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Abstract

Extracellular protein concentrations and gradients initiate a wide range of cellular

responses, such as cell motility, growth, proliferation and death. Understanding

inter-cellular communication requires spatio-temporal knowledge of these secreted

factors and their causal relationship with cell phenotype. Techniques which can

detect cellular secretions in real time are becoming more common but

generalizable data analysis methodologies which can quantify concentration from

these measurements are still lacking. Here we introduce a probabilistic approach in

which local-linear models and the law of mass action are applied to obtain time-

varying secreted concentrations from affinity-based biosensor data. We first

highlight the general features of this approach using simulated data which contains

both static and time-varying concentration profiles. Next we apply the technique to

determine concentration of secreted antibodies from 9E10 hybridoma cells as

detected using nanoplasmonic biosensors. A broad range of time-dependent

concentrations was observed: from steady-state secretions of 230 pM near the cell

surface to large transients which reached as high as 56 nM over several minutes

and then dissipated.
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1. Introduction

From bacterium to eukaryote, a cell’s fate is directly tied to its local chemical

environment. The measurement of external protein concentrations and gradients by

membrane bound receptors has been found to determine the most fundamental of

cellular decisions including differentiation (Letterio and Roberts, 1998; Risau and

Flamme, 1995), motility (Friedl and Gilmour, 2009; Heldin and Westermark,

1999; Werner and Grose, 2003), growth (Conlon et al., 2001; Raff et al., 1978),

proliferation (Beck and Damore, 1997; Hogan, 1996) and death (Ashkenazi and

Dixit, 1998; Hershko and Ciechanover, 1998; Nagata, 1997). For decades such

dependencies have been deduced by introducing artificial gradients of signaling

molecules to cell cultures either on the surface (Brandley and Schnaar, 1989;

Dertinger et al., 2002; Whitesides et al., 2001) or more recently in solution using

microfluidic-based instrumentation (El-Ali et al., 2006; Jeon et al., 2002; Lucchetta

et al., 2005; Yang et al., 2002). The resulting concentration profiles can be well-

defined by the experimental geometry, flow rates and diffusion constants, giving

quantitative insights into the relationship between the distribution of signaling

molecules and cellular response. Unfortunately such designs are a poor

approximation for the complex gradients produced by cells either in culture or

in vivo. Furthermore, such artificial gradients cannot probe the intrinsic interplay of

the intercellular communication system in which cells act as both the local

signaling sources and receivers. To understand cellular behavior in environments

that more closely mimic in vivo conditions there is a need to quantify the time-

dependent protein concentrations as secreted by the cells themselves. Such

measurements can then be utilized by mechanistic models of cell behavior which

require such quantitative data sets for testing predictions. (Licko, 1973; Sunnaker

et al., 2013; Tsaneva-Atanasova et al., 2010)

There now exists a number of sensing techniques capable of detecting time-

dependent secretions from individual or groups of cells using either fluorescent

(Han et al., 2010; Shirasaki et al., 2014) or nanoplasmonic sensors (Raphael et al.,

2013a) as the signal transduction mechanism. These sensors give a response which

is functionally related to the number of analyte molecules captured on the sensor

surface but do not directly measure analyte concentration in solution. The

challenge, then, is to infer the time-dependent concentration of cell secretions in

solution, C, from the affinity-based binding measurements at the sensor surface.

The relationship between these two quantities is governed by the law of mass

action (Eq. (1))

_f ¼ kaC⋅ð1� f Þ � kdf (1)

which is written in terms of the fractional occupancy of surface bound receptors, f,

and its time derivative, _f (ka is the association rate constant and kd is the

dissociation rate constant). If cellular secretions reach a steady state then _f is zero
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and the equation simplifies to a relation in which C is only functionally dependent

on f. More generally, however, in processes involving cell proliferation (i.e

development, cancer metastasis) or damage (i.e. wound healing, regeneration) the

concentration profiles are far from steady state and the fractional occupancy’s time

derivative must be taken into account. For such cases a generalizable data analysis

approach capable of determining temporal fluctuations in extra-cellular protein

concentrations is required.

In this work we show such information can be obtained by the application of local

linear models and temporal filtering of time-dependent fractional occupancy data.

Using these approaches a joint probability distribution for f and _f is determined

and subsequently the concentration, C, with its associated error bars. We first

illustrate the features and flexibility of this approach using simulated time-

dependent concentration data. Next, we applied this approach to the analysis of

antibody secretions from individual or small groups of hybridoma cells as

measured with nanoplasmonic biosensors. The choice of the hybridoma as a

model system was made for the following reasons: (1) these cell lines are

engineered for constitutive antibody secretion, eliminating the added complexity

of designing a secretion trigger (2) the optimal culturing conditions for

hybridomas have been established over decades as have the bulk effects of

perturbing these conditions by a variety of chemical and atmospheric conditions

and (3) characterizing and optimizing the secretion rate of hybridomas (as well as

CHO cells) is of central importance for producing research antibodies as well as

the emergent class of immunotherapeutic drugs. Here we demonstrate that our

data analysis method has the dynamic range to quantify concentrations from both

steady-state and transient secretions on the 9E10 hybridoma cell line.

2. Materials and methods

2.1. Data simulations and analysis

All simulations and analysis were conducted using the Matlab 2013b environment

with Curve Fitting, Image Processing and Statistics Toolboxes. Detailed

derivations of the equations in the main text and their implementation in Matlab

are described in the Supplementary Data.

2.2. Fabrication of nanostructure arrays

Square arrays of gold nanostructures were patterned using electron-beam

nanolithography as previously described (Raphael et al., 2012). In short, the

arrays were patterned onto No. 1.5 glass coverslips by spinning a bilayer resist

structure consisting of polymethyl methacrylate and ethyl lactate methyl

methacrylate copolymer with thicknesses of 180 nm and 250 nm, respectively.

The resist was electron-beam patterned using doses 300 μC/cm2 and subsequently
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developed for one minute in a 2:1 solution of isopropyl alcohol: methyl isobutyl

ketone. A 5 nm layer of Ti followed by 80 ± 2 nm of Au was deposited with a

Temescal electron-beam evaporator. The bilayer resist was then lifted off by

soaking in acetone for 4 h. The bases of the nanostructures were circular in cross

section with diameters of 75 ± 5 nm.

2.3. Nanostructure functionalization

RF plasma ashing (40 W) with 300 mTorr of a 5% hydrogen, 95% argon mixture

was used to clean the glass and gold surfaces on the chips. The gold nanostructures

were functionalized in a two-component ethanolic-based thiol bath (0.5 mM),

consisting of a 3:1 ratio of SH-(CH2)8-EG3-OH to SH-(CH2)11-EG3-NH2

(Prochimia) for 18 h, where EG stands for ethylene glycol monomer. The amine

terminus was reacted with a 10 mg/mL solution of the heterobifunctional

crosslinker sulfo-N-succinimidyl-4-formylbenzamide (Solulink) in PBS buffer at

pH 7.4, followed by a hydrazine functionalized c-myc peptide conjugation

(Solulink) in PBS buffer at pH 6.0 according to the manufacturer’s instructions. In
past work, anti-c-myc which had been exposed to a c-myc solution for blocking the

binding antibody’s binding sites gave a signal of 1% or less compared to its

corresponding control study, demonstrating minimal non-specific binding to these

surfaces (Raphael et al., 2013b). For biotin-neutravidin studies, 0.3 mM of sulfo-

NHS-biotin (Thermo) in PBS was drop coated on to the chip for 30 min. Chips

were rinsed with DDW and dried with nitrogen gas. Commercially available

monoclonal anti-c-myc antibodies (Sigma) were used for normalizing array

response at the end of each experiment.

2.4. Microscopy setup and drift correction

Halogen lamp light was first passed through a 594 long-pass filter and then the

Koehler illumination train of an inverted microscope (Zeiss AxioObserver) before

following the light path described in Fig. 1a. The objective used was a 63X, 1.46

numerical aperture oil-immersion objective. For spectral measurements a 600 μm
diameter optical fiber was used to collect the scattered light from a single array and

detected with thermoelectrically-cooled, CCD-based spectrophotometer (Ocean

Optics QE65000) at an integration time of 1 s. A thermoelectrically-cooled CCD

camera (Hamamatsu ORCA R2) with integration times between 200 and 250 ms

was used for imagery. A heated stage and temperature controlled enclosure kept

the stage temperature at 37.0 ± 0.04 °C (Zeiss). Humidity and CO2 were regulated

at 98% and 5%, respectively, by flowing a gas-air mixture though a heated water

bottle and into the enclosure. In plane drift was corrected for with image alignment

software (Zeiss Axiovision) while the focus was stabilized using an integrated

hardware focus correction device (Zeiss Definite Focus).
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2.5. Hybridoma culturing

Clone 9E10 Hybridoma cells (ATCC) were cultured in complete growth medium

RPMI-1640 supplemented with 10% fetal bovine serum and 1% antibiotic/

antimycotic in a humidified tissue culture incubator at 37 °C under 5% CO2

atmosphere. Cells were maintained at a density of 3–5 × 105 cells/mL by

performing passaging every two days which maintained viability at 90–95%. Prior
to LSPRi studies, the cells were pelleted by centrifugation (900 rcf × 5 min) and

washed twice with RPMI-1640 serum-free media (SFM) for the removal of

secreted antibodies and serum. For imaging, 75 μL of 0.5–2 × 106 cells/mL cell

solution was manually injected into the fluidics chamber. Cell surface density was

controlled by allowing cells to settle on the surface for 5 to 10 min and then

microfluidically flowing SFM to remove those still in solution.

[(Fig._1)TD$FIG]

Fig. 1. LSPRi calibration using a 400 nanostructure array. (a) Gold nanostructures are patterned atop

the coverslip (inset). The excitation light from a halogen lamp passes through a linear polarizer P1 and

illuminates the arrays through the objective O. The reflected light is collected by the objective, passes

through a crossed linear polarizer (P2) and is reflected by a mirror (M) through a 50/50 beam splitter

(BS) to the spectrometer (SP) and CCD camera. (b) A single array is aligned with the fiber optic and the

spectra is analyzed to determine the time-dependent fractional occupancy. The inset shows two spectra

at concentrations C = 0 and C = 400 nM. (c) Normalized imagery data on the same array taken in

parallel with the spectral acquisition. The inset shows a false colored CCD image of a 20 × 20 array of

nanostructures with a pitch of 500 nm (scale bar is 3 μm). (d) Normalized image intensity versus the

spectrally-determined fractional occupancy for three separate experiments. The red and green circles are

for anti-c-myc monoclonal antibodies binding to a c-myc functionalized array in PBS and serum-free

media, respectively. The blue circles are for neutravidin binding to biotinylated nanostructures. The size

of the symbols in all plots incorporate 2σ uncertainty.
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3. Results and discussion

3.1. Determining concentration from fractional occupancy

The initial data processing of the typical instrument for quantifying protein

secretions produces an estimated fractional occupancy, fi, and standard deviation,

σi, for each of the M images at times ti (Fig. 2a). Eq. (1), however, shows that the

concentration is also dependent on the time derivative of the fractional occupancy,
_f . A central problem for any data analysis approach that seeks to calculate time-

varying concentration is that both f and _f , along with their related uncertainties,

must first be jointly determined. The formalism we used to accomplish this can be

thought of as divided into three steps. First, a time window, h, is defined in which f

and _f are to be calculated, as schematically shown in Fig. 2a. Second, the data

within this time window are fit with a set of local linear models dependent on f and
_f (Fig. 2b) and a least-squares approach is used to determine their maximum

likelihood values and uncertainties. Finally, the calculated joint probability

[(Fig._2)TD$FIG]

Fig. 2. Schematic of Data Analysis to Determine Concentration from Fractional Occupancy. Three

steps are needed to determine the probability of a concentration at each time, t’: (1) Subsampling the

fractional occupancy, (2) forming the probability over parameters of local linear models and (3)

integrating along lines of constant concentration. (a) The first step subsamples the processed LSPRi

data, D, of mean values, μi (black circles) and standard deviations, σi (grey bars). A temporal filter

centered at time, t, and width, h, assigns weights, wi (depicted as vertical bars on the t-axis), to control

the ith sample’s contribution to the local linear models. Three different times ðt′1; t′2; and t′3Þ are shown

for determination of concentration. (b) A blow-up of the samples around t ¼ t′3 shows local linear

models that might fit the data. Given the normal distribution (μi, σi) for the fractional occupancy

at each ti one can quantify the probability of different local linear models explaining the data. The

weights, wi, subsample the data by increasing the variance of data outside the range of h via

Eq. (4). Samples not near t′3 are unable to constrain the linear models and do not contribute. (c)

Each local linear model is a point in the f � _f plane. All possible local linear models are

summarized by the probability distribution, pðf ; _f jt; h;DÞ, a bivariate normal distribution (depicted

as elliptical contours) with five parameters: the mean value ðf ; _f Þ and the entries (σxx, σxy, and

σyy) in the 2 × 2 covariance matrix, Σ. Using the law of mass action for the kinetic binding

model, we can assign a concentration to each point ðf ; _f Þ. The probability of a particular

concentration, c, at a time t is determined by integrating pðf ; _f jt; h;DÞ along the lines of constant

concentration shown as the dashed lines radiating from the point (1,-1). The constant value for the

concentration of each line increases in the clockwise direction and each line integral must be

successively evaluated to determine p(c|t, h; D) for all c.
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distribution for f and _f is combined with Eq. (1) to determine the associated

concentration probability distribution for each time window (Fig. 2c).

In describing the details of this approach some changes in nomenclature are

helpful. First, substitute fi → μi to emphasize the connection with the mean

parameter of the normal distribution. The processed data will then be indicated by

D ¼ fti; μi; σiji ¼ 1; ::: ;Mg. Also, define a dimensionless concentration:

c ¼ C=KD. To summarize the procedure consider the following expression for

the probability distribution of the concentration at time, t, conditioned on the data,

D, and time window, h:

pðcjt; h;DÞ ¼ 1
Z
∫ 1
0df ∫

∞
�∞d

_f pðcjf ; _f Þpðf ; _f jt; h;DÞ (2)

The parameter h determines the amount of data to subsample in D near the time, t,

and the normalization, Z, is the integral of Eq. (2) over concentration:

Zðt; h;DÞ≡∫∞
0 dcpðcjt; h;DÞ (3)

The procedure is essentially error propagation of the uncertainty in μi as

represented by σi via marginalization (i.e., integrating over the model parameters f

and _f , described below) to determine the probability distribution of the

concentration, c, at each time, t, of interest, assuming a particular kinetic binding

model represented by pðcjf ; _f Þ.

The calculation of p(c|t, h ; D) is dependent upon pðcjf ; _f Þ which is described by

the kinetics of the reaction (Eq. (1)) and pðf ; _f jt; h;DÞ which, as discussed above, is
a central computational challenge given that _f is not explicitly measured. To

determine _f , at a minimum we need to take a numerical derivative without

amplifying the noise in the data. Standard practice in time-series analysis uses a

smoothing filter over some range of samples in time, reducing the noise in the

derivative. However, a better approach is possible in our experiment since we also

have a standard deviation, σi, for each μi. This allowed us to pose the question, how

well can a straight line, μ′ ¼ f þ _f ⋅ðt′ � tÞ, explain the noisy data near time t? Each

local linear model with parameters ðf ; _f Þ over a range of data prescribed by the

filter located at t with width, h, can be assigned a likelihood of fitting the data.

Similar to linear regression, we can write our probability as a negative log-

likelihood, L, but with the weights, w(ti|t, h), of a temporal filter at each ti of the

data,

L ¼ �lnpðf ; _f jt; h;DÞ
¼ ∑

n

i¼1
wðtijt; hÞ⋅½f þ

_f ⋅ðti � tÞ � μi�2
2σ2i

þ terms ind: of f and _f (4)

Notice that the weights are effectively changing the variance of each sample in the

local linear model. As wi → 0 for a sample, that sample acquires a large variance
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and does not constrain the choice of parameters for the linear models formed at t. If

we used the maximum likelihood estimate of f and _f at each time t then this

technique is identical to re-weighted least squares. However, this point estimate

only has value if we can also quantify its uncertainty and this necessitates a more

detailed probabilistic model. Various functions can be selected for the temporal

filter and we use a generic Gaussian profile, schematically shown as bar graphs in

Fig. 2a, over the data acquisition times, wðtijt; hÞ ¼ e�ðti�tÞ2=2h2 , with two

adjustable parameters: the center at time t and the width h. A different symmetric,

location-scale function (e.g., Lorentzian, Epanechnikov) can be chosen as the filter

with little change in the results. The only constraints are that the function needs to

be positive and have a maximum value of one. A schematic drawing of linear fits

to the data within a chosen filter time window is shown in Fig. 2b. (A discussion of

the bias-variance tradeoff regarding the choice of h as well as the acausal nature of

this filtering approach can be found in the Supplementary Data, Figs. S2 and S3).

Eq. (4) can be re-written as a bivariate normal distribution function, pðf ; _f jt; h;DÞ
in terms of five parameters: the mean value ðf ; _f Þ and the entries (σxx, σxy, and

σyy) in the 2 × 2 covariance matrix, Σ. The probability distribution at each time

point can be depicted as elliptical contours in f � _f plane as shown in Fig. 2c and

further detailed in the Supplementary Data, Fig. S1. When inserted into Eq. (2)

the result is an integral that can be numerically evaluated at each time t over a

range of concentrations to estimate the most probable concentration and its

associated error (Supplementary Data).

3.2. Simulated measurements

To highlight the general features of the data analysis methodology described above

we have simulated concentration data with varying time dependencies. Fig. 3a

shows step-wise simulated C(t) data in which the concentration increases slowly,

then rapidly, and finally decreases rapidly. For the analysis we use ka = 106

M−1s−1 and kd = 10−3 s−1 which are values typical of antibody-antigen

interactions.

The fractional occupancy versus time (Fig. 3b) is determined by numerically

integrating the differential equation in Eq. (1) forward in time using the initial

condition, f(0) = 0. Gaussian noise is added to the calculated f(t) using a standard

deviation typical of the experimental data shown in Fig. 1b. In Fig. 3c, the local

linear models (red lines) are displayed for a Gaussian filter with h = 270 s and the

resulting calculated concentration in Fig. 3d. Because of the relatively high

association rate of the receptor-ligand pair, the slow and rapid concentration

increases are faithfully reproduced by the analysis with some curvature at the

vertices due to the filter width, h. The decreasing concentration step is reproduced

but with a time delay of ∼250 s due to the relatively long receptor-ligand mean
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binding time, 1/kd = 1000 s, which results in delayed sensitivity to sudden

decreases in concentration. Increasing h improves the signal to noise ratio of the

calculated concentration at the expense of time resolution (see Supplementary

Data).

3.3. Calibration of plasmonic nanostructures

Our experiments take place on an inverted wide-field microscope using glass

coverslips that have been patterned via electron beam lithography to incorporate

arrays of plasmonic gold nanostructures (Fig. 1a). The structures, 75 nm in

diameter and 80 nm in height, were arranged in 20 × 20 arrays with a pitch of

either 300 nm or 500 nm between nanostructures and 33 μm between arrays,

center-to-center. They are illuminated with a 100 W halogen lamp and crossed

polarizers are used to minimize background contributions from glass substrate

scattered light. In aqueous solutions the arrays have a resonance peak centered at

∼635 nm. The gold nanostructures are biologically functionalized by first applying

a two-component self-assembled monolayer of thiols in a 3:1 ratio. The majority

[(Fig._3)TD$FIG]

Fig. 3. Analysis of simulated concentration data for a receptor-ligand rate constants of ka = 106

M−1s−1, kd = 10−3 s−1, KD = 1 nM (a) Piece-wise function of three simulated time-dependent

concentration scenarios (b) Time-dependent fractional occupancy as determined by solving Eq. (1) with

added Gaussian noise typical of the experimental setup. (c) Local linear model fits to the fractional

occupancy for filter width h = 270 s. (d) Calculated concentration. The symbols and error bars represent

the calculated mode of the concentration distribution divided by KD over a 5% to 95% confidence

interval.
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thiol component is terminated with polyethylene glycol to prevent non-specific

binding while the slightly longer minority component terminates with an amine

group for covalent ligand attachment. Analyte binding to the ligands causes a

perturbation in the local index of refraction which is manifested as a spectral red

shift and increase in intensity (Fig. 1b inset). When imaged, the arrays are observed

to brighten with increasing spectral shift.

Our configuration integrates with traditional cell microscopy techniques such as

fluorescence and brightfield imaging, which are accessible by the automated

switching of a filter cube (Raphael et al., 2013a). In order to infer secreted protein

concentration from imagery, the qualitative feature of array brightening on the

CCD camera must be quantified in terms of the fractional occupancy, f. To

accomplish this calibration we used the setup shown in Fig. 1a in which

spectroscopy and imagery are recorded simultaneously for a given array while the

analyte is microfluidically introduced. We have previously shown that f can be

determined from spectroscopy data by tracking the spectral shift as the analyte

concentration is increased from zero to a saturating value (Raphael et al., 2012;

Raphael et al., 2013b). Fig. 1b shows an application of this spectrometry-based

technique in which fractional occupancy was determined from the introduction of

400 nM of anti-c-myc monoclonal antibodies over c-myc peptide functionalized

nanostructures. However, the information gained from binning by wavelength in

spectroscopy-based approaches comes at the expense of spatio-temporal resolution.

For instance, in the optical configuration of Fig. 1a, the spectral spatio-temporal

resolutions were over an order of magnitude lower than those of the CCD camera.

To determine the fractional occupancy directly from imagery (LSPRi), the mean

array intensity as measured by the camera, I(t), was normalized by INðtÞ ¼
ðIðtÞ � IoÞ=ðIf � IoÞ where Io and If are the initial and saturated array intensity

values (Fig. 1c). When plotted against the spectrally-determined fractional

occupancy (Fig. 1d) a linear relationship is evident. This relationship holds

whether the analyte is a 150 kDa antibody such as anti-c-myc (red and green

data) or 60 kDa neutravidin proteins binding to a biotinylated surface (blue data).

As a result of this design and calibration, every array in the LSPRi field of view

could be used to determine fractional occupancy in real time, without the need

for spectrometry.

3.4. Live cell secretion measurements

Antibody producing hybridoma cells are utilized for both diagnostics and

therapeutics (Galluzzi et al., 2012; Gavilondo and Larrick, 2000), making their

secretion rate characterization of critical importance. In this application, anti-c-myc

secreting hybridoma cells were introduced on to a chip with c-myc functionalized

nanostructures. The density of cells was adjusted so that the field of view included

2 to 3 cells. At a distance of 70 μm or more from the cells, the secreted antibody
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concentration fell below the array detection limit (∼100 pM) allowing for those

arrays to be used as negative controls. By having controls in the same field of view,

global intensity variations such as those due to focus drift could be subtracted out

from the signal of arrays adjacent to cells. At the end of each experiment, a

saturating solution of commercial anti-c-myc antibodies was introduced in order to

normalize the LSPRi intensity and calculate fractional occupancy as described

above. The excitation wavelengths used in nanoplasmonic imaging (625 nm−700
nm) scatter weakly from live cells enabling measurements to be made when the

distance from cell surface to array center was 3 μm or greater. Measurements were

still possible in cases which cells were within a few microns of the arrays but the

signal to noise is typically diminished. In such cases, light scattering from the cell

presented a distinct stochastic signature due to membrane fluctuations which were

readily identified in the array data by the increased noise in the image intensity

(Raphael et al., 2013a). Because the same noise is not observed in arrays farther

from the cell, its source is clear. The kinetic rate constants used in the analysis were

determined with a commercial SPR instrument using an identical surface

functionalization protocol to that of the nanoplasmonic substrates (Raphael

et al., 2013b) ka = 2.68 × 104 M−1s−1, kd = 4.75 × 10−5 s−1 and KD ¼ kd=ka ¼
1.77 nM.

The simultaneous secretion measurements from two cells are shown in Fig. 4.

Arrays adjacent to the cells used for the analysis are marked with red and blue

boxes; the white box outlines the control array. The time dependent fractional

occupancy (Fig. 4b) indicates that the lower cell was secreting at a higher rate than

the upper cell. Concentration, determined using a temporal filter with h = 270 s,

was constant over 40 min as expected for a steady state secretion scenario, with an

average concentration of 1.30 nM near the lower cell versus 230 pM for the upper

cell. For clarity, only the data from the arrays closest to the cells are displayed

which span the range of fractional occupancies measured. Data from other arrays

are shown in the Supplementary Data, Fig. S4. Given that the signals measured in

Fig. 4 were near the limit of detection, we cannot rule out the possibility that small

pulses or stops and starts to the secretion process were also occuring.

In contrast to Fig. 4, the collection of three cells shown in Fig. 5a displayed

strongly time dependent secretions. The array to the left of the cells (green outline)

measured a rise in fractional occupancy (Fig. 5b) that rose to 0.28 over the course

of 2 min. This is in sharp contrast from the cells of Fig. 4 in which it took 40 min to

reach a maximum fractional occupancy of 0.08. The concentration for the green-

outlined array, located 24 μm from the center of the three cells, peaked at 56 nM

within 2 min (Fig. 5c). The rapid increase and decrease in concentration was best

resolved using a temporal filter with h = 45 s. The burst was also recorded by the

red-outlined array located 43 μm from the center of the three cells. The peak

concentration at this array was 9 nM and time-delayed by 91 s from the green-
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outlined array peak, consistent with a burst of secreted antibodies diffusing

outwardly from the three cells. It was unclear from the imagery how many of the

cells contributed to the burst. For clarity, arrays have been selected for analysis that

span the range of fractional occupancies measured. Data from other arrays are

shown in the Supplementary Data, Fig. S5.

[(Fig._4)TD$FIG]

Fig. 4. Steady state secretions quantified. (a) Merged LSPRi and brightfield images showing two

hybridoma cells amongst 12 arrays. The arrays outlined in red and blue were used to measure the

antibody concentration near the upper and lower cells, respectively, while the array outlined in white

was used as a control. (b) LSPRi-determined fractional occupancy. Red and blue data points correspond

to red and blue outlined arrays from (a) after subtracting control array data. (c) Calculated concentration

for the red and blue outlined arrays applying a temporal filter with h = 270 s. The symbols and error

bars represent the mode of the concentration probability distribution divided by KD with a 5% to 95%

confidence interval. Time t = 0 s was defined to be approximately 500 s before the signal rose above the

noise. Scale bar is 8 μm.
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A comparison of the h values used in Fig. 4c and Fig. 5c highlights the importance

of taking an adaptive approach to the data analysis. The Fig. 4 data, being steady

state in nature, can accommodate the longer h value (270 s) without loss of

temporal information and take advantage of the improved signal-to-noise

(Supplementary Data). In Fig. 5c, the signal-to-noise is reduced by the shorter h

value but the peaks in time are readily resolved. The dynamic range of the sensors

is also highlighted by these two figures in which the 56 nM peak of Fig. 5 is 244-

fold greater than the concentration measured at the lower cell of Fig. 4a. In general,

the optimally designed sensor will have a KD value centered within the range of

possible secreted concentrations. Finally, the fact that multiple arrays at varying

[(Fig._5)TD$FIG]

Fig. 5. Burst secretion quantified. (a) Merged LSPRi and brightfield images showing a cluster of three

hybridoma cells amongst 8 arrays. The arrays outlined in green, red and blue were used to measure the

concentration at varying distances from the cell while the array outlined in white was used as a control.

(b) LSPRi-determined fractional occupancy. Green, red and blue data points correspond to the green,

red and blue outlined arrays in (a) after subtracting the control array data. (c) Calculated concentration

for the green, red and blue outlined arrays applying temporal filter analysis with h = 45 s. The symbols

and error bars represent the calculated mode of the concentration probability distribution divided by KD

at each time point with a 5% to 95% confidence interval. Time t = 0 s was defined to be approximately

100 s before the signal rose above the noise. The scale bar is 8 μm.
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distances from the cell in Fig. 5 could be utilized to measure the burst secretion

underscores the spatial and temporal capabilities of our approach.

4. Conclusions

The results presented here demonstrate that local linear models can be applied to

infer time-varying analyte concentrations in solution as secreted by 9E10

hybridoma cells. An adjustable time window filter is incorporated into the models

to allow for data that can range from smoothly varying to discrete jumps. Our hope

is that by basing the analysis on time-dependent fractional occupancy measure-

ments this approach can be applied to other experimental techniques (i.e.

immunosandwich assays) which also measure this variable.

The experimental approach was aided by the fact that healthy hybridoma cells can

secrete their antibodies at a rate of 1000 antibodies/s, swamping all other

supernatant proteins. This significantly reduced the competition from non-specific

binding and simplified our analysis. Future applications of nanoplasmonic imaging

to slower secreting cell lines will likely require a wash step to remove non-

specifically bound proteins from the sensor surface.
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