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Colon adenocarcinoma (COAD) is one of the most prevalent malignant tumors worldwide.
Immune genes (IGs) have a considerable correlation with tumor initiation and prognosis. The
present paper aims to identify the prognosis value of IGs in COAD and conduct a prognosis
model for clinical utility. Gene expression data of COAD were downloaded from The Cancer
Genome Atlas (TCGA), screening and analyzing differentially expressed IGs by bioinformat-
ics. Core genes were screened by univariate and multivariate Cox regression analyses. Sur-
vival analysis was appraised by the Kaplan–Meier method and the log-rank test. Gene Ontol-
ogy, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis (GSEA)
were used to identify IGs’ relevant signal pathways. We predicted the overall survival (OS) by
nomogram. Finally, a prognosis model was conducted based on 12 IGs (SLC10A2, CXCL3,
NOX4, FABP4, ADIPOQ, IGKV1-33, IGLV6-57, INHBA, UCN, VIP, NGFR, and TRDC). The
risk score was an independent prognostic factor, and a nomogram could accurately predict
the OS of individual COAD patients. These results were validated in GSE39582, GSE12945,
and GSE103479 cohorts. Functional enrichment analysis demonstrated that these IGs are
mainly enriched in hormone secretion, hormone transport, lipid transport, cytokine–cytokine
receptor interaction, and peroxisome proliferators-activated receptor signaling pathway. In
summary, the risk score is an independent prognostic biomarker. We also excavated sev-
eral IGs related to COAD’s survival and maybe potential biomarkers for COAD diagnosis
and treatment.

Introduction
Colorectal cancer is the fourth of the new cases and deaths among 36 cancers in 2018 [1]. It is also the
second most frequent cancer diagnosed in women and the third most in men [2]. Several clinical trials
have shown that the enhancement of tumor immune response can lead to long-term clinical response and
benefit. Many expression profiling studies have proved that there is a relationship between the immune
genes’ (IGs) characteristics and the better prognosis or efficacy to therapy, either chemotherapy or im-
munotherapy in tumors [3,4]. It is also essential to understand the immune environment’s contribution
and the molecular subtypes of different tumor indications, but it lacks adequate wisdom to promote a
reasonable combination of immunotherapy [5,6].

Whole genome-wide gene expression clusters such as The Cancer Genome Atlas (TCGA) have been
constructed to classify and identify genomic abnormalities in large populations worldwide to detect the
effects of the genetic composition of tumors on clinical prognosis [7]. With the human genome map fin-
ished, gene expression profiling has been cumulatively accepted by clinical diagnostic criteria. Besides,
tumor microenvironment (TME) has significantly influenced therapeutic response and clinical outcomes
[8,9]. Transcription and genomic data stemmed from many tumor samples used to research the TME, and
immune infiltration assessment illustrated molecular subtypes of acute myeloid leukemia, bladder cancer,
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and cervical cancer [10–12]. Several separate reports about immune infiltration and lncRNA were associated with
colon adenocarcinoma (COAD) [13,14]. Immunoscore, the primary significant prognostic ability, and robustness in
COAD were validated [15]. However, few studies on the combination of IG and immune infiltration in the prognosis
model of COAD patients.

The present paper mainly attempted to construct the prognosis model based on prognosis-related IGs (PRIGs),
explore the prognostic value, and inquiry immune infiltration in COAD, which provide a novel orientation to the
potential targets. Besides, we validated the PRIGs signature in GSE39582, GSE12945, and GSE103479 cohorts. In
summary, we identified a new essential marker (risk score) to predict COAD patients’ prognosis. Comparison with the
previous research, our study provided a new risk model as an independent prognostic biomarker in risk stratification
for COAD patients.

Materials and methods
Data sources
In the present study, both the transcriptome and clinical data of COAD were obtained from the TCGA database
(Data Release 20.0, Release Date: 11 November 2019, https://tcga-data.nci.nih.gov/tcga/). The main filter criteria for
our data were as follows: (1) The keywords for cases were colon [Primary Site], ‘TCGA [Program],’ ‘TCGA-COAD
[Project],’ ‘Adenomas and Adenocarcinomas [Disease Type].’ (2) The keywords for files for RNA-sequencing
data were ‘Transcriptome Profiling [Data Category],’ ‘Gene Expression Quantification [Data Category],’ ‘RNA-Seq
[Experimental Strategy],’ ‘HTSeq - FPKM [Workflow Type]’). (3) The keywords for files for clinical data were ‘Clini-
cal [Data Category],’ ‘BCR XML [Data Format]’). The expression of mRNA was obtained from the RNA-sequencing
data. The data access (GSE39582, GSE12945, and GSE103479), as the validation data, was obtained from Gene Ex-
pression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database. Gene chips’ raw data were normalized using
the Robust Multi-Array Average (RMA) algorithm provided by ‘limma’ [16]. Perl and R-package ‘sva’ were used to
merge microarray data and reduce heterogeneity among the GSE39582, GSE12945, and GSE103479 datasets [17]. We
use R software (version 3.6.2) to extract and annotate the expression of immune genes in TCGA and GEO databases.

Bioinformatics analysis of the data
Identification of differential expression of genes, IGs, and transcription factors
Data extraction and integration were performed by Perl software. Screening differentially expressed genes, IGs, tran-
scription factors (TFs) was undertaken by the Wilcoxon Test [16], using R-package ‘limma’ ‘edgeR.’False-discovery
rate (FDR) < 0.05 and Log2 | (fold change, FC) | > 1.5 were set as the cutoffs. Bidirectional hierarchical clustering was
analyzed and heat map was drawn by R-package ‘pheatmap’ (https://cran.r-project.org/web/packages/pheatmap/).
R-package ‘ggplot2’ was used to draw a volcano map. Correlation analysis between differentially expressed IGs
(DEIGs) and TFs (DETFs) was performed using correlation tests based on R software (cor > 0.4, P<0.001). The
protein–protein interaction (PPI) network was constructed by Cytoscape software (version 3.7.2) [18]. R-package
‘Survival’ was used to conduct univariate cox regression analysis (P<0.01). Forest map was drawn by the R language
‘ggforest function.’

Building a prognosis model of IGs and survival analysis
We constructed an optimal prognosis model of PRIGs via the Akaike Information Criterion. Genes expression and
survival analysis were evaluated by the Kaplan–Meier method and the log-rank test (P<0.05). The risk score of each
patient was calculated by the following formula: Risk score = �n

j=1 Coefj × Xj, where, Coefj denotes the coefficient
and Xj indicates the expression levels of each IG [19]. The survival data were obtained from the clinical data and
combined with the previously acquired expression profiling data. The median risk score was selected as a cutoff to
divide COAD cohorts into high-risk and low-risk groups. The evaluation indicator of survival analysis was overall
survival (OS), which refers to the period from the date of diagnosis until death from any cause. The survival curve
was drawn according to the high- and low-risk value using R-package ‘survival’ and ‘survminer.’ R-package ‘survival
ROC’ was used to draw the Receiver Operating Characteristic (ROC) curve for the difference and calculate the value
of Area Under Curve (AUC). The risk curve, survival state diagram, and heat map were drawn based on the patient
risk score. PRIGs were recognized by univariate and multivariate Cox regression analyses. The results were verified
in the GSE39582, GSE12945, and GSE103479 cohorts.
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The exploitation of the nomogram
We used the expression of PRIGs to draw a nomogram via the R-package ‘Hmisc,’ ‘lattice,’ ‘Formula,’ ‘ggplot2,’ ‘for-
eign,’ and ‘rms.’ Moreover, calibration curves were used to assess the consistency between actual and predicted sur-
vival rates. Furthermore, the consistency index (C-index) was calculated to evaluate the model prognosis capability.
The values of 0.5 and 1.0 represent a random probability and an excellent performance for predicting survival with the
model, respectively. The GSE39582, GSE12945, and GSE103479 cohorts were used to verify the risk score’s prognostic
value and the nomogram.

Functional enrichment analysis of PRIGs and immune cells infiltration in COAD
Based on the R software, the functional enrichment analysis of PRIGs was performed to identify Gene Ontology (GO)
categories of biological processes (BPs) and molecular functions (MFs). The Database for Annotation, Visualization
and Integrated Discovery (DAVID) database was used to conduct enrichment analysis of Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways [20]. FDR < 0.05 was invoked as the cutoff. R-package ‘GOplot’ was used to integrate
expression data and functional enrichment analysis. Moreover, Gene Set Enrichment Analysis (GSEA) was also used
to analyze the differences between the high-risk and low-risk groups. The number of permutations was set to 1000
and FDR < 0.25 was acknowledged as statistically significant [21].

Results
Characteristics of patients
TCGA-COAD cohort included 385 patients. Patients without survival time and less than 90 days were excluded,
and 334 patients were obtained as the training group. GSE39582 dataset included 566 stage I–IV COAD patients,
GSE12945 contained 62 stages I–IV colorectal cancer patients, and GSE103479 included 156 stage I–IV colorectal
cancer patients. Using the same exclusion criteria of the training group, 587 colorectal cancer patients were selected
from the GEO cohorts as the test group. The detailed clinical characteristics of patients are listed in Supplementary
Table S1.

Identification of differentially expressed genes, IGs, and TFs
A total of 437 transcriptome data were obtained, 39 (8.9%) were derived from healthy samples and 398 cases
(91.1%) came from tumor samples. We screened out 3833 differentially expressed genes (DEGs) included 2610
up-regulated and 1223 down-regulated (Figure 1A,D); 332 differentially expressed immune genes (DEIGs) contained
120 up-regulated and 212 down-regulated (Figure 1B,E). We also obtained 37 differentially expressed transcription
factors (DETFs) including 25 up-regulated and 12 down-regulated (Figure 1C,F).

Prognosis model of immune constructed and survival analysis
We filtered out 24 PRIGs by univariate Cox regression analysis. CXCL3 was low-risk PRIG (Hazard Ratio (HR) <

1, P<0.01), others were high-risk PRIGs (HR > 1, P<0.01); the detailed information is shown in Supplementary
Figure S1 and Table S2. Twelve PRIGs were selected by multivariate regression analysis, including SLC10A2, CXCL3,
NOX4, FABP4, ADIPOQ, IGKV1-33, IGLV6-57, INHBA, UCN, VIP, NGFR, and TRDC (Table 1). The prognosis
model was constructed based on these 12 PRIGs. The coefficient of PRIGs is shown in Supplementary Figure S2. Each
patient’s risk score was computed based on each gene’s expression level and risk coefficient. A risk score was used to
predict prognosis.

The calculation formula of the risk score was as follows: Risk score = 0.1966 × expression of TRDC + (−0.3930) ×
expression of NGFR + 0.0473 × expression of VIP + 0.4528 × expression of UCN + 0.1227 × expression of INHBA
+ 0.0027 × expression of IGLV6-57 + 0.0625 × expression of IGKV1-33 + (−0.3076) × expression of ADIPOQ +
0.0692 × expression of FABP4 + (−1.1528) × expression of NOX4 + (−0.0249) × expression of CXCL3 + 0.6105 ×
expression of SLC10A2.

According to the median risk score, the patients were divided into high-risk and low-risk groups. A heat map
visualized the gene expression profiles of the high- and low-risk groups. As the risk score escalated, the patients’
survival time decreased, and the death numbers increased (Figure 2A). In the training group, the Venn diagram
and R software were used to select the validation gene by intersecting with the 24 prognostic-related IGs screened
from the TCGA database, and finally 5 genes were verified (Figure 2B). OS was significantly lower in the high-risk
subgroup than in the low-risk subgroup (Figure 2C, P=1.294e−05), the 1-, 3-, and 5-year AUC value of ROC was
0.792, 0.744, and 0.797, respectively (Figure 2D). Similarly, in the test group, OS was also apparently lower in the
high-risk subgroup than in the low-risk subgroup (Figure 2E, P=2.178e−05), and the 1-, 3-, and 5-year AUC value
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Figure 1. Differentially expressed genes, IGs, and TFs in TCGA-COAD

Heatmaps: DEGs (A), DEIGs (B), and DETFs (C); higher expression manifested in red; lower expressions were green. Volcano

diagrams: DEGs (D), DEIGs (E), and DETFs (F); each point represents a gene. Down-regulated (green), up-regulated (red), and

no significance DEGs, DIEGs, DTFs (black). IGs, immune genes; TFs, transcription factors;TCGA, The Cancer Genome Atlas;

COAD,colon adenocarcinoma; DEGs, differentially expressed genes;DEIGs, differentially expressed immune genes; DETFs, differ-

entially expressed transcription factors.

of ROC was 0.625, 0.646, and 0.713, respectively (Figure 2F). Univariate and multivariate independent prognostic
analyses manifested that the risk score was an independent prognostic predictor both in the training and test groups
(Tables 2 and 3, Supplementary Figure S3).

A characterized prognostic prediction model
Nomogram is a useful tool quantifying an individual’s risk in a clinical setting by integrating multiple risk factors
[22,23]. We exploited the nomogram to predict 3- and 5-years OS probabilities by integrating the 12 PRIGs signature
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Table 1 PRIGs (multivariate Cox regression analysis) and prognosis model coefficient

PRIGs Coefficient HR 95% CI P-value

SLC10A2 0.6105 1.8413 1.1402−2.9734 0.0125

CXCL3 −0.0249 0.9754 0.9567−0.9945 0.0119

NOX4 −1.1528 0.3157 0.0985−1.0122 0.0524

FABP4 0.0693 1.0717 1.0286−1.1167 0.0009

ADIPOQ −0.3076 0.7352 0.5597−0.9657 0.0270

IGKV1-33 0.0626 1.0646 1.0186−1.1126 0.0054

IGLV6-57 0.0027 1.0027 1.0012−1.0042 0.0004

INHBA 0.1227 1.1306 1.0327−1.2377 0.0079

UCN 0.4528 1.5727 1.2582−1.9658 0.0001

VIP 0.0473 1.0485 0.9867−1.1141 0.1266

NGFR −0.3930 0.6750 0.4345−1.0489 0.0805

TRDC 0.1966 1.2173 1.0900−1.3595 0.0005
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Figure 2. Prognosis model of IGs and survival analysis

(A) Heatmap of the immune-associated gene expression profiles in prognostic signature for TCGA-COAD. The distribution of risk

score and patient’s survival time, as well as the survival status of TCGA-COAD. The black dotted line is the optimum cutoff dividing

patients into low- and high-risk groups. * represented P<0.05. (B–F) Kaplan–Meier survival analysis of COAD patients ranked by the

median risk score. The high-risk score was related to poor OS in training group (C) and test group (E). ROC analysis of the sensitivity

and specificity of the OS in training group (D) and test group (F). OS, overall survival; ROC, Receiver Operating Characteristic.
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Table 2 The prognostic value of different clinical characteristics in the training group

Variables Univariate prognostic analysis Multivariate prognostic analysis
HR 95% CI P-value HR 95% CI P-value

Age (≤65 vs. >65 years) 1.7361 0.8958–3.3647 0.1023 2.4514 1.1910–5.0456 0.0149

Gender (female vs. male) 1.1784 0.6496–2.1375 0.5890 0.9428 0.5054–1.7587 0.8530

Stage (I/II vs. III/IV) 4.5987 2.3719–8.9160 6.28E-06 2.1689 0.2393–19.6625 0.4912

T (1–2 vs. 3–4) 9.5372 1.3085–69.5115 0.0261 3.8526 0.5048–29.4052 0.1933

N (0 vs. 1–3) 4.2744 2.2413–8.1519 1.03E-05 1.2869 0.1687–9.8185 0.8078

M (0 vs. 1) 6.6080 3.6126–12.0868 8.84E-10 3.4409 1.6652–7.1102 0.0008

Risk score 1.0069 1.0037–1.0101 2.46E-05 1.0051 1.0018–1.0083 0.0021

Table 3 The prognostic value of different clinical characteristics in the test group

Variables Univariate prognostic analysis Multivariate prognostic analysis
HR 95% CI P-value HR 95% CI P-value

Age (≤65 vs. >65 years) 1.3467 0.9954–1.8221 0.0536 1.4041 1.0328–1.9087 0.0303

Gender (female vs. male) 1.2162 0.9046–1.6352 0.1950 1.2656 0.9367–1.7101 0.1250

Stage (I/II vs. III/IV) 2.0615 1.5306–2.7766 1.92E-06 2.2131 1.6259–3.0124 4.42E-07

T (1–2 vs. 3–4) 2.0090 1.0613–3.8027 0.0321 1.3989 0.7332–2.6689 0.3084

N (0 vs. 1–3) 0.9644 0.7186–1.2943 0.8091 0.7357 0.5394–1.0034 0.0526

M (0 vs. 1) 1.2951 0.8288–2.0235 0.2562 1.4461 0.9076–2.3042 0.1207

Risk score 1.7018 1.4854–1.9498 1.84E-14 1.6438 1.4254–1.8958 8.44E-12

for TCGA-COAD and verified in the GEO datasets (Figure 3A). Each factor is assigned a score in proportion to its
contribution to the survival risk. We calculated each patient’s total points by summarizing the number of points for
all PRIGs and estimating survival rates via drafting a vertical line between each prognosis axis and the total point axis,
which may help appropriate practitioners make clinical decisions for COAD patients. The calibration curve showed
that the actual survival rate matched the predicted 3- and 5-years survival rate well; the C-index was 0.77 in the
TCGA data (Figure 3B–D). The nomogram was verified in the GEO cohorts, the C-index was 0.72, and 3- and 5-
year calibration curves were shown in Figure 3E–G.

Functional enrichment analysis of PRIGs and immune cells infiltration in
TCGA-COAD
The PPI networks between DIGs and DTFs were made up of ten DEIGs and four DETFs. All of them had a positive
relationship (correlation coefficient = 0.4, P<0.001, Figure 4A). GO enrichment analysis of the 12 PRIGs manifested
in Figure 4B,C, a total of 36 GO terms of BP, 26 GO terms of MF were identified to be significant (Supplementary Ma-
terial S1, FDR < 0.05). These 12 genes were involved in several essential BPs, including hormone secretion, hormone
transport, lipid transport, lipid localization, signal release, macrophage differentiation regulation, negative regula-
tion of blood pressure, and negative regulation of secretion, glucose homeostasis, brown fat cell differentiation. The
TOP-10 terms of BP and MF are shown in Figure 4C.

The KEGG pathway analysis showed that PRIGs are mainly enriched in the cytokine–cytokine receptor interac-
tion, Peroxisome Proliferators-activated Receptor (PPAR) signaling pathway (P<0.05). GSEA analysis showed that
changed genes were enriched in several common pathways. A total of 111/178 genesets were up-regulated in pheno-
type high-risk group, 66 gene sets were significant at FDR < 25%. The top-eight of the high-risk group are shown in
Figure 4D, including hedgehog signaling pathway (Enrichment score, NES = 2.09, P=0.000), basal cell carcinoma
(NES = 1.98, P=0.000), axon guidance (NES = 1.87, P=0.004), notch signaling pathway (NES = 1.86, P=0.010),
Gonadotropin-releasing hormone (GnRH) signaling pathway (NES = 1.84, P=0.002), glycosaminoglycan biosyn-
thesis chondroitin sulfate (NES = 1.83, P=0.006), extracellular matrix (ECM) receptor interaction (NES = 1.77,
P=0.025), and dorsoventral axis formation (NES = 1.77, P=0.011).
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Figure 3. The nomogram to anticipate prognostic probabilities in COAD

(A) The nomogram for predicting 1-, 3-, and 5-year OS of TCGA-COAD by 12 PRIGs signature. (B–G) The nomogram for predicting

1-, 3-, and 5-year OS of COAD by gene expression. (B–D) TCGA dataset and (E–G) GEO dataset. OS, overall survival.

Discussion
The diagnostic strategy for evaluating the tumor immune infiltration has a comprehensive clinical application value.
Although the overlapping biological features of tumor immunophenotypes have been described [3], gene composi-
tion lacks consensus, the cell specificity of gene expression signal is not apparent, and there is no systematic analysis
of the gene’s prognostic value in various tumor types. Until recently, a comprehensive meta-analysis confirmed the
prognostic role of the IG in cancer as a whole [24]. In the current work, we singled out 24 PRIGs and constructed a

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. PPI networks and functional enrichment analysis of PRIGs

(A) PPI networks: the positive interactions (red line), TFs (blue and triangle), high-risk IGs (red and ellipse). (B) GO terms of PRIGs:

on the left is the gene, up-regulation was red and down-regulation was blue, on the right was a different GO term, and the genes

were linked via ribbons to their assigned terms (P<0.05). (C) The TOP-10 terms of BP and MF. (D) GSEA analysis of the differen-

tially expressed genes in the high-risk group. PRIGs, prognosis-related immune genes; PPI, Protein-Protein interaction;GO, Gene

Ontology; BP, biological processes; MF, molecular functions;GSEA,Gene Set Enrichment Analysis.
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Figure 5. A flowchart of the study design and analysis

prognosis model based on 12 PRIGs, which was entirely accurate and had better predictive value. A short bioinfor-
matics protocol flow chart listed in Figure 5.

First, univariate regression analysis demonstrated that 22 genes had a relationship with poor prognosis, especially
SLC10A2, PLCG2, and PTH1R. Previous reports have mentioned that secondary bile acids increase the risk of
COAD, and SLC10A2 plays a crucial role in intestinal bile acid reabsorption. This transporter is the primary mecha-
nism for the uptake of intestinal bile acids by apical cells in the distal ileum. Bile acid malabsorption is related to epi-
dermal growth factor receptor expression and M3 muscarinic [25,26]. PLCG2 is associated with immune responses
and PLCG2 mutations have been found in the chronic lymphocytic leukemia patient [27,28]. However, its role in
COAD’s occurrence and development is not very clear, and is worth further study. Researchers found that PTH1R
was associated with both miRNA and DNA methylation in colorectal liver metastasis patients [29].

Second, whether the IG expression can be used as a prognostic marker is a vital research topic. In the present
study, our prognosis model is considered to be valuable. The 1-, 3-, and 5-year AUC values of ROC were 0.792, 0.744,
and 0.797, respectively, which was more accurate than previous reports [30,31]. The 12 IGs may be ideal prognostic
markers. Five-year OS was ∼75% in the low-risk group and 50% in the high-risk group, consistent with the previous
report [32]. High-risk genes in the model, including SLC10A2, NOX4, FABP4, ADIPOQ, IGKV1-33, IGLV6-57,
INHBA, UCN, VIP, NGFR, and TRDC. NADPH oxidase complex can positively predict relapse in stage II left-side
COAD, NOX4 encodes a member of the NOX-family of enzymes that functions as the catalytic subunit [33]. FABP4
plays a crucial role in regulating lipid metabolism and adipocyte differentiation associated with the tumor suppressor,
PTEN [34]. FABP4 and ADIPOQ have been reported to increase the risk of colorectal neoplasia related to the COAD
survival probability [35,36]. Dudgeon et al. found that UCN can inhibit COAD cell growth via inducing apoptosis
by PUMA and a p53 target [37]. VIP promotes the initiation and progression of COAD by the generation of a local
proinflammatory environment [38]. NGFR hypermethylation can be observed through COAD development [39].
The risk score is closely correlated with the COAD malignant clinicopathological characteristics and is an indepen-
dent prognostic factor. The prediction ability of 12 immune genes is also cross-verified in three GEO data sets, which
shows that our cohort analysis based on TCGA and GEO data has predictive value. Moreover, the roles of IGKV1-33,
IGLV6-57, and TRDC in the development of COAD are not very clear, which deserve further study.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Subsequently, we constructed a nomogram to predict individual clinical outcomes. Nomogram is a stable and
reliable tool to quantify individual risk by combining and describing risk factors, which has been used for tumor
prognosis, including colorectal cancer [40,41]. By summarizing all points of view, the model provides individuals
with numerical possibilities for clinical outcomes, such as OS, relapse, and drug noncompliance. Except for standard
clinicopathological features, such as genetic markers, can also be included in predictive nomogram models to predict
clinical outcomes [41,42]. The combination of autophagy gene features and prognostic factors has a better prognostic
value than a single application [43]. Besides, the calibration curve showed that the nomogram accurately predicted 3-
and 5-years survival rates. Consistently, in the current study, we illustrated that a nomogram, including the 12 PRIGs
signature, could better predict the 3- and 5-years survival possibility of COAD patients. These results suggest that the
12-PRIGs prognostic model maybe have a convinced value in adjusting COAD patients’ treatment plans.

Furthermore, GO enrichment and KEGG pathway analysis show that PRIG participates in regulating several crucial
processes and signaling pathways. ADIPOQ, INHBA, UCN, and VIP participate in hormone secretion and hormone
transport BPs. SLC10A2, FABP4, ADIPOQ, and INHBA involved in lipid transport and lipid localization BPs [44–46];
INHBA, CXCL3, and NGFR participate in the regulation of the cytokine–cytokine receptor interaction pathway;
FABP4 and ADIPOQ involved in the regulation of PPAR signaling pathway, which coincided with the previous report,
PPAR signaling pathway might affect the recurrence of COAD patients [47,48]. The GSEA analysis further suggested
that the pro-tumor inflammatory reaction might be more prominent in stage IIB/IIC of COAD [49]. The blockade
of PD-L1 increased FABP4 expression in tissue-resident memory T (Trm) cells, promoting lipid uptake by Trm cells
[50]. Previous reports indicate that the hedgehog signaling pathway might affect the recurrence of COAD patients
[51]. Dandawate et al. reported that the Notch signaling pathway involved regulating colon cancer cells’ proliferation
[51]. Our results are consistent with these reports.

From the above discussion, the conclusion can be reached that 12 IGs were more significantly associated with the
COAD prognosis and the prognosis model was accurate. The prognostic model based on these genes is validated in
three independent GEO cohorts. Further research might be necessary about these genes in the clinical application
and may provide a new perspective into the COAD’s pathogenesis. Some of the antecedently overlooked genes maybe
have a chance to become additional biomarkers for COAD. Finally, the present study enhanced our cognition of the
sophistication of the occurrence and development of COAD and may detect novel therapeutic targets.
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