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Vaccine success relies on the formation of immunity. Humoral

immunity is critical and is mediated by long-lived

antibody-secreting cells and memory B cells (MBCs). Chronic

infectious diseases cause a significant global burden of

disease; pathogens that evade the immune system can cause

phenotypical and functional changes to immune memory

populations. Thus, recent studies have focused on MBC subset

function. IgM+ MBCs have emerged as important early

responders in malaria. Atypical MBCs have functional qualities

associated with exhaustion in chronic infectious diseases, but

the requirements for their formation and whether they localize

remains unknown. Similarly, the T-bet-driven transcriptional

regulation drives formation of MBCs phenotypically similar to

atypical MBCs. Identifying protective or detrimental roles of

MBC subsets, and their regulators, will be important for clinical

intervention.
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Introduction
Infectious diseases are responsible for a significant global

burden of disease [1–5]. These include human immunode-

ficiency virus (HIV) (which causes acquired immune

deficiency syndrome (AIDs)), malaria, tuberculosis [3],

neglected tropical diseases (caused by protozoan parasites,

parasitic worms and animal-borne viruses) [4] and

newly emerging infectious agents (including severe

acute respiratory syndrome-coronavirus, Middle East

respiratory syndrome-coronavirus, West Nile virus, Nipah

virus, methicillin-resistant Staphylococcus aureus, novel

influenza-A strains and the Ebola virus) [5]. Diseases such
www.sciencedirect.com 
as HIV/AIDS, malaria and tuberculosis are particularly

more pronounced in low socio-economic regions of devel-

oping countries [1,2] and high rates of co-infection cause

additional obstacles to successful clinical intervention [1].

Protective immunity depends on the longevity and

rapid responsiveness to antigen of immune memory

populations [6]. In the humoral arm of the immune

system, immune memory consists of long-lived

antibody-secreting plasma cells and memory B cells

(MBCs). These high-affinity populations are generated

during the initial immune response to infection and are

mainly generated within the germinal center (GC),

although they can also be generated in GC-independent

pathways. Vaccines replicate this process without the

threat replicating pathogens pose to the body. While

vaccines have been the most effective intervention for

many infectious diseases, there are still pathogens that

have evaded successful vaccine design [7]. This can be

the result of the genetic diversity of the pathogen,

immune subversion and immunosuppression, and

inconsistencies between local and systemic responses,

for example, where a vaccine is not targeted to generating

a mucosal immune response that may be critical for

successful protection. In particular, persisting or recurrent

pathogens such as HIV and Plasmodium are linked to an

inadequate humoral response, in which the production of

high-affinity neutralizing antibodies is delayed and the

immune memory repertoire appears to be ineffective.

MBC population heterogeneity provides the functional

diversity needed for the immune system to fight infection

and disease [6]. MBC subsets can be segregated based on

B cell receptor (BCR) isotype, phenotype, and distinct

functional responses in health or immune disorders.

Disease can drive alterations to MBC phenotype and

function, which in turn influence antibody responses to

vaccination [6]. The characteristics and regulators that

shape the role of MBC subsets in infection and disease

remain to be elucidated, and delineating these will

provide insight into whether MBCs are beneficial or

detrimental in different disease states. This review will

focus on dissecting the diversity and roles of MBCs

currently trending in the literature, including immuno-

globulin (Ig) M+, atypical and T box transcription factor

(T-bet)+ MBCs, and their roles during infectious disease.

Function of IgM+ MBC in protective responses
and in disease
The MBC population is heterogenous in both phenotype

and function [8]. This diversity allows the population to
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balance self-renewal with differentiation during a sec-

ondary response. Classically, MBCs have been distin-

guished by their Ig isotype: IgM+ or class switched

(IgG+ IgA+ and IgE+) [6], but they can also be distin-

guished into subsets by surface markers such as CD73,

CD80 and PD-L2 [9�]. MBC function had been

defined by these subdivisions, for example, IgM+ MBCs

proliferate and form secondary GCs for self-renewal and

longevity of the MBC population, whilst IgG+ MBCs

differentiate to become antibody-secreting cells [6]

(Figure 1, top panel). This distinction, however, is not

absolute. It appears that the maturity of an MBC is the

main predictor of whether it will reenter GCs or

differentiate into an antibody-secreting cell during a

secondary response, which correlates but is not absolutely

dependent on Ig isotype. It is now evident that IgM+

MBCs can be both GC-derived and GC-independent,

have unique phenotypes and functional properties
Figure 1
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compared to switched MBC, and persist to provide

long-term memory [9�,10,11].

While recent research has focused on defining subsets in
vivo using immunization models, the role of IgM+ MBCs

in chronic and recurrent disease remains ill defined. To

this end, Pepper and colleagues produced B cell tetramers

specific for blood stage Plasmodium chabaudi antigen,

merozoite surface protein 1 (MSP1), to study antigen-

specific MBCs in a model of malaria. MSP1-specific IgM+

MBCs were comparable to switched MBCs with respect

to phenotypic expression of CD80 and CD73, their

somatic hypermutation rates, affinity and function

[12��]. Interestingly, MSP1-specific MBCs were early

responders, persisted and were dominant producers of

antibody-secreting cells during secondary responses

[12��], suggesting that these cells play a protective role

during reinfection (Figure 1, middle panel). Further, they
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were able to form antibody-secreting cells in the absence

of T cell help. Genetic resistance to malaria has been

correlated with enhanced IgM responses compared to

IgG responses [8], also suggesting a possible role for

IgM+ MBCs in long term protection from malaria. Given

the propensity of IgM+ MBCs to generate new GCs

[10,11], IgM+MBCs may also be important for expanding

the MBC repertoire to target diversifying antigens.

By providing the ability of GC re-entry, the option to

renew the repertoire allows for flexibility to contain fast

evolving antigens. However, if a mutation disrupts this

process it may lead to development of disease. In this

regard, in a chronic infection model where MBCs consti-

tutively express B cell lymphoma 2 (BCL2) and contain

the follicular lymphoma hallmark, IgH/BCL2 (t(14;18)

(q32;q21)) translocation, IgM+ MBCs are able to re-enter

GCs repeatedly upon chronic immunization, leading to

and driving follicular lymphomagenesis [13�] (Figure 1,

lower panel). This finding reveals a novel role for IgM

MBCs in cancer development and progression. A number

of B cell leukemias and lymphomas express IgM and

resemble MBCs in terms of phenotype and genetics [14].

It is unknown why IgM is commonly expressed, but

considering IgM+ MBCs are poised to proliferate upon

activation in comparison to switched MBCs, IgM+ MBCs

may be at an increased risk to transform into constantly

proliferating lymphomas [14].

Atypical MBCs are associated with exhaustion
in chronic or recurrent infectious disease
MBC phenotype and function appears to be correlated

with the nature of the infectious agent. In particular, the

emergence of atypical or unresponsive MBCs has been

associated with the presence of persistent antigen [15,16].

Several studies have described the presence of an atypical

MBC subset that is prominent in chronic infections

including human immunodeficiency virus (HIV)

[16,17], malaria [15,18�,19,20], HIV/malaria co-infected

patients [21], hepatitis C [22] and cytomegalovirus

infection [23]. These atypical MBCs are reportedly func-

tionally impaired, often referred to as ‘exhausted’, due to

the upregulation of inhibitory receptors, modulation of

tissue trafficking receptors and poor proliferative abilities

and antibody responses [15,16,18�,19]. HIV-specific

responses are enriched in functionally impaired atypical

MBCs, suggesting that these cells are unable to produce

antibody to target HIV antigens, thus explaining the poor

HIV-specific antibody response in individuals [16]. This

study was confirmed at a single cell level, using a trimeric

HIV envelope probe, which directly showed that HIV-

specific responses were enriched in an activated MBC

subset prone to apoptosis [17]. Although a similar subset

has been characterized in malaria patients, it is unclear

whether atypical MBC are dysfunctional in malaria

patients and thus whether they can be defined as the

same subset as that found in HIV patients. A number of
www.sciencedirect.com 
studies provide evidence of atypical dysfunctional MBCs

in malaria [18�,19,20], although a conflicting study

showed that atypical memory subsets could proliferate

and secrete antibody [24��]. While the latter study

suggested atypical MBCs might originate from different

precursors due to differences in their somatic hypermuta-

tion loads and clonal relationship, others have shown a

common developmental history [19,25]. This discrepancy

may be related to the large diversity of antigens in this

disease. The majority of studies to date did not profile

antigen specificity of atypical MBCs, making it difficult to

fully elucidate their biological roles in disease. B cell

tetramers targeted for different antigens will be useful in

future studies of phenotypes and functions of antigen-

specific MBCs in responses to persisting or recurrent

pathogens that can lead to chronic disease.

MBC tissue localization and the importance of
defining tissue-based memory
The markers that are used to distinguish atypical MBCs

from other MBC subsets include downregulation of

CD27 and CD21 [15–17,18�,19–23,24��,25,26]. Atypical

MBCs and other CD21neg B cell subsets [27–32] are

enriched in the peripheral blood of patients with diseases

involving chronic immune stimulation [33]. While

CD21neg subsets tend to differ in the expression of

CD27 and BCRs in different diseases, atypical and

CD21neg subsets exhibit common expression of many

inhibitory and cell activation receptors that are associated

with exhaustion and anergy (Table 1) [33]. Commonali-

ties across subsets includes the increased expression of

CD11c and CXCR3, which are molecules involved in

homing to sites of inflammation and reduced expression

of CCR7, CD62L, CXCR4 and CXCR5 which are

required for migration to spleen or lymph nodes (Table 1).

This suggests that atypical MBCs and CD21neg B cells

migrate to sites of inflammation. Fc-receptor like (FCRL)

receptors, in particular FCRL4, was also commonly

expressed on these subsets (Table 1). FCRL4 MBCs

were first described as tissue-localized memory cells in

healthy individuals [34], and are speculated to define

atypical MBCs in malaria [15,24��] and HIV [16]

(Figure 2). Other more recent studies suggest that

functionally impaired atypical memory in malaria is

delineated by the expression of FCRL5 rather than

FCRL4 [18�,19,35], which may be due to cross reactivity

of FCRL4 antibodies used in previous studies [18�], a

factor that needs to be addressed in future studies.

The role of atypical MBCs in tissue localization is unde-

fined in disease and warrants investigation, given that a

recent study suggested tissue localization could provide

broader protection from highly mutating viruses [36��].
MBCs residing at the site of influenza infection develop

from persistent GCs in the lung, are highly mutated, and

have cross-reactive antibody responses that neutralize flu

escape variants [36��]. Defining the pathways that result
Current Opinion in Immunology 2017, 45:89–96
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Table 1

Inhibitory and activation receptor/gene expression on atypical MBCs and CD21neg B cells. Inhibitory and activation receptor/gene

expression ("—upregulation and #—downregulation) is shown compared to classical MBCs, naive or CD21+ B cells

Infection/disease Receptor/gene expression Reference

Malaria CD11c ", CD22 ", CD72 ", CD85j ", CD200R1 ", CXCR3 ", FCGR2B ",
FCRL3 ", FCRL4 ", FCRL5 ", LILRB1 ", LILRB2 ", SIGLEC-6 ".

[20,23,24��,29]

CCR7 #,CD62L #, CXCR5 #.
Human immunodeficiency virus CD11c ",CD22 ", CD72 ", CD85j ", CXCR3 ", CCR6 ", FCGR2B ", FCRL4 ",

LILRB1 ", LILRB2 ", SIGLEC-6 ".
[20,22]

CCR7 #, CD62L #, CXCR5 #.
Cytomegalovirus CD11c ", CD22 ", CD72 ", CD85j " CXCR3 ". [23]

CCR7 #, CD62L #, CXCR4 #, CXCR5 #.
Primary Sjogren’s syndrome CD11c ", CD22 ", CD72 ", FCRL2 ", FCRL3 ", SIGLEC ". [31]

CD1c #.
Rheumatoid arthritis and common

variable immune deficiency

CD11c ", CD72 ", CRL2 ", CXCR3 ", CXCR6 ", FCGR2B ", FCRL3 ", FCRL5

", FCRLM1 ", FCRLM2 " LILRB ", SIGLEC " SOX5 ".
[32–34]

BCMA #, CCR7 #, CD40 #, CXCR5 #, IL4R #, IL13R # OX40L #.
Hepatitis C associated-mixed

cryoglobulinemia

CBLB ", CD22 ", CD72 ", CD200R1 ", EGR2 ", FCRL4 ", LAX1 ", LGALS1 ",
Stra13 ", ZEB2 ".

[35,36��,37]

FOXP1 #, IL-4R #, TCL1 #.
in cross-reactivity may have significant implications for

the creation of broadly protective vaccines against highly

mutating pathogens and may help to shed light on dis-

crepancies between systemic versus localized responses

to vaccines. Furthermore, characterizing migration to and

out of tissues will shed light on intrinsic and extrinsic

regulators of MBCs during chronic infection. For

example, IFN-I production in chronic lymphocytic

choriomeningitis virus (LCMV) infection recruits T cells,

monocytes and dendritic cells to directly act on antigen-

specific B cells and thus inhibit LCMV-neutralizing

antibody responses [37–39]. Currently there are no in
vivo models of atypical memory, yet understanding

migration and localization of both classical and atypical

memory will be important in determining targets for

clinical intervention.

Formation and regulation of T-bet+ MBCs
after infection and in autoimmune conditions
Transcription factors are essential in regulating B cell

differentiation [40]. B cell-specific T-bet expression is

essential for IgG2a/c MBC survival [41], drives interferon

g (IFNg)-mediated IgG2a/c class switching and upregu-

lates CXCR3 expression on MBCs to allow migration to

sites of inflammation [42]. In chronic LCMV infection, B

cell-specific T-bet controls IgG2a/c production and is

required to contain persistent infection [43�] (Figure 3),

as well as a transcriptional program that affects cell

migration, localization, differentiation, proliferation and

antibody development compared to T-bet� cells [43�]. In

particular, T-bet+ MBCs express high levels of CXCR3

(Figure 3), which is also expressed on atypical MBCs

[15,16,23] and other CD21neg B cell subsets [33] (Table 1).

Consistent with CXCR3 expression, T-bet MBCs have
Current Opinion in Immunology 2017, 45:89–96 
been found in small intestinal mucosa [43�], which is a site

of inflammation induced by chronic LCMV infection

[44]. This suggests that T-bet is involved in the control

of multiple immune functions including tissue localiza-

tion during chronic infection [43�]. In this regard, T-bet

may be involved in the formation and function of MBCs

that reside at the site of influenza infection and have

cross-reactive antibody responses that neutralize flu

escape variants [36��]. While there is a lack of studies

examining the role of T-bet on atypical MBCs; one study

has shown high expression of the T-bet gene, Tbx21 in

FCRL5+ cells in healthy individuals [35]. Furthermore,

T-bet is reported to regulate CD8+ T cell exhaustion in

HIV infection [45]. Revealing a role for T-bet in

formation and/or function of atypical MBCs may prove

additional insight into dysfunctional humoral responses.

T-bet and CD11c expression on Toll-like receptor

(TLR)-activated B cells is regulated by the T-follicular

helper cell-associated cytokines, IL-21, IFN-g and IL-4

[46�]. In particular, T-bet+ CD11c+ MBCs are promoted

in IL-4-low environments. For example, after infection

with influenza (which induces IL-21, IFN-g and IL-4

microenvironments), T-bet+ CD11c+ MBCs are present

in large quantities in IFN-g and IL-4 double knockout

mice, but not in IFN-g knockout mice (Figure 3). In

helminth infection (IL-21 and IL-4 present), T-bet+

CD11c+ MBCs are present in IL-4 knockout mice

but not in wild-type mice (Figure 3). TLR7 activation

also induces a CD11c+ subset in age-associated or

autoimmune-associated B cells [28]. Interestingly,

transcript profiling of this subset revealed high expression

of T-bet [28] (Figure 3). This subset is CD21neg, has

blunted BCR responses (similar to atypical MBCs),
www.sciencedirect.com
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Figure 2
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Diversity of FCRL4+ MBCs in health and disease. (1) FCRL4+ tissue-like MBCs derived from tonsils of healthy individuals are poised to secrete

antibody but do not proliferate after BCR ligation or bacterial stimulation. Tissue-like MBCs express high levels of CXCR3, CD11c and CCR6 and

low levels of CCR7, CXCR5 and CXCR4. These cells also express activation markers CD80 and CD86. (2) FCRL4+ tissue-like MBCs found in the

blood of patients with HIV are associated with exhaustion. Like tonsil-derived MBCs, these have a similar expression profile of trafficking

receptors, but express additional inhibitory receptors and proliferate poorly after BCR ligation or bacterial stimulation. (3) Whether FCRL4+ atypical

MBCs found in malaria are exhausted remains controversial. While some studies have shown factors associated with exhaustion including a lack

of antibody secretion, poor proliferation, inhibitory receptor expression and similar trafficking expression profile to FCRL4+ MBCs in HIV, others

have shown these cells secrete neutralizing antibody, proliferate and express activation markers.
accumulates in aged female mice, forms early in female

autoimmune prone mice and is present in patients with

rheumatoid arthritis [28,47]. Furthermore, this subset

directly contributes to the production of autoantibodies

and therefore may contribute to autoimmunity [28]

(Figure 3). CD11c is also highly expressed on

atypical MBCs, other CD21neg subsets (Table 1)

[15,16,19,20,24��,26,28,29], and in FCRL4+ MBCs that

may play a role in mucosal defense [48]. Interestingly,

many CD21neg subsets in disease also express IgM [33].

Determining the relationship between TLR engage-

ment, T-bet activation, CD21, CXCR3, CD11c and
www.sciencedirect.com 
IgM in MBCs may reveal mechanistic commonalities

in dysfunctional humoral disorders that are characterized

by aberrant immune stimulation.

Formation and regulation of MBC subsets
The common expression of inhibitory, migration and acti-

vation markers on atypical MBCs (Table 1) and in T-bet+

MBCs present in chronic infection, aging and autoimmu-

nity suggests that a T-bet-driven transcriptional program

may regulate the formation and/or function of atypical

memory, in addition to age/autoimmune-associated sub-

sets. Several questions arise: Is T-bet involved in tissue
Current Opinion in Immunology 2017, 45:89–96
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Figure 3

1. Chronic lymphocytic choriomeningitis virus
infection

2. Influenza and helminth infection
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Roles of T-bet+ MBCs in disease. (1) T-bet and IgG2a/c are required to contain persisting infection in a chronic model of LCMV. T-bet+ MBCs

express high levels of CXCR3, a chemokine involved in the migration of cells to sites of inflammation. (2) In TLR7-activated B cells, the Tfh

cytokine milieu regulates the formation of T-bet+ CD11c+ MBCs in infection. In influenza infection, the absence of IFN-g and IL-4 drives T-bet+

CD11c+ subset formation, while in helminth infection the absence of IL-4 drives the formation of this subset. (3) TLR7 activation in MBCs

associated with aging and autoimmunity also drives the formation of T-bet+ and CD11c+ subsets, contributing to the production of autoantibodies.
localization of atypical MBCs and other MBC subsets, if so

how does this contribute to disease? In IL-4 low disease

environments, such as T helper cell 1 dominant conditions,

do T-bet+ CD11c+ MBCs possess the phenotypical and

functional qualities of exhausted atypical MBCs and

CD21neg cells? It will be critical to determine both intrinsic

and extrinsic regulators of these cells to understand their

contribution to immune responses in both health and

disease. Although this population has been described in

many studies, there is currently no in vivo model of atypical

MBCs. Developing such a model would allow mechanistic

studies into the formation, function and cellular interac-

tions between different memory subsets, as well as with T

cells, in an environment of persistent antigen. These

studies may reveal if atypical MBCs and related subsets

are protective or detrimental in acute or chronic infections.

Conclusions
In diseases involving highly diversifying antigen, MBC

heterogeneity may be central in containing chronic infec-

tion. IgM+ MBCs have emerged as important early

responders in malaria re-infection and therefore may be

vital in early parasite clearance in humans. Whether IgM+

MBCs function as early responders in other chronic

infections remains to be determined. Atypical MBCs

and other CD21neg subsets are exhausted in several

different chronic infectious diseases, but how these
Current Opinion in Immunology 2017, 45:89–96 
different diseases affect this subset and how they are

formed and function within these diseases remains

unknown. Targeting commonly expressed inhibitory

and activation markers may provide a therapeutic avenue

to ameliorate putative detrimental effects of atypical

MBCs. Short inhibitory RNA knockdown of inhibitory

receptors on atypical MBCs in HIV enhanced BCR-

mediated proliferation, in particular the largest effect

was observed when targeting FCRL4 and sialic acid-

binding immunoglobulin-type lectin 6 (Siglec-6) [49].

These and other commonly expressed receptors may

be potential targets for receptor antagonists to reactivate

MBCs and induce protective antibody responses. Lastly,

T-bet-driven transcriptional regulation may be involved

in the formation and function of atypical MBCs and

age/autoimmune-associated subsets. Identifying the

characteristics and regulators of MBC heterogeneity in

the context of chronic infection, and the impact on the

generation of classical memory, will be important for

innovative solutions to eradicate these diseases.
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