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Introduction

DNA damage by irradiation may lead to cell 
death. Theoretical calculation approaches com-
plement experimental research on the induction 
of DNA damage under various conditions. It can 
simulate the DNA damage by various irradiation 
conditions quantitatively [1]. Irradiation with pho-
ton beam on tissue causes the generation of sec-
ondary electrons due to various interactions such as 

photoelectric absorption and Compton scattering 
[2]. DNA damage leading to cell death and chro-
mosomal aberrations is caused by the energies of 
secondary electrons deposited into cells [3]. The bi-
ological effectiveness (RBE) can be evaluated by 
analyzing the local energy deposition of secondary 
electrons on micro- or nano-meter scale [4]. 

Previously, Monte Carlo (MC) simulation codes 
such as PARTRAC, Geant4-DNA, and KUR-
BUC have been used to evaluate the DNA damage 

AbstrAct

background: The current study aims to investigate the DNa strand breaks based on the Monte carlo simulation within 
and around the Lipiodol with flattening filter (FF) and flattening filter-free (FFF) photon beams.

Materials and methods: The dose-mean lineal energy (yD) and DNa single- and double strand breaks (DsB/ssB) based on 
spatial patterns of inelastic interactions were calculated using the Monte carlo code: particle and heavy ion transport system 
(phITs). The ratios of dose using standard radiation (200 kVX) to the dose of test radiation (FF and FFF of 6 MV X-ray (6MVX) 
and 10 MVX beams) to produce the same biological effects was defined as rBeDsB. The rBeDsB within the Lipiodol and in 
the build-up and build-down regions was evaluated.

results: The rBeDsB values with the Lipiodol was larger than that without the Lipiodol at the depth of 4.9 cm by 4.2% and 2.5% 
for 6 MVX FFF and FF beams, and 3.3% and 2.5% for 10 MVX FFF and FF beams. The rBeDsB values with the Lipiodol was larger 
than that without the Lipiodol at the depth of 6.5 cm by 2.9% and 2.4% for 6 MVX FFF and FF beams, and 1.9% and 1.4% for 10 
MVX FFF and FF beams. In the build-down region at the depth of 8.1 cm, the rBeDsB values with the Lipiodol was smaller than 
that without the Lipiodol by 4.2% and 2.9% for 6 MVX FFF and FF beams, and 1.4% and 0.1% for 10 MVX FFF and FF beams.

conclusions: The current study simulated the DNa strand break except for the physical dose difference. The lower and FFF 
beam occurred the higher biological effect.
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by irradiation [5—7]. PARTRAC and KURBUC are 
based on electron scattering cross sections in water 
vapor, and Geant-DNA is based on a combination of 
analytical and interpolated cross sections for liquid 
water. However, these remain uncertain of the qual-
ity of radiation transport at the lower energy below 
sub-kiloelectron volt. On the other hand, Particle 
and Heavy Ion Transport code System (PHITS) can 
simulate the track structure of electrons in liquid wa-
ter in the low energy range below sub-kilo electron 
volt [8–10]. The biological effect has been generally 
investigated with the RBE based on the linear–qua-
dratic (LQ) model [11, 12]. However, the β that is 
a parameter of the survival fraction calculation based 
on the LQ model depends on the dose rate and cell 
lines as well as the profiles of radiation in a com-
plicated manner [13]. Another study represented 
that the β is increasing with increasing LET [14]. 
Howkins et al. proposed a new model, Microdosi-
metric-kinetic (MK) model, which is able to predict 
the β value with increasing LET [15]. Our previous 
study showed the RBE enhancement within the Lip-
iodol with MK model [16]. The RBE according to 
the MK mode is calculated from dose and lineal 
energy (yd(y)). The dose mean lineal energy d(y) 
is able to be obtained from PHITS simulation [17]. 
RBE was defined as the ratios of dose using reference 
radiation to the dose of test radiation to produce 
the same biological effects. However, the RBE de-
fined in the previous study was affected by the phys-
ical dose in addition to the biological effect.

Recently, PHITS was updated, so that it can use 
the electron track structure mode (etsmode) [18]. 
It enables the evaluation of the impacts of low-en-
ergy electrons on the DNA strand break induction 
such as single strand break (SSB) and double strand 
break (DSB) with Monte Carlo simulation. Namely, 
it can evaluate the biological effect directly.

A previous study evaluated the dose enhance-
ment within the Lipiodol (Guerbet, Villepinte, 
France) which includes a high-atomic num-
ber material [19]. Lipiodol has been used as an em-
bolic agent in trans-arterial chemoembolization 
(TACE). The dose enhancement is larger with 
FFF beam than that with FF beam [20]. Also, we 
investigated the dose difference with and without 
the Lipiodol in the build-up region [21]. The area 
of the dose enhancement by the backscatter was 
within 3 mm from the Lipiodol. Other studies 
reported the dosimetric effects in the build-up 

and build-down regions for the high-atomic 
number materials such as the metal material [22, 
23]. However, these dose differences were calcu-
lated with the physical dose. Thus, the factor for 
the difference of the DNA damage with and with-
out the Lipiodol was not revealed.

In the current study, the DNA stand breaks 
and the RBE calculated using the ratio of DNA-DSBs 
were evaluated in and around the Lipiodol com-
pared for FF and FFF of 6 MVX and 10 MVX beam, 
except for the physical dose difference.

Materials and methods

Monte carlo calculations
A TrueBeam linac (Varian Medical Sys-

tems, Palo Alto, USA) for FF and FFF of 6 MVX 
and 10 MVX beams was modelled. Varian pro-
vides IAEA-compliant phase-space files locat-
ed just above the secondary X/Y collimator, which 
were simulated using the GEANT4 MC code. 
The IAEA-compliant phase-space was scored above 
the secondary collimator. The present study mod-
elled the phase-space files below the secondary 
collimator using BEAMnrc [24]. The phase-space 
data scored at a source-to-surface distance (SSD) 
of 90 cm. In the Monte Carlo simulation, a Lipiodol 
(3 × 3 × 3 cm3) located at a depth of 5.0 cm in a vir-
tual water-equivalent phantom (30 × 30 × 30 cm3) 
was modelled, as shown in Figure 1. Lipiodol in-
cludes an ethiodized oil injection and is a sterile 
injectable radio-opaque diagnostic agent. The Lip-
iodol in each millimeter contains 480 mg of io-
dine organically combined with ethyl esters of fatty 
acids of poppy seed oil [25]. The physical density 
and cross-section data were assigned for the Lipi-
odol and the water. 

These phase-space files were transferred to 
the PHITS which is able to deal with the trans-
port of nearly all particles such as protons, neu-
trons, electrons, and photons over a wide energy 
range [26]. The photon beams were irradiated with 
a 5 × 5 cm2 of field size at SSD = 90 cm for the vir-
tual phantom. 

The dose-mean lineal energy () is derived by [17]:
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where f(y) is the probability density of the lineal 
energy and d(y) is the dose distribution of the lineal 
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energy. The energy spectrum and the dose-mean lin-
eal energy within the Lipiodol, and in the build-up 
and build-down region were calculated.

calculation of relative biological 
effectiveness

The yields of SSBs and DSBs were calculated with 
the track structure code which was incorporated in 
PHITS ver. 3.20. Through the medium, the elec-
trons make much collisional positions. These se-
quential positions are defined as the track struc-
ture. Matsuya et al. reported that DSBs calculated 
using PHITS is in good agreement with the other 
simulation codes by Geant4-DNA and experimen-
tal data for both electron and photon irradiations 
[27]. The experimental DSB data was collected 
from the literature and performed a γ-H2AX focus 
formation assay [28–30]. Kai et al. showed the track 
structure is useful for the modeling of DNA dam-
age [31]. In the track structure code in PHITS, 
the yields of SSBs and DSBs were calculated by 
stochastically sampling the number of events per 
track and that of a pair composed of two events 
within 3.4 nm (10 base pairs) [32]. It was based on 
the assumption that ionization and electronic ex-
citation are potential causes to induce DNA strand 
breaks [33, 34]. The yield of SSBs and DSBs were 
calculated based on assuming that the number of 

events per keV Nevent/Ein and that of linkage per keV 
Nevent/Ein are proportional to the induction yield of 
SSB and DSB.
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The coefficients kSSB = 5.66 × 10−12 (keV/Gy/Da) 
and kDSB = 1.61 × 10−13 (keV/Gy/Da) were obtained 
by applying the PHITS to the experimental yields of 
SSB and DSB with 220 kVp X-rays [28].

The SSB and DSB, and the ratio of DSB and SSB 
(DSB/SSB) were calculated using the energy spectra 
of electrons after irradiation with FF and FFF of 
6 MVX and 10 MVX beams on each grid within 
the Lipiodol and in the build-up and build-down 
regions. The build-up region was set at the 4.9 cm 
and build-down region was set at 8.1 cm. 

Moreover, since the absorbed dose is related 
to the number of DNA-DSBs per nucleus [35], 
the ratio of DNA-DSBs for standard radiation of 
200 kVp X-rays, which was defined as RBEDSB, was 
calculated by: 
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Figure 1. Geometric scheme of virtual water and Lipiodol located at a depth of 5.0 cm in a water-equivalent phantom 
(30 × 30 × 30 cm3)
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results

The dose-mean lineal energy yD

The dosemean lineal energy yD values with 
and without the Lipiodol at 4.9 cm (build-up re-
gion region), 6.5 cm (within the Lipiodol region), 
and 8.1 cm (build-down region) for the FF and FFF 
of 6 MVX and 10 MVX beams are shown in Table 1. 
The yD values with the Lipiodol were larger than 
those without the Lipiodol by 0.5% for 6 MVX 
FF and 0.6% for 6 MVX FFF beams at the depth 
of 4.9 cm, and 3.9% with the Lipiodol and 4.6% 
without the Lipiodol at the depth of 6.5 cm for 
6 MVX beam. For 10 MVX beam, the yD values 
with the Lipiodol were larger than thaose without 
the Lipiodol by 0.3% for 10 MVX FF and 0.4% 
for 10 MVX FFF beams at the depth of 4.9 cm, 
and 3.5% for 10 MVX FF and 3.6% for 10 MVX 
FFF beams at the depth of 6.5 cm. On the oth-
er hand, the yD values with the Lipiodol were small-
er than those without the Lipiodol beam by –0.3% 
for 6 MVX FF and –0.4% for 6 MVX FFF beams 
at the depth pf 4.9 cm in the build-down region. 
The yD values with the Lipiodol for 10 MVX FFF 
beam were smaller than 10 MVX FF beam by –0.2% 
and –0.2% in the build-down region.

The yield of DsB/ssBs with and without 
Lipiodol

Figure 2 show the yield ratio of DSB/SSBs at 
6.5 cm within the Lipiodol region and at 4.9 cm 
in the build-up and at 8.1 cm in the build-down 
regions for FF and FFF of 6 MVX and 10 MVX 
beams. The DSB/SSBs with the Lipiodol was larger 
than that without the Lipiodol by 2.5% for 6 MVX 
FF and 4.2% for 6 MVX FFF beams at the depth of 
4.9 cm, and 2.4% with the Lipiodol and 2.9% without 
the Lipiodol at the depth of 6.5 cm. The DSB/SSBs 
and RBEDSB with the Lipiodol were smaller than 
those without the Lipiodol by 2.9% for 6 MVX FF 
and 4.2% for 6 MVX FFF beams at the depth of 

8.1 cm. Moreover, the RBEDSB with the Lipiodol 
was larger than that without the Lipiodol by 2.5% 
for 10 MVX FF and 3.2% for 10 MVX FFF beams 
at the depth of 4.9 cm, and 1.4% with the Lipi-
odol and 1.9% without the Lipiodol at the depth of 
6.5 cm. The RBEDSB with the Lipiodol was smaller 
than that without the Lipiodol by 0.1% for 10 MVX 
FF and 1.2% for 10 MVX FFF beams at the depth 
of 8.1 cm.

The yield ratio of rBeDsB with and without 
Lipiodol

Figure 3 shows the yield of and RBEDSB at 
6.5 cm within the Lipiodol region and at 4.9 cm in 
the build-up and at 8.1 cm in the build-down re-
gions for FF and FFF of 6 MVX and 10 MVX beams. 
The yields of DSBs with the Lipiodol was larger than 
without the Lipiodol by 3.3% for 6 MVX FF beam 
and 3.7% for 6 MVX FFF beam at the depth of 
4.9 cm, and 2.3% for 6 MVX FF beam and 2.7% for 
6 MVX FFF beam at the depth of 6.5 cm. The yields 
of DSBs with the Lipiodol were smaller than those 
without the Lipiodol by 2.5% for 6 MVX FF beam 
and 4.0% for 6 MVX FFF beam at the depth of 
8.1 cm. The yields of DSBs with the Lipiodol +were 
larger than those without the Lipiodol by 1.9% for 
10 MVX FF beam and 3.2% for 10 MVX FFF beam 
at the depth of 4.9 cm, and 1.6% for 10 MVX FF 
beam and 1.7% for 10 MVX FFF beam at the depth 
of 6.5 cm. The yields of DSBs with the Lipiodol were 
smaller than those without the Lipiodol by 0.2% for 
10 MVX FF beam and 1.4% for 10 MVX FFF beam 
at the depth of 8.1 cm.

For the comparison of the RBEDSB with and with-
out the Lipiodol, the DSB/SSBs and RBEDSB with 
the Lipiodol were larger than those without the Lip-
iodol by 2.5% for 6 MVX FF and 4.2% for 6 MVX 
FFF beams at the depth of 4.9 cm, and 2.4% with 
the Lipiodol and 2.9% without the Lipiodol at 
the depth of 6.5 cm. The DSB/SSBs and RBEDSB 
with the Lipiodol were smaller than those without 

table 1. The dosemean lineal energy in the water and Lipiodol for the flattening filter (FF) and flattening filter-free (FFF) of 6 
MVX and 10 MVX beams within the Lipiodol and in the build-up and build-down regions

6 MVX FF [keV/µm] 6 MVX FFF [keV/µm] 10 MVX FF [keV/µm] 10 MVX FFF [keV/µm]

region Water Lipiodol Water Lipiodol Water Lipiodol Water Lipiodol

Build-up 1.96 1.97 2.06 2.07 1.85 1.86 1.93 1.94 

Within Lipiodol 1.97 2.05 2.08 2.17 1.86 1.93 1.93 2.00 

Build-down 1.98 1.97 2.08 2.07 1.86 1.85 1.94 1.93 
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the Lipiodol by 2.9% for 6 MVX FF and 4.2% for 
6 MVX FFF beams at the depth of 8.1 cm. More-
over, the RBEDSB with the Lipiodol was larger than 
that without the Lipiodol by 2.5% for 10 MVX FF 
and 3.3% for 10 MVX FFF beams at the depth of 

4.9 cm, and 1.4% with the Lipiodol and 1.9% with-
out the Lipiodol at the depth of 6.5 cm. The RBEDSB 
with the Lipiodol was smaller than that without 
the Lipiodol by 0.1% for 10 MVX FF and 1.4% for 
10 MVX FFF beams at the depth of 8.1 cm.

Figure 2. The yield ratio of single- and double strand breaks (DsB/ssB) with and without Lipiodol for flattening filter (FF) 
and flattening filter-free (FFF) of 6 MVX and 10 MVX beams at the depth of 4.9 cm in the build-up region (A), 6.5 cm within 
the Lipiodol (b), and 8.1 cm in the build-down region (c)
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Discussion

In this decades, high atomic number materi-
als have attracted increasing attention as radiosen-
sitizers. The physical dose enhancement has been 
investigated with the gadolinium, gold nano parti-

cle (GNP), and iodine [36–44]. The data of chem-
ical and biological effect with the GNP was shown 
by Butterworth et al [45–47]. These experimental 
data represent that degree of radiosensitization is 
greater than the predicted increase in physical dose. 
A previous study investigated the biological dose 

Figure 3 The rBeDsB with and without Lipiodol for flattening filter (FF) and flattening filter-free (FFF) of 6 MVX and 10 MVX 
beams at 4.9 cm in the build-up region (A), 6.5 cm within the Lipiodol (b), and 8.1 cm in the build-down region (c)
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enhancement with and without the Lipiodol [16]. 
We indicated a possibility of the enhancement of 
the biological effect by the result that the biological 
dose enhancement was higher than the physical 
dose enhancement. However, the biological dose 
included the physical dose and the biological ef-
fect. The current study investigated the DNA strand 
breaks except for the physical dose difference 
with and without the Lipiodol. From the result, 
the DSB/SSB was higher in the build-up and within 
the Lipiodol than without the Lipiodol. The DSB 
yield is increased, which indicates the enhancement 
of the biological effect. This result was agreement 
with the previous studies in the point of that the ra-
diosensitization considered with the biological ef-
fect was greater than the physical dose enhance-
ment by the simulation [45–48]. In the build-up 
region and within the Lipiodol region, the scat-
tered electrons with lower energy from the Lipiodol 
were increased. The lower energies are absorbed in 
the Lipiodol; thus the average energy is increased in 
the build-down region. The higher average energy 
decreases the DSB yield and the RBE. The aver-
age energy of the incident and scattered photon 
and electrons affects the DSB yield and the RBE.

In the comparison of the FF and FFF beams, 
the FFF beam has a larger biological effect than FF 
beam for both Lipiodol and water. The FFF beam 
contains more lower photon and electrons than FF 
beam [21]. Suneil et al. examined in vitro radiosen-
tization by GNP in MDA-MB-231 cells for 6 MV 
and 15 MV photon energies [47]. The sensitizer 
enhancement ratio with and without the GNP was 
1.29 for 6 MV X-rays and 1.16 for 15 MV X-rays. 
Rahman et al. reported on the dose enhancement 
factors at 90% cell survival, which was 2.9 for 6MV 
X-rays and 3.7 for 12 MV at 0.5 mmol of GNPs 
[49]. These results indicate that the lower photon 
energy causes more radiosensitization. Matsuya 
et al. reported that the maximum of the yield of 
DSB occurred at 300 eV of the electron energy 
[27]. In the previous study, we showed that FFF 
beam contained more photons and electrons 
with energies mostly at 300 eV [20]. The lower 
photon beam increases the DSB yield and RBE. 
Therefore, the RBEDSB with FFF beam was higher in 
the build-up region and within the Lipiodol than 
that with FF beam.

In the clinical liver SBRT, Lipiodol has been 
used as an embolic agent and for tumor seeking in 

trans-arterial chemoembolization (TACE). Lipiodol 
remains in the tumor during radiotherapy treat-
ment. The Lipiodol has a benefit to enhance radio-
biological effect in the tumor intensively. Moreover, 
the radiobiological effect can be increased more 
by the irradiation in the tumor with the Lipiodol 
with FFF beam. The average energy of the incident 
and scattered photon and electrons affects the DSB 
yield and the RBE.

There is a limitation in the current study. 
The current study was performed with the simu-
lation. The maximum enhancement of the RBEDSB 
was 4.2% for 6MVX FFF beam. Further study to 
evaluate the effects of radiobiology by comparing 
the result in vivo or vitro and simulation is needed.

conclusions

The current study simulated the DNA strand 
break except for the physical dose difference. 
The result suggest that DNA damage increased 
within the Lipiodol and the build-up region. 
Additionally, the lower and FFF beam occurred 
the higher biological effect. It might be benefit for 
the clinical treatment in the point that the Lipiodol 
enhance the DNA damage for the tumor locally.
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available from the corresponding author upon rea-
sonable request.
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