T-cell lymphoma
1 Hodgkin’s lymphoma

Frigault 
et al.38

4-1BB CR = 75% 
(3/4)

Low-grade CRS and 
ICANS (n = 3);
Grade 3 CRS and 
ICANS (n = 1)

NCT04136275
(n = 4)

CAR-T, chimeric antigen receptor T-cell; CR, complete remission; CRi, CR with incomplete count recovery; CRS, cytokine release syndrome; GVHD, 
graft-versus-host disease; HGBCL, high-grade B-cell lymphoma; ICANS, immune effector cell-associated neurotoxicity syndrome; MPAL, mixed 
phenotype acute leukemia; NR, not reported; ORR, overall response rate; T-ALL, T-cell acute lymphoblastic leukemia; T-LBL, T-cell lymphoblastic 
lymphoma.

clinical trials of these targets are listed in Table 3. 
In addition, we discuss the probable solution to 
the aforementioned challenges.

Targets in clinical trials
CD7. Among the numerous latent targets, the most 
widely studied one is CD7. CD7 is a kind of glyco-
protein expressed on the surface of most periph-
eral blood T-cells, T-cell precursors, and natural 
killer cells (NK cells).44,45 CD7 is also found in 
over 95% of T-cell leukemia cases or a subset of 
PTCLs and previously served as an important 
clinical marker for diagnosing T-ALL.44,46 Several 
studies have explored immunotherapy targeting 
CD7, demonstrating the feasibility of developing 

CD7 as a therapeutic target in treating T-cell malig-
nancies.47–49 Since it was the most widely studied 
target, most research on the problems mentioned 
above was based on CD7.

In 2017, Gomes-Silva et al.46 proposed that using 
CRISPR/Cas9 to cut off the CD7 gene before 
CAR transduction could minimize the fratricide 
in anti-CD7 CAR-T without hindering the anti-
tumor activity. In their study, CAR-T-cells 
expressing CD7 failed to expand, but the expan-
sion was restored after removing the CD7 gene. 
They also demonstrated that the CD7KO CD7 
CAR-T-cells (CD7 gene knocked-out CAR-T) 
maintained potent and specific antitumor activity 
in vitro. Moreover, they found that CD7KO CD7 

https://journals.sagepub.com/home/tah
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CAR-T-cells themselves could still respond to the 
viral stimulation like non-transduced T-cells, 
which to some extent alleviates immunodefi-
ciency due to T-cell aplasia.46 In the same year, 
Png et al.50 developed a type of protein expression 
blocker (PEBL). They combined a CD7-targeted 
scFv with an endoplasmic reticulum/Golgi-
retention motif that confines the newly expressed 
CD7 to ER/Golgi and successfully reduces CD7 
expression on the cell surface of PEBL-CAR 
T-cells.50 Compared with mock-transduced 
T-cells, the fratricide was controlled, and no 
adverse impact on the T-cell expansion, INF-γ 
was observed. The PEBL-CD7 CAR-T showed 
robust cytotoxicity in T-ALL cell lines and 
murine models of T-ALL. In addition, this tech-
nology may be applied soon due to its fitness with 
existing cell manufacturing processes.50

In a recent clinical trial, 14 patients with R/R 
T-ALL were enrolled, including one with 
Ph + T-ALL, three with ETP-ALL, and five 
with extramedullary infiltration. These patients 
had a median of 5 prior lines of therapy. Two 
patients were treated with a low dose of anti-CD7 
CAR-T-cells (0.5×105/kg), eleven with a medium 

dose (1–1.5×106/kg), and one patient received 
the highest dose of 2×106/kg. Thirteen of the 14 
patients achieved CR or CRi in bone marrow, 
and 4/5 of the patients with extramedullary infil-
tration achieved extramedullary remission. CRS 
occurred in 13 patients but was mild in most 
patients.51 In addition, in a study comparing anti-
CD7 CAR-T-cells with anti-CD19 CAR-T-cells, 
the investigators found that the cells targeting 
CD7 proliferated quickly after infusion, and the 
duration was longer than that of cells targeting 
CD19. The anti-CD7 CAR-T-cells did not 
increase the incidence of adverse event compared 
with anti-CD19 CAR-T-cells.33

Given that patients with T-cell malignancies, 
especially patients with relapsed diseases, usually 
experience many lines of chemotherapy. This will 
impair the number and function of normal lym-
phocytes. Moreover, the circulating malignant 
cells may contaminate the separated T-cells. It is 
difficult to collect a sufficient number of qualified 
T-cells for CAR transduction. Thus, using alloge-
neic CAR-T-cells for transduction is proposed  
to solve these problems. Cooper et  al. reported  
a CD7-targeted fratricide-resistant allogeneic 

Figure 2. The challenges of CAR-T therapy in T-cell malignancies: (a) Normal mature T-cells that share 
mutual antigen with malignant T-cells are lysed after CAR-T infusion, leading to T-cell aplasia. (b) CAR-T-cells 
that share mutual antigen with malignant T-cells are lysed by themselves and give rise to dysfunction.  
(c) The contamination of circular malignant cells will eventually cause CAR-T product contamination and 
impair therapeutic efficacy.
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Table 3. Ongoing clinical trials of CAR T-cell therapy with T-cell antigens.

Antigen 
target

Trial identifier Trial 
phase

Disease Recruitment 
status

Country Institution

CD4 NCT04162340 I T-NHL Recruiting China Peking University 
Shenzhen Hospital

NCT03829540 I T-cell malignancies Not 
recruiting

United States Indiana University

NCT04219319 I T-cell malignancies Recruiting China The First Affiliated 
Hospital with Nanjing 
Medical University

NCT04973527 I T-cell malignancies Recruiting China Beijing Boren Hospital

ChiCTR2100042782 I T-cell malignancies Recruiting China Beijing Boren Hospital

CD5 NCT04594135 I T-ALL & T-NHL Recruiting China Peking University 
Shenzhen Hospital

NCT05032599 I T-ALL Recruiting China Beijing Boren Hospital

NCT03081910 I T-ALL & T-NHL Recruiting United States Baylor College of 
Medicine

CD7 NCT04934774 I T-ALL & T-NHL Recruiting China Peking University 
Shenzhen Hospital

NCT05059912 II R/R T-NHL Recruiting China The First Affiliated 
Hospital of Soochow 
University

NCT04004637 I T-NHL, ALL Recruiting China PersonGen 
BioTherapeutics 
(Suzhou)

NCT04572308 I T-ALL & T-NHL Completed China Hebei yanda Ludaopei 
Hospital

NCT04599556 I T-ALL & T-NHL Recruiting China The First Affiliated 
Hospital of Zhejiang 
university

NCT04762485 I T-ALL/NHL & AML Recruiting China The First Affiliated 
Hospital of Soochow 
University

NCT04689659 II R/R T-ALL & T-NHL Recruiting China Beijing boren hospital

NCT04840875 I T-ALL & T-NHL Recruiting China Beijing boren hospital

NCT04785833 I T-ALL Recruiting China The First Affiliated 
Hospital of Soochow 
University

NCT05043571 I T-ALL Recruiting Singapore National University 
Hospital, Singapore

NCT04264078 I T-ALL & T-NHL Recruiting China Xinqiao Hospital of 
Chongqing

(Continued)
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Antigen 
target

Trial identifier Trial 
phase

Disease Recruitment 
status

Country Institution

NCT04823091 I T-ALL/CLL & T-NHL Recruiting China Wuhan Union Hospital

NCT04480788 I T-NHL Recruiting China First Affiliated Hospital 
of Zhengzhou University

NCT05170568 I T-cell malignancies Recruiting China PersonGen 
BioTherapeutics

NCT03690011 I T-ALL & T-NHL Recruiting United States Baylor College of 
Medicine

CD37 NCT04136275 I CD37+ malignancies Recruiting United States Massachusetts General 
Hospital

CD30 NCT04526834 I T-NHL, DLBCL, 
PMBCL

Recruiting United States Tessa Therapeutics

NCT04008394 I HL & T-NHL Recruiting China Wuhan Union Hospital

NCT02917083 I HL & NHL Recruiting United States Baylor College of 
Medicine

NCT04653649 I/IIa HL & T-NHL Recruiting Spain Hospital Santa Creu i 
Sant Pau

NCT03383965 I HL & ALCL Recruiting China Weifang People’s 
Hospital

NCT04288726 I NK/T lymphoma & HL Recruiting United States Baylor College of 
Medicine

NCT04083495 II PTCL Recruiting United States Lineberger 
Comprehensive Cancer 
Center at University of 
North Carolina

NCT02690545 Ib/II Lymphoma Recruiting United States Lineberger 
Comprehensive Cancer 
Center at University of 
North Carolina

ChiCTR2000030843 I CD30+ malignancies Recruiting China Beijing Boren Hospital

ChiCTR2100046763 I CD30+ malignancies Recruiting China The First Affiliated 
Hospital of Nanchang 
University

ChiCTR2100053504 I CD30+ malignancies Recruiting China Tongji Hospital of Tongji 
University

ChiCTR2100053505 CD30+ lymphoma Recruiting China Hubei Cancer Hospital

TRBC1 NCT03590574 I/II T-NHL Recruiting United Kingdom Autolus Limited

NCT04828174 I T-NHL Recruiting China Shanghai General 
Hospital, Shanghai Jiao 
Tong University School 
of Medicine

ALCL, anaplastic large cell lymphoma; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CAR T, chimeric antigen receptor T-cell; 
DLBCL, diffusal large B-cell lymphoma; HL, Hodgkin’s lymphoma; NHL, non-Hodgkin’s lymphoma; PMBCL, Primary mediastinal Large B-cell 
Lymphoma; PTCL, peripheral T-cell lymphoma; T-ALL, T-cell acute lymphoblastic leukemia; CLL, chronic lymphocyte leukemia.

Table 3. (Continued)
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CAR-T-cell (UCART7) in 2018. The CD7 and 
TRAC genes were removed to prevent fratricide 
and xenogeneic graft-versus-host disease 
(GVHD), respectively. In preclinical testing, the 
UCART7 exhibited excellent efficacy in vitro and 
in vivo without mediating GVHD.52 Pan et al.36 
conducted a phase I trial of allogeneic anti-CD7 
CAR-T-cells that involved 20 patients with R/R 
T-ALL. CAR-T-cells were infused at doses of 
5×105 or 1×106. Ninety percent of the patients 
achieved CR by the 15th day, and 7 of them 
accepted allo-HSCT in tandem. At the 6th month 
of follow-up, the 15 patients were still in remis-
sion. All of the patients experienced CRS and 
cytopenia that were reversible. Twelve patients 
developed GVHD on the 14th day with a median 
duration of 3 days. All the symptoms related to 
GVHD have been alleviated after the administra-
tion of methylprednisolone plus ruxolitinib or 
ruxolitinib alone. However, one patient died of 
fungal pneumonia at the 5.5th month after 
infusion.36

CD5. CD5 is expressed on most T-cell malignan-
cies and normal T-cells.53–55 Mamonkin et  al. 
manufactured an anti-CD5 CAR using CD28 
costimulatory domain. In their preclinical testing, 
the anti-CD5 CAR-T-cells succeeded in eliminat-
ing the T-ALL or PTCL cell lines and arresting 
the progression of the diseases in xenogeneic 
mice. In addition, a reduction in CD5 expression 
was noted after CAR transduction, which may 
explain the transient fratricide observed in their 
study.56 Similarly, the downregulation of CD5 
expression and mild fratricide were detected in 
another trial.57 CD52 was induced into the CAR 
construct as a switch to control toxicity. Once 
adverse events occur, the CD52-targeted mono-
clonal antibody alemtuzumab can be adminis-
tered to lyse CAR-T-cells carrying CD52.57 Given 
the short persistence of CD28-based CAR-T-
cells, Mamonkin et  al.58 decided to develop a 
CAR with a 4-1BB costimulatory molecule that 
can persist longer. However, increased cell apop-
tosis was noted in 4-1BB-based CAR-T-cells than 
in CD28-based CAR-T-cells due to 4-1BB-
derived TRAF signaling. Thus, they introduced a 
Tet-OFF expression system to reversibly regulate 
CAR expression to alleviate fratricide and eluci-
dated that 4-1BB-based CD5 CAR-T-cells with 
the Tet-OFF system exhibit increased persistence 
and antitumor activity compared with CD28-
based CD5 CAR-T-cells.58 Recently, a new CAR 
structure derived from a fully human heavy chain 

(FHVH) domain instead of traditional scFv was 
developed and applied in anti-CD5 CAR-T-cells. 
The researchers found that FHVH-derived CAR-
T-cells have higher degranulation levels and anti-
tumor efficacy than CAR-T-cells with scFv. The 
VH domain has a smaller size, which is advanta-
geous in recognizing smaller antigenic epitopes.59

Hill et al.37 reported a clinical study (NCT03081910) 
on the treatment of R/R T-ALL and lymphomas 
with CD5-directed CAR-T-cells. They used 
autologous peripheral blood mononuclear cells 
for gammaretroviral transduction and then cryo-
preserved them. They enrolled 4 T-ALL and 5 
T-NHL patients. Three of these patients received 
CAR-T infusion at a dose of 1×107/m², and the 
other six patients received 5×107/m². Four to 
eight weeks later, four patients achieved an objec-
tive response, and three patients achieved a com-
plete response. However, two of them relapsed at 
6 weeks and 7 months postinfusion. Another 
patient receiving a second CAR-T infusion and 
undergoing allo-HSCT in tandem was still in CR 
at + 125 d of HSCT, suggesting that bridging 
allo-HSCT after CAR-T infusion may represent 
a strategy to acquire deeper and longer remis-
sion.37 Three patients experienced CRS during 
the treatment, and only one of them developed 
grade 2 CRS requiring tocilizumab. The latest 
data from this trial demonstrated that cytopenia 
was the most common side effect, but patients 
could recover within a month.60 Feng et  al. 
reported a case with refractory T-cell lymphoma 
and CNS (Central Nervous System) infiltration. 
The patient received modified anti-CD5 CAR-T-
cells that contained an IL-15/IL-15 sushi com-
plex. They showed that CNS infiltration and CSF 
(cerebro-spinal fluid) abnormalities were miti-
gated in patients who had transient T-cell aplasia 
alone.61 In general, anti-CD5 CAR-T-cells have 
good safety and efficacy in the treatment of T-cell 
malignancies.

TRBC1. One of the dilemmas in treating T-cell 
malignancy is the poor selectivity mentioned 
above. Given that normal T-cells and malignant 
cells may share mutual antigens, CAR-T-cells 
attack both types of cells after infusion, leading to 
a severe adverse effect. Unlike B-cell aplasia, it is 
intolerable for the organism to develop T-cell 
aplasia. Thus, a more specific target is urgently 
needed. The T-cell receptor is widely expressed in 
T-cells and comprises six different polypeptides, 
including αβ subunits.62 The β-constant region 
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consists of two different genes called TRBC1 and 
TRBC2. A single T-cell only expresses each of 
them, as does the malignant cell.63 These TCR 
molecules have similar functions but vary slightly 
in amino acid sequence; thus, different T-cells can 
be distinguished. In a normal individual, approxi-
mately 35% of T-cells are TRBC1 positive and 
65% of T-cells are TRBC2 positive. Targeting 
either group of cells would not deplete the func-
tion of the other group. This feature serves as the 
cornerstone of anti-TRBC CAR-T therapy64 
(Figure 3). Ideally, the anti-TRBC1 or anti-
TRBC2 CAR-T-cells could specifically target 
malignant cells as well as T-cells that express the 
corresponding TRBC molecule. Therefore, a 
large portion of T-cells expressing another TRBC 
molecule would be spared, and patients could still 
derive a great response from this approach by 
avoiding severe fratricide and nonspecific killing 
of T-cells. Maciocia et al. developed CAR-T-cells 
targeting TRBC1 and demonstrated that those 
cells specifically eradicate TRBC1+ cells instead 
of TRBC2+ cells in vitro and in vivo. Reduced 
tumor burden and prolonged survival periods 
were observed in mouse models.64

Based on their study, two clinical trials on anti-
TRBC1 CAR-T-cells are ongoing. In a trial 

conducted in Spain and the United Kingdom, a 
total of 55 patients with T-NHL, such as angio-
immunoblastic T-cell lymphoma (AITL), ana-
plastic large cell lymphoma (ALCL), and 
peripheral T-cell lymphoma, not otherwise speci-
fied (PTCL, NOS) were enrolled and received 
TRBC1-directed CAR-T-cells infusions at an 
escalating dose of 25 to 225×106 cells. The trial 
aims to identify the safety and efficacy of this 
treatment (NCT03590574). Another trial of anti-
TRBC1 CAR-T-cells in patients with R/R 
TRBC1+ T-cell malignancies, including T-cell 
leukemia, is currently recruiting (NCT04828174).

CD4. CD4 is expressed in most T lymphocytes, 
including malignant and normal cells.65 Due to its 
rare expression beyond the hemopoietic system, 
CD4 exhibits the feasibility of serving as a thera-
peutic target. Pinz et  al. conducted preclinical 
testing using a self-designed anti-CD4 CAR-T-
cell (CD4CAR). The KARPAS 299 cells (a cell 
lymphoma cell line) were lysed after 24 h of 
coculture with the CD4 CAR, whereas the cells in 
the control group were still alive. Next, they tested 
the in vivo activity by injecting CD4CAR into 
xenogeneic mice and showed that malignancy 
expansion was arrested.66 Another recent trial 
also showed that anti-CD4 CAR-T-cells 

Figure 3. The mechanism for anti-TRBC1 CAR-T therapy. Each T-cell expresses a certain TRBC molecule. 
The CAR-T-cells targeting TRBC1 can specifically distinguish TRBC1+ cells, including tumor cells and normal 
T-cells. TRBC2+ T-cells are preserved to maintain cellular immunity. CAR-T, chimeric antigen receptor T-cell.
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successfully prevent the proliferation of malignant 
cells and prolong the survival time of mice with a 
dose-response relationship.67 Currently, serval 
clinical trials are ongoing (Table 3).

The first case reported to undergo treatment with 
CD4-directed CAR-T-cells was a 54-year-old 
patient with Sezary syndrome. Before the CAR-T 
infusion, he had been resistant to prior lines of 
chemotherapy, and tumor infiltration was 
detected in his skin. The patient received CAR-T 
infusion at a dose of 3×106/kg. On Day + 13 
after infusion, the patient achieved CR. On 
Day + 28, the biopsy demonstrated that the skin 
was free from tumor infiltration. Moreover, no 
grade II CRS or other adverse events were 
observed during his treatment.68 Targeting CD4 
is effective but needs to be more cautious. Given 
on-target effects, patients may still develop seri-
ous CD4+ cell aplasia that resembles HIV. The 
solution to this issue includes shortening the life-
time of CAR-T-cells or using NK-cells for CAR 
transduction as their lifespan is shorter.69

CD30. CD30 is a transmembrane receptor of the 
TNFR superfamily and is mainly expressed on 
Hodgkin’s lymphoma (HL), anaplastic large cell 
lymphoma (ALCL), and approximately 1/3 of 
T-ALL.70–72 ALCL is characterized by uniformly 
expressed CD30. Moreover, it was also reported 
that CD30 expression was increased during high-
dose chemotherapy in T-ALL.72 Thus, CD30 was 
deemed a latent target for immune therapy of 
T-cell malignancies. Brentuximab vedotin (BV) is 
a flourishing antibody-drug conjugate. An anti-
CD30 antibody binds to a cytotoxic agent mono-
methyl auristantin E (MMAE) that can disrupt 
microtubules to inhibit tumor cells.73 Several 
published clinical trials of BV in patients with R/R 
ALCL showed that the outcomes were amelio-
rated using this approach. In a phase 2 study, the 
OS was as high as 79% with a median response 
duration not reached.74,75 These results suggested 
that CD30 may also represent an excellent 
CAR-T target, and its feasibility has been demon-
strated in a previous preclinical testing.76

In 2017, Ramos et al.77 described a clinical trial 
that involved two ALCL and seven R/R HL 
patients. The two ALCL patients were diagnosed 
with cutaneous ALK− ALCL and systemic ALK+ 
ALCL, separately. The patient with ALK+ ALCL 
received anti-CD30 CAR-T-cells (CD30. 
CAR-Ts) at a dose of 2×108/m² and presented 

PR by PET/CT in the 6th week postinfusion. 
Furthermore, this patient received three addi-
tional infusions later and achieved CR that lasted 
for 9 months. However, no response was observed 
in the other patient with ALK- ALCL.77 Regarding 
safety, the nine patients enrolled in this trial did 
not demonstrate any adverse reactions related to 
CRS or CD30 CAR-Ts.77 In another open-label 
phase I trial conducted by Wang et al., the only 
patient diagnosed with cutaneous ALCL received 
CAR-T-cells at a dose of 2×107/kg. The patient 
underwent several lines of treatment before the 
infusion, including chemotherapy, BV, radiation 
therapy, and surgery. He achieved PR after the 
first infusion, and the mass on the skin disap-
peared after receiving the second infusion 4 weeks 
later. Adverse events mainly presented as 
increased levels of serum liver enzyme and  
γ-GGT.78 In 2018, Wang et al. demonstrated that 
in a trial involving four patients with HL and two 
patients with ALCL, five of them achieved CR 
after anti-CD30 CAR-T infusion (including the 
two ALCL patients). Five patients experienced 
grade 0–1 CRS, but one patient with HL died of 
grade 4 CRS.79 In addition, Voorhees et  al. 
reported a case with refractory/relapsed CD30 +  
enteropathy-associated T-cell lymphoma 
(EATL). The patient received standard lym-
phodepletion chemotherapy before receiving 
anti-CD30 CAR-T dose of 2×108/m². He experi-
enced grade 1 CRS on the 12th day after infusion 
and recovered on the 15th day. In the sixth week, 
the patient achieved PR, and the previously 
affected lymph nodes all disappeared as assessed 
by PET/CT scan. At the 24-month follow-up, the 
patient maintained continued remission.80 These 
findings indicated that anti-CD30 CAR-T-cells 
have good safety and efficacy. It has great poten-
tial for the treatment of ALCL. However, there 
were still cases who died of severe CRS. It sug-
gests that we need to better select the timing and 
dose of treatment. As a consequence, more data 
from diverse clinical trials are necessary to further 
evaluate this novel treatment.

CD37. CD37 is a transmembrane protein of tet-
raspanin superfamily. It mainly distributes on 
B-cells and partial T-cell lymphomas.81 For CD37 + 
B-lymphomas and CLL, a variety of monoclonal 
antibody-based drugs targeting CD37 have been 
assessed in clinical trials and have preliminarily 
revealed excellent safety and efficacy.82–84 These 
findings suggest that CD37 could act as a thera-
peutic target. Scarfò et  al.85 developed an 
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anti-CD37 CAR-T-cell (CAR-37) with 4-1BB 
costimulatory domain. They verified that CD37 
was expressed in PTCL cell lines and cultivated 
the PTCL cells with CAR-37 together in vitro. 
After coculture, the cell lines Hut78 and Fepd 
were eliminated, and no obvious fratricide was 
observed, indicating that CAR-37 has antitumor 
activity against PTCL cells.85 Given that not all 
T-cell lymphomas express CD37, testing CD37 
expression before therapy is necessary to select 
suitable patients.

The only ongoing trial of CD37-directed CAR-T-
cells (NCT04136275) planned to enroll patients 
with R/R hematologic malignancy, including leu-
kemia, B-lymphoma, and T-lymphoma, to evalu-
ate the safety at a starting dose of 100×106 
CAR-T-cells. Four patients received anti-CD37 
CAR-T infusion, including two with high-grade 
B-lymphoma, one with HL, and one with cutane-
ous T-cell lymphoma (CTCL) in a phase I trial. 
The patient with CTCL received 19×106 CAR-
T-cells due to poor ex vivo proliferation, and he 
achieved CR on the 28th day postinfusion. All 
four patients had detectable in vivo CAR-T-cells 
proliferation and experienced CRS and immune 
effector cell-associated neurotoxicity syndrome 
(ICANS). Of note, two patients receiving a 
CAR-T dose of 100×106 CAR-T-cells developed 
prolonged pancytopenia with marrow aplasia that 
required allo-HSCT.38

Other targets
CD1a. CD1a is a molecule expressing exclusively 
in cortical thymocytes or Langerhans cells, mak-
ing it a good target for treating cortical T-ALL 
and Langerhans cell histiocytosis.86 CD1a is lim-
itedly expressed on developing cortical thymo-
cytes but is not expressed in other types of T-cells; 
thus, it may represent an effective method to pre-
vent fratricide and immune suppression in 
CAR-T therapy. Sánchez-Martínez et al.87 showed 
that the CAR-T-cells with anti-CD1a scFv could 
expand without T-cell fratricide and was cytotoxic 
against CD1a cell lines. CD1a-redirected T-cells 
proliferated up to 200 times on the 12th day in 
vitro, which was similar to that noted for MOCK 
T-cells. In the xenogeneic cortical T-ALL model, 
the infused CD1a-directed T-cells decreased the 
tumor burden. However, Leong et al.88 found that 
CD1a is rarely expressed in R/R T-ALL. In most 
cases, CD1a+ is a marker associated with a good 
prognosis, and patients usually do not need to 

receive CAR-T infusion. Thus, the suitable 
patients for this treatment are sparse. In addition, 
it is only suitable for patients with cortical T-ALL, 
which further limits the application of anti-CD1a 
CAR-T products. There is currently no ongoing 
clinical trial for CD1a CAR-T therapy.

CD21. CD21 is regarded as a pan-B antigen 
expressed on normal B-cells, playing an impor-
tant role in innate and specific immune 
responses.89 CD21 binds to CD19/CD81 on the 
surface of B-cells to form a B-cell coreceptor, by 
which B-cells enhance their sensitivity and activa-
tion.90 A previous study demonstrated that CD21 
was expressed on T-ALL cells and was related to 
NOTCH signaling in T-ALL,89,91 bringing it to 
the attention of investigators. Maciocia et  al.92 
found that CD21 was extensively expressed on 
T-ALL cells and normal B-cells, whereas it was 
minimally expressed on mature normal T-cells. 
Hence, developing CD21 as a target is a promis-
ing method to overcome fratricide and on-target 
off-tumor effects. Recently, in murine models of 
T-ALL, anti-CD21 CAR-T-cells demonstrated 
superior performance in reducing tumor burden 
and exhibited increased OS compared with anti-
CD19 CAR-T-cells.92 Given the restricted 
expression of CD21 on B-cells and malignant 
T-cells, lethal complications caused by severe 
immunodeficiency are less likely to develop. The 
downside of CD21 is that only a portion of 
malignant cells express CD21.89,92 Thus, antigen 
escape occurs at some point, and the patient ulti-
mately relapses.

CCR4. Chemokine receptor 4 (CCR4) is mainly 
expressed by Th2 cells, Treg cells, and skin lym-
phocyte antigen-positive homing T-cells.93 CCR4, 
with its ligands CCL17 and CCL22, encourages 
the accumulation of CCR4-expressing T-cells in 
the skin and the migration of Treg cells to the 
tumor microenvironment. This mechanism is 
important in the pathogenesis of CTCL.94 CCR4 
expression is upregulated in CTCL, MF, SS, and 
ATLL.93,95,96 Currently, a humanized monoclonal 
antibody against CCR4 mogamulizumab has 
been approved for the treatment of R/R CTCL, 
MF, SS, and ATLL.97,98 This finding indicates 
that it is a potential target for CAR-T therapy.

Perera et  al. designed an anti-CCR4 CAR con-
struct with 4-1BB costimulatory molecule. They 
demonstrated the cytotoxicity of the CCR4-
directed cells toward CTCL cell lines and noted 
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that CCR4-targeted CAR-T-cells will not cause 
severe disorder in the T-cell subset.99 However, 
several adverse events resembling those of moga-
mulizumab, including thrombocytopenia and 
toxic epidermal necrolysis, were noted.99 Thus, 
more research on its safety and efficacy is still 
required before its application in patients.

CCR9. CCR9 expression is limited to immature T 
lymphocytes and intestinal cells. CCR9 is 
expressed in greater than 70% of T-ALL cases 
and less than 5% of normal cells.100,101 CCR9 
promotes the migration, infiltration, and expan-
sion of leukemia cells when it binds to its ligand 
CCL25.101,102 Somovilla-Crespo et  al.103 gener-
ated a type of anti-CCR9 antibody and demon-
strated that it inhibits the growth of CCR9+ 
leukemia cells in a mouse model. Recently, 
Maciocia et al. designed a CAR-T-cell with anti-
CCR9 scFv, and the anti-CCR9 CAR-T-cells 
showed excellent antitumor efficacy in their study. 
Moreover, it effectively alleviated fratricide and 
T-cell aplasia for its limited expression in normal 
tissue.100

Solutions to overcome the current 
challenges and enhance efficacy

Solutions to T-cell aplasia
Patients with T-cell aplasia are predisposed to 
opportunistic infections that are sometimes fatal. 
Unlike the injection of immunoglobulin for B-cell 
aplasia caused by anti-CD19 CAR-Ts, an similar 
effective approach to T-cell aplasia has not been 
developed. Thus, taking precautions against 
T-cell aplasia is important. (1) Choosing a highly 
specific target to manufacture CAR-T products is 
the basic measure to avert T-cell aplasia. The 
ideal target should be expressed exclusively on 
malignant cells and rarely expressed on normal 
T-cells such that CAR-T-cells can identify the 
tumor precisely. One of the examples involves 
targeting the TRBC previously mentioned. The 
CAR-T-cells are transduced with scFv targeting 
TRBC1 or TRBC2, and these CAR-T-cells 
would only kill either cell population (TRBC1+ 
cells or TRBC2+ cells; Figure 3).64 (2) 
Introducing the suicide gene as a ‘switch’ to regu-
late the CAR-T-cells is also an effective method. 
Researchers have incorporated the inducible cas-
pase-9-based suicide gene as suicide gene in 
CAR.104,105 By activating the suicide gene, CAR-
T-cells could be eliminated quickly when 

unwanted adverse events occur. (3) Using logic 
gates (AND gate) technology may be useful  
to reduce adverse effects of CAR-T-cells  
(Figure 4).106 Roybal et  al. introduced the syn-
Notch receptor in CAR-T-cells. When binding an 
antigen, the synNotch receptor releases a tran-
scription factor to activate the expression of 
another CAR that targets a different antigen. The 
CAR-T-cells only function when both of the anti-
gens are recognized. This feature enhances  
the specificity of CAR-T-cells, but sufficient tar-
get antigens must be identified.107 However, 
enhanced safety is typically accompanied by 
impaired efficacy. It is important to strike a bal-
ance between safety and efficacy. Moreover, 
bridging allo-HSCT after CAR-T infusion is nec-
essary if serious T-cell aplasia has occurred.108

Solutions to fratricide
Fratricide causes CAR-T-cells to recognize and 
lyse each other, which exerts a negative effect on 
the activity, proliferation, and survival of CAR-T-
cells. (1) Finding a target antigen expressing on 
malignant cells while not on therapeutic CAR-T-
cells. For instance, CD1a is a target antigen 
expressed mainly on developing cortical thymo-
cytes but rarely expressed in other stages of 
T-cells.87 The expression of CD5 on CAR-T-cell 
is downregulated after CD5 CAR-T-cell infu-
sion.56 (2) Inhibition of the target antigens expres-
sion on CAR-T-cells will help reduce fratricide. 
Knocking out TCR or the gene of target antigen 
by genome editing may greatly ameliorate fratri-
cide.109 A study showed that the CRISPR/ 
Cas9-mediated TCR knockout eliminated the 
alloreactivity of allogenic CD19 CAR-T-cells.110 
It is possible that this type of technology would be 
effective in fratricide. For CD7 CAR-T-cells, the 
CD7 gene was knocked out in CAR-T-cells or 
PEBL technology/anti-CD7 antibody were 
employed to prevent the mutual recognition of 
CD7.46,50,111 The inhibition of CD7 expression 
successfully eliminates fratricide. (3) Using the 
cells without mutual antigen expressed on its sur-
face, such as NK-cells.112 It has been demonstrated 
that NK-cells have similar efficacy to T-cells in kill-
ing malignant cells.113 To date, the NK-92 cell line 
has shown antitumor activity and has been used to 
develop CAR products with CD4 and CD5 as tar-
gets.69,114,115 However, NK-cells do not exhibit 
long-term viability when the cytokine is absent.116 
(4) Novel approaches to fratricide, such as using 
nanobody-derived CAR-T-cells or naturally 
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selected fratricide-resistant CAR-T-cells, have 
demonstrated superiority in the treatment of 
CD7+ malignancy (Figure 4).34,117 They provided 
a new way to overcome fratricide excluding gene 
editing, which may help maintain the natural char-
acteristics of cells and enhance the safety as well as 
efficacy. Liu et  al. cultivated anti-CD7 CAR-T-
cells in vitro and selected cells that survived after 
fratricidal natural selection. In their study, this type 
of CAR-T products presented better cytotoxicity 
and resistance to fratricide than CAR-T-cells 
edited by CRISPR/Cas9. The naturally selected 
CAR-T-cells (NS7CAR) decreased the tumor bur-
den in mouse models in the first 2 weeks after infu-
sion.118 In their later phase I clinical trial, NS7CAR 
was applied to 20 patients (14 with T-ALL and 6 
with T-LBL). By Day 28, 94.12% (16/17) of 
patients with bone marrow infiltration achieved 
MRD negative CR, and 55.6% (5/9) of patients 
with extramedullary infiltration achieved extramed-
ullary CR with a median time of 29 days. Most 
patients did not experience severe CRS (grade ⩽ 2) 
except 1 patient who developed grade 3 CRS.34 In 
another study, Chen et al. used an anti-CD7 nano-
body fragment connected to an ER/Golgi reten-
tion domain to manufacture CAR-T-cells 
(CD7ΔCD7-CAR-T-cells). These researchers dem-
onstrated that nanobody-derived CAR-T-cells can 
avoid fratricide and have a great antitumor effect.119 

Zhang et  al.117 reported a clinical trial with this 
kind of anti-CD7 CAR-T-cells. Of the eight 
patients enrolled in the trial, the CR rate at 3 
months was 87.5% (7/8), and no life-threatening 
CRS or ICANS was observed.

Solutions to tumor contamination
Given that T malignant cells are derived from 
normal T-cells or their precursors, they are simi-
lar to each other. Thus, it is often prone to incor-
porate the malignant cells into collected T-cells. 
One way to avoid contamination involves the use 
of NK-cells that are easier to distinguish. The 
markers of NK-cells are different from T-cells.120 
Therefore, NK-cells are less likely contaminated 
by T malignant cells. Another solution to this 
problem involves the use of T-cells from alloge-
neic donors (Figure 4). However, the allogeneic 
CAR-T-cells may give rise to intolerable GVHD 
or be eliminated by immune system, which 
impairs the efficacy of this therapy.121 Cooper 
et al. reported the feasibility of an allogeneic anti-
CD7 CAR-T product UCART7. It showed satis-
factory antitumor efficacy in vitro and in vivo 
without mediating GVHD.52 Pan et  al. initially 
administered the allogeneic anti-CD7 CAR-T-
cells to patients with R/R T-ALL. The result of 
their clinical trial demonstrated that the infused 

Figure 4. Solutions to overcome the current challenges: (a) T-cell aplasia. (b) Fratricide. (C) Tumor contamination.
CAR, chimeric antigen receptor; NK cells, natural killer cells; qPCR, quantitative polymerase chain reaction.
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cells effectively proliferated and the CR rate of 
enrolled patients was up to 90%. Although some 
patients developed GVHD, they were mild and 
reversible.36 Moreover, given that the transduc-
tion efficiency and vector copy number of CAR-
T-cells can be detected and evaluated by flow 
cytometry and qPCR, improvements in these 
technologies may be helpful to this problem.122

Other solutions to enhance CAR-T efficacy
For the CAR-T therapy for B-cell malignancies, 
investigators have explored a variety of  
methods to enhance the efficacy, such as com-
bination strategies and dual-target CAR-T-cell 
therapy.123,124

A preclinical study showed that the expression of 
PD-1 and PD-L1 was upregulated after CAR-T 
infusion, which will inhibit the effector function 
of CAR-T-cells. However, the injection of anti-
PD-1 antibody enhanced the accumulation of 
CAR-T-cells and the cytokine secretion.125 And 
the enhanced efficacy was observed in a clinical 
trial that combined anti-CD19 CAR-T-cells and 
Nivolumab.126 This suggests that combination 
therapy may similarly improve the efficacy of 
CAR-T-cells in the treatment of T-cell malignan-
cies. However, there is no such study in the treat-
ment of T-cell malignancies and more studies are 
required to confirm it.

Recently, Dai et  al. developed a kind of CD5/
CD7 bispecific CAR-T-cell to treat R/R T-cell 
malignancies. Although the dual-target CAR-T-
cells can mitigate tumor antigen escape, targeting 
multiple antigens will give rise to more severe 
T-cell aplasia and fratricide. Thus, they knocked 
out the CD5 gene and CD7 gene before CAR 
transduction to prevent fratricide. In their study, 
the CD5/CD7 bispecific CAR-T therapy showed 
satisfactory antitumor efficacy in mouse model.127 
This may be an effective way of improving CAR-T 
therapeutic efficacy but it needs clinical trials to 
verify its safety in humans.

Conclusion and future direction
The development of CAR-based immunotherapy 
is a landmark in the treatment of hematological 
malignancies. Compared with B-cell malignan-
cies, T-cell malignancies are associated with 
greater heterogeneity and worse prognoses. 
Distinctive challenges of CAR-based treatment in 

T-cell malignancies have been noted. Severe 
T-cell aplasia caused by the on-target off-tumor 
effect, CAR-T-cells fratricide, and contamination 
of malignant cells represent urgent problems that 
need to be solved. Selecting target antigens with 
increased specificity, introducing the suicide gene 
as a ‘switch’, removing the target genes by gene 
editing, and using NK-cells or donor-derived 
T-cells for CAR transduction are current solu-
tions to these problems. To date, many targets 
under development have demonstrated good effi-
cacy in preclinical testing. However, given the 
safety and applicability, only a few of these targets 
entered the clinical trial stage. CD7 is the most 
widely studied target at present. It exhibited 
impressive efficacy and safety of both allogeneic 
and autologous CAR-T products in phase I stud-
ies, and a phase II trial of allogeneic anti-CD7 
CAR-T-cells is ongoing.36 The TRBC1 or 
TRBC2 gene is only expressed on half of the 
T-cells, so these genes might be a good target to 
overcome T-cell aplasia and fratricide.64 CD21 
and CCR9 are newly proposed target antigen that 
are restricted to malignant T-cell compartments, 
which may help to avoid the T-cell aplasia and 
fratricide. Some patients underwent the cytokine 
release syndrome in diverse trials. However, the 
toxicity was reversible and transient in most cases. 
The main work in the future is still to find solu-
tions to overcome the obstacles mentioned above. 
The combination therapy and dual-target CAR-T 
are potential way to enhance the efficacy. The 
development of this treatment is still at an early 
stage. Thus, more research are still needed for the 
approval of this treatment.
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