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ABSTRACT

Having a structural network representation of connectivity in the brain is instrumental in

analyzing communication dynamics and neural information processing. In this work, we

make steps towards understanding multisensory information flow and integration using a

network diffusion approach. In particular, we model the flow of evoked activity, initiated by

stimuli at primary sensory regions, using the asynchronous linear threshold (ALT) diffusion

model. The ALT model captures how evoked activity that originates at a given region of the

cortex “ripples through” other brain regions (referred to as an activation cascade). We find

that a small number of brain regions–the claustrum and the parietal temporal cortex being at

the top of the list–are involved in almost all cortical sensory streams. This suggests that the

cortex relies on an hourglass architecture to first integrate and compress multisensory

information from multiple sensory regions, before utilizing that lower dimensionality

representation in higher level association regions and more complex cognitive tasks.

AUTHOR SUMMARY

Having a structural network representation of connectivity in the brain is instrumental in

analyzing communication dynamics and neural information processing. In this work, we

make steps towards understanding multisensory information flow and integration using a

network diffusion approach. In particular, we model the flow of evoked activity, initiated by

stimuli at primary sensory regions, using the asynchronous linear threshold (ALT) diffusion

model. The ALT model captures how evoked activity that originates at a given region of the

cortex “ripples through” other brain regions (referred to as an activation cascade). We apply

the ALT model to the mouse connectome provided by the Allen Institute for Brain Science. A

first result, using functional datasets based on voltage-sensitive dye (VSD) imaging, is that the

ALT model, despite its simplicity, predicts the temporal ordering of each sensory activation

cascade quite accurately. We further apply this model to study multisensory integration and

find that a small number of brain regions—the claustrum and the parietal temporal cortex

being at the top of the list—are involved in almost all cortical sensory streams. This suggests

that the cortex relies on an hourglass architecture to first integrate and compress multisensory

information from multiple sensory regions, before utilizing that lower dimensionality

representation in higher level association regions and more complex cognitive tasks.
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Multisensory integration in the mouse cortical connectome

INTRODUCTION

Perception requires the integration of multiple sensory inputs across distributed areas through-

out the brain (Stein & Meredith, 1993). While sensory integration at the behavioral level has

been extensively studied (Seilheimer, Rosenberg, & Angelaki, 2014), the network and system-

level mechanisms underlying multisensory integration (MSI) are still not well understood, es-

pecially in terms of the role that cortex plays. The traditional view of primary cortical sensory

areas as processing a single modality is rapidly shifting towards a view of the cortex as highly

integrated and multisensory (Meredith, 2002). The somatosensory, visual, auditory, gustatory,

and other sensory streams come together (integrate) and separate (diverge) to be processed in

different parts of the cortex. The neural basis of how these sensory streams are processed and

how they generate a coherent perceptual state remains elusive (Shine et al., 2019). It is likely

that this state is created and regulated by multiple structures distributed throughout the cortex

working together in concert (Ghazanfar & Schroeder, 2006).

To understand the architectural principles that enable MSI, we need data and models that

span the entire brain—focusing not on individual neurons, regions, or even circuits, but on

distributed networks. The connectome is thus a potentially powerful tool for studying MSI.

However, it would not be enough to just know how different brain regions are connected

anatomically. Rather, we need models that combine structure (connectomics) with function

(Barrat, Barthelemy, & Vespignani, 2008) to address the question of which connections and

paths are “activated” by different sensory modalities (Abdelnour, Dayan, Devinsky, Thesen, &

Raj, 2018; Abdelnour, Voss, & Raj, 2014; Park & Friston, 2013; Sporns, 2013; Zhang et al.,

2017). Having both a structural network and a functional model in hand, we can begin to

tackle the problem of discovering the networks that support and constrain MSI.

Here, we adopt a variation of the asynchronous linear threshold (ALT) network diffusionAsynchronous linear threshold
(ALT) model:
A network diffusion model in which
a node becomes active if the
cumulative weight of incoming
connections from active neighbors is
more than a given threshold. Each
connection can also have a distinct
propagation delay.

Network diffusion:
A dynamic process through which
the exogenous activity at one or
more seed nodes spreads, at least
partially, to the rest of the network
through neighboring nodes.

model (Worrell, Rumschlag, Betzel, Sporns, & Mišić, 2017) to capture the communication

dynamics of networks that contribute to MSI. In particular, we focus on how information prop-

agates throughout the brain, starting from different primary sensory regions (e.g., primary visual

cortex, auditory cortex, and different somatosensory regions). The ALT model assumes that a

“node” (brain region)1 becomes active when more than a fraction of the neighboring nodes it

receives afferent projections from are active. We use a variation of this model with weighted

connections, where the weights are based on the connection density of the projections (Worrell

et al., 2017). The ALT model is simple, yet it incorporates information about distances between

areas (to model connection delays) and uses local information (a thresholding nonlinearity) to

potentially gate the flow of information. With such a model, it is possible to understand how

activation cascades propagate in the brain, and then combine them to study the global archi-

Activation cascade:
A directed acyclic graph that shows
the network diffusion process from a
given source node that corresponds
to a primary sensory brain region.

tecture of MSI.

We apply this model to the Mouse Connectivity Atlas provided by the Allen Institute for

Brain Science (Oh et al., 2014). This connectome has been available since 2014, and consists

of estimates of the connection density between cortical as well as subcortical regions, provid-

ing access to information about whole-brain connectivity across functionally and structurally

distinct regions. By coupling the ALT network diffusion model with this representation of the

connectome, we can ask questions such as the following: What is the relative order in which

different regions get activated after, say, a visual or auditory stimulation? Which are the most

central regions for each activation cascade? Are these cascades largely independent of each

1 We use the terms node, region, and ROI (region of interest) interchangeably.
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Multisensory integration in the mouse cortical connectome

other, or are there a few “bottleneck” regions through which almost all cascades go through?

If so, which are these regions and what is their topological role in each cascade?

To examine the accuracy of the ALT model, we use voltage-sensitive dye (VSD) imaging to

capture how activity that is triggered from unisensory stimulation in a specific primary sensory

area (e.g., primary visual cortex, VisP; primary auditory cortex, AudP) propagates throughout

the cortex (Mohajerani et al., 2013). Such comparisons reveal that the ALT model correctly

predicts the temporal ordering of node activations in a cascade when the VSD data provide

sufficient temporal resolution to permit activation time comparisons. This suggests that despite

the simplicity of linear threshold models, they can provide a useful approach for studying

communication dynamics in brain networks.

We then aggregate the unisensory activation cascades predicted by the ALT model to in-

vestigate the architecture of MSI. To do so, we consider the number of activation paths that

traverse each node across all of the different unisensory cascades inferred by the ALT model.

We find that a small set of brain regions (around ten) form a “bottleneck” through which almost

all such activation paths traverse. The claustrum (CLA), despite its small size, is the most cen-

tral bottleneck region in the flow of sensory information from primary sources towards higher

level brain regions (Mathur, 2014). The posterior parietal (PTLp) cortex is the second bottleneck

node, covering almost as many activation paths as CLA.

METHODS AND DATA

The ALT model focuses on how stimulation of one cortical region propagates to the rest of the

brain when constrained by the underlying connectome. In the rest of this section, we describe

the main components of our approach: the mouse connectome, the ALT diffusion model, the

hourglass network analysis framework, and the VSD-based model validation.

Structural Network

The structural (i.e., anatomical) network we analyze is the Allen Mouse Brain Connectivity

Atlas (Oh et al., 2014), which is based on tracking axonal projections labeled by viral trac-

ers. It consists of 213 regoins of interest (ROIs) that cover the entire brain—all tracer injec-

tions, however, were performed at the right hemisphere (Oh et al., 2014). This means that

the contralateral connections from the left hemisphere to the right and the ipsilateral connec-

tions at the left hemisphere are not mapped. For this reason we analyze only right hemisphere

connections.

The strength of the connection from a source ROI to a target ROI is quantified by a metric

that Oh et al. (2014) refer to as connection density. This metric can be thought of as the total

number of axons from the source ROI to the target ROI, normalized by the size of the target

ROI.

Each connection is associated with a p value that quantifies the statistical confidence that

that connection exists (Oh et al., 2014). We filter out connections with p value higher than

0.05.2 The reason that we do not filter connections based on their weight is because there are

many weak but statistically significant connections, as shown in Figure SI-1. It is well known

that weak connections can play an important role in network diffusion phenomena as long as

there are many of them (Gallos, Makse, & Sigman, 2012).

2 Wehave repeated the analysis for other p values in the range 0.01-0.1 – see SI Section "Connectome filtering".
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The physical length of the connections is approximated based on the Euclidean distance be-

tween the two corresponding ROIs’ centroids. This is only an approximation but it is probably

accurate because the mouse cortical surface is small and smooth with little folding

(Mota & Herculano-Houzel, 2012; Sun & Hevner, 2014). Additionally, as shown in Section

“Robustness of tau-core nodes,” the results are robust to the selection of the connection weights

or physical lengths.

In most of the analysis, we consider a portion of the mouse connectome that consists of

the 67 ROIs that cover the four right hemisphere components of the cerebral cortex: isocor-

tex, olfactory areas, hippocampal formation, and cortical subplate. The complete list of these

ROIs is given in Table SI-1. We exclude subcortical ROIs that reside in the cerebellar cortex,

cerebellar nuclei, striatum, medulla, pallidum, midbrain, pons, thalamus, and hypothalamus

for the following reasons.

The cortical network, denoted as Nc, consists of 617 directed edges between 67 nodes;

each node corresponds to one of the ROIs in our model. The density of Nc is 13.9%. The

distribution of edge weights is skewed, with 80% of the edges having a weight of less than 5

and few edges having a weight of up to 40. The distribution of edge lengths is almost uniform

in the 1–7 mm range. The diameter of the network (maximum shortest path length between

any two nodes) is 7 hops, while a node is on the average about 4 hops away from any other

node. The average in-degree of each node is 9.2 connections (σ = 3.1), while the out-degree

distribution has the same mean but larger variability (σ = 8.3). Additionally, the network Nc is

strongly clustered, with an average clustering coefficient of 60% (Fagiolo, 2007).

The 10 primary sensory regions associated with the visual, auditory, gustatory, and olfactory

systems, as well as 6 somatosensory regions for different body parts, have a special role in our

analysis: They are viewed as sources of sensory information in the cortex (Bota, Sporns, &

Swanson, 2015; Taylor, Hobbs, Burroni, & Siegelmann, 2015). The complete list and location

of these ten ROIs in the Allen Mouse Brain Atlas are shown at Table SI-2.

The ALT Model and Activation Cascades

The connectome is a structural network and so it constraints, but it does not determine by itself,

the paths through which information flows in the brain. To study that flow, we also need to

model how dynamic brain activity propagates on the connectome.

We choose a simple network diffusion linear threshold model (Granovetter, 1978), mostly

because it involves a single parameter—more realistic neural mass models, such as Wilson-

Cowan, depend on several parameters (Sanz-Leon, Knock, Spiegler, & Jirsa, 2015). The model

assumes that nodes are either inactive (state = 0) or active (state = 1). In the model’s simplest

form, a node i becomes active when more than a fraction θ of its neighbors become active.

Here, we deploy a variation for directed and weighted networks in which each edge is associ-

ated with a communication delay and a weight, referred to as asynchronous linear thereshold

(ALT) model.

Specifically, the state of node ni is represented by si(t), the neighbors of ni with an incoming

edge to ni are denoted by Nin(ni), the communication delay from node nj ∈ Nin(ni) is tji,

while the weight of that connection is wji. Initially, the state of every node is set to 0, except

the source node of the activation cascade, which is set to active at time t = 0. The state of

each node ni is then updated asynchronously based on the state of its neighbors as follows:

si(t) = 1 if ∑
j∈Nin(i)

wji sj(t − tji) > θ, (1)

where θ represents the activation threshold.
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Figure 1A illustrates the ALT model with a toy example, where we can think of each node

as a brain region. The (directed) edges between nodes represent the structural connections

between the corresponding regions. In this example, the activation threshold θ is set to 1. For

this value, the cascade covers the entire network node within 7 time steps. If θ was larger than

1, the cascade would not take place—the only active node would be n1. As we will see in the

next section, this sharp transition between not having a cascade and a complete cascade as θ

decreases also occurs in the mouse connectome.

An activation cascade also reveals the node(s) that contribute in a causal manner in the

activation of a node. For example, the activation of n1 and of n2 in the previous example is not

sufficient to activate n3; the latter is activated only when n1, n2, and n4 are all active. Suppose

that ta
i denotes the time at which ni becomes active according to the ALT model. We say that

node nj contributes in the activation of ni (denoted by nj → ni) if nj ∈ Nin(ni) and ta
i ≥ ta

j + tji.

In other words, the nodes j that contribute to the activation of ni have a connection to ni and

they should be active at least tji time units before the activation of ni. The set of relations

nj → ni form a directed acyclic graph (DAG) with a single source node that covers all nodes

Directed acyclic graph (DAG):
A directed network without cycles.
A DAG always includes one or more
source nodes (no incoming edges)
and one or more terminal nodes
(no outgoing edges).

that participate in the cascade. The DAG edges are a subset of the connections in the underlying

structural network. The cascade for the previous example is shown in Figure 1B.

Figure 1. Illustration of ALT model and τ-core analysis. (A) A toy example of a five-node network on which we run the ALT model. Each
edge is marked with a communication delay, followed by a weight. The activation threshold is θ = 1. The black edges represent the underlying
structural network, while the red unidirectional edges represent the activation cascade as it unfolds over time. (B) The activation cascade (a
directed acyclic graph) for the previous toy example. The source of the cascade is n1. (C) A different toy example with three activation cascades
(the sources are nodes u, v, and y). The total number of source-target paths is 12 (5 at the left, 3 at the middle, and 4 at the right). Node w has
the highest path centrality (P(w) = 10/12). If τ ≤ 10/12, the τ-core consists of only that node.
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Analysis of Activation Cascades

An activation cascade consists of a collection of source-target paths, with each such path origi-

nating at the source of the cascade and terminating at a node without any outgoing edges in the

cascade. A source-target path is a sequence of ROI activations that propagate in a causal man-

ner from the source node to a target node. For instance, the cascade of Figure 1B includes three

source-target paths from n1 to n3 because the activation of the latter requires the activation of

n1, n2, and n4.

After constructing a cascade for each source, we use network analysis to identify the nodes

that play a more central role in the collection of all cascades. The centrality metric we use

has the following graph theoretic interpretation: For each node v, the path centrality P(v) ofPath centrality:
Given a set of activation cascades
(one for each sensory source), the
path centrality of a node is the total
number of source-to-target paths,
across all activation cascades, that
traverse that node.

node v is the fraction of all source-target paths, across all cascades, that traverse v (following

the terminology of Sabrin & Dovrolis, 2017). Figure 1C illustrates this metric with three small

cascades. Nodes with higher path centrality (PC) are expected to be more important because

the activation cascades depend more heavily on them. Note that a source node is traversed by

all source-target paths in its own cascade but it may have low path centrality when we consider

the collection of all cascades.

The PCmetric quantifies the importance of each node in isolation. We are interested, on the

other hand, in the smallest set of nodes that can jointly cover almost all source-target paths in

the given set of cascades. To answer this question, we adopt the τ-core definition of Sabrin andτ-core:
Given a set of activation cascades,
the τ-core is a set of nodes
(brain regions) that collectively
cover at least a fraction τ of all
source-to-target paths.

Dovrolis (2017): The τ-core is the minimal set of nodes such that the fraction of source-target

paths that traverse any node in the set is at least τ. The τ-core problem is NP-Hard for τ < 1

(Sabrin & Dovrolis, 2017). It can be approximated with a greedy heuristic in which the node

with the highest PC joins the set in each iteration. That node is then removed from all cascades

it appears in. The PC of the remaining nodes is recomputed after each iteration. If the τ-core

is a small set, relative to the total number of nodes in the network, the nodes of that set can be

thought of as the bottleneck of the activation cascades (see Figure 1C for an example).

Comparison of Modeling Results With Functional Data

To examine whether the ALT model can accurately predict the propagation of sensory stimula-

tion in the cortex, we need an experimental setup in which we can stimulate different sensory

modalities of a living animal, and monitor at the same time and in a fine temporal resolution

(in the order of a millisecond) the activity of different cortical neural populations (in a spatial

resolution of few µm).

Such experiments are possible today, relying on technologies such as calcium imaging or

voltage-sensitive dies (VSD) in conjuction with fluorescence microscopy. Here, we leverage the

experimental results of an earlier study to examine the accuracy of the ALTmodel in the context

of whole-cortex imaging in mice under single sensory stimulation (Mohajerani et al., 2013). In

brief, the experiments include five types of sensory stimulation: visual (flash), auditory (tone),

whisker touch, forelimb touch, and hindlimb touch. Each stimulation experiment is repeated

10 times and on several different animals (we analyze data for five animals). The recorded

images cover almost the entire cortical surface, have a temporal resolution of 6.67 ms, and a

size of 128× 128 pixels at a spatial resolution of 50µm/pixel. As it will become clear in Section

“Model validation,” the experimental spatial resolution is sufficient for our purposes, given that

each network node in the ALT model refers to an entire cortical ROI of the Allen mouse brain

atlas. The temporal resolution, however, is marginally sufficient because for about 20–30% of

Network Neuroscience 1035



Multisensory integration in the mouse cortical connectome

all ROI pairs we cannot tell which ROI gets activated first as they appear to be activated during

the same frame.

To compare the VSD-based results with our modeling results, we perform the following

steps:

Step 1. Register: Register the native cortical surface of each animal to the AllenMouse Brain

Atlas. This step is performed using an affine transformation that minimizes the least-squares

error between the coordinates of the centroid of a primary sensory ROI (e.g., VISp) in the

Allen atlas, and the coordinates of the pixel that first gets activated after the corresponding

sensory stimulation (visual in this example). We use five primary sensory ROIs to construct

this transformation: VISp, SSp-bfd, SSp-ll, SSp-ul, and AUD-p.

Step 2. Parcellate into ROIs: Parcellate the native cortical surface into ROIs using the Allen

Mouse Brain Atlas and the previous affine transformation. Some cortical ROIs are not visible

in the VSD images: FRP, PL, ACAd, VISpl, and VISpor. Also, the MOs region is only partially

captured in the VSD images.

Step 3. Estimate activation time: Estimate an activation time for each ROI in the experi-

mental data. To perform this step, we first identify the maximum poststimulus activity for each

pixel in that ROI—this is defined as the activation time of that pixel. The image frame that

corresponds to the activation time for most pixels of that ROI is defined as the activation time

of the ROI. This processing pipeline is summarized in Figure 2.

The ALT model, on the other hand, models each cortical ROI as a single node, and it

assumes that the transition of each node from inactive to active occurs instantaneously. We

Figure 2. VSD data-processing pipeline. (A) Lower: The Allen Reference Atlas (ARA). Upper left: A sample VSD image covering most of the
left cortical surface five frames after visual stimulation. Upper right: The ROIs at the left ARA cortical surface mapped to the native cortical
surface of an animal. (B) The activation time of a pixel is defined as the frame of maximum poststimulus VSD signal at that pixel. (C) The
activation time of an ROI is defined as the activation time of most pixels in that ROI. (D) The output of this pipeline is an activation time for
each ROI, depicted here with a gray scale map (black for the first ROI activation and white for the last).
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examine the consistency of the temporal ordering of activations in the ALT model and in the

VSD experiments using both Kendall’s rank correlation coefficient as well as using the follow-

ing approach: If X and Y are two ROIs, and X is activated before Y in the modeling results, is

it also the case that X is activated before Y in the VSD data? If so, we count that ROI pair as

a temporal agreement. If X and Y are activated in the same VSD frame, we count that pair as

a case of insufficient temporal resolution. Finally, if X is activated after Y in the VSD data, we

count that ROI pair as temporal disagreement.

RESULTS

Sensory-Specific Activation Cascades in the Mouse Cortex

The ALT model requires the selection of a single parameter, the activation threshold θ. This

threshold controls the size of the cascade, that is, the fraction of network nodes that become

active after the activation of a source node. One may expect that as θ decreases towards zero,

the size of the cascade becomes gradually larger. This is not the case, however. Figure 3A

shows that as θ decreases we observe a rapid transition from the absence of a cascade (where

only the source node is active) to a complete cascade, in which all nodes become active. This

is true for all source nodes listed in Table SI-2.

The reason behind this rapid transition is the highly clustered topology of the mouse con-

nectome. This property is often quantified by the clustering coefficient (Newman, 2018), which

has an average value of 0.60 in the mouse connectome. This means that if a node v connects

Figure 3. Effect of parameter θ on cascade size, and similarity between the 10 cascades. (A) Each row of the heat map shows the fraction
of activated nodes after the stimulation of a single source, for different values of the threshold θ. The selected threshold is marked with the
dashed vertical line. (B) Similarity between the 10 sensory cascades using the average-linkage hierarchical clustering method.
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to two nodes u and w, there is a probability of 60% that there is an edge from u to w or in

the opposite direction, “closing the triangle” formed by the three nodes u, v, w. So, if v is the

source of the activation and θ is low enough so that v activates at least one of its neighbors,

say u, it is highly likely that other neighbors of v receive input from u as well, increasing

the chances that they will also get activated. The same argument applies to all other pairs of

activated nodes—not only the source and its direct neighbors.

We choose θ so that the ALT model produces a complete cascade, for every source we con-

sider (Beggs & Timme, 2012). This choice is motivated by experimental results (Mohajerani

et al., 2013): At least some activity is detected in all cortical regions after sensory stimulation

(visual, auditory, touch) in anesthetized mice. It may appear counterintuitive that visual stimu-

lation, for example, can impact activity in regions associated with different sensory modalities

(e.g., gustatory), but such interactions are possible through the many feedback connections

in the connectome, and they are consistent with several prior studies that argue that there

are no strictly unisensory regions, and that to some extent the entire cortex is a multisensory

organ (Cappe & Barone, 2005; Falchier, Clavagnier, Barone, & Kennedy, 2002; Ghazanfar &

Schroeder, 2006; Morrill & Hasenstaub, 2018).

Lower values of θ would also result in complete cascades. However, as θ decreases, the

dynamics of the underlying cortical networks would move away from the critical boundary

between sensitivity to internal or external stimulation and stability (Chialvo, 2010; Plenz &

Thiagarajan, 2007).

Based on the previous considerations, we select θ = 0.98 asthe lowest value that results

in a complete cascade across all sensory modalities. We have repeated the analysis for two

more values of θ (0.90 and 0.95) without any significant changes in the results (see SI Section

“Sensitivity to activation threshold θ”).

Similarity of Sensory Cascades. How similar are the 10 sensory cascades predicted by the ALT

model? The similarity between two cascades can be quantified using the Jaccard similarity

metric. It is defined as the ratio of the common connections in two cascades over the total

number of connections in those cascades.

After calculating the Jaccard similarity between every pair of cascades, we use an agglom-

erative hierarchical clustering algorithm to construct a dendrogram of the 10 cortical sensory

cascades. This dendrogram was computed for three linkage methods: average linkage (the sim-

ilarity between two clusters is based on the average similarity across all pairs of cascades in

the two clusters), single linkage (based on maximum similarity), and complete linkage (based

on minimum similarity). The resulting dendrograms are quite similar across the three linkage

methods. Figure 3B shows the dendrogram with average linking—the two others are shown in

Figure SI-3.

A first observation is that the olfactory cascade (originating at the main olfactory bulb

[MOB]) is very different than all other sensory cascades—its similarity is less than 10% with

the cluster of all other cascades. This is expected given that olfaction is quite different from all

other sensory processes, it bypasses the thalamus, and MOB is the only primary sensory ROI

in the mouse connectome that is not located in the isocortex (Johnson, Illig, Behan, & Haberly,

2000; Srinivasan & Stevens, 2017).

Interestingly, the two most similar cascades are the gustatory (GU) and the somatosensory

cascade of the nose (SSp-n). Further, these two cascades are quite different from all others, in-

cluding the rest of the somatosensory cascades. The somatosensory cascades are quite similar
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to each other and they tend to cluster as follows: trunk and lower limb (similarity of about

75%), mouth and upper limb (about 70%), while the whiskers produce a significantly differ-

ent cascade than the previous four (similarity of about 40%). This organization mirrors the

anatomical layout of the somatosensory regions. The auditory and visual cascades are also

quite distinct from all other cascades—but not as dramatically different as olfaction.

Visual Cascade. Figure 4 shows the complete activation cascade when the source of the stim-

ulation is the primary visual cortex (VISp)—the corresponding cascades for the other sensory

Figure 4. The visual activation cascade, according to ALT (θ = 0.98). The source for this cascade
is the primary visual cortex (VISp). The red edges form the activation cascade, while the underlying
blue edges show anatomical connections that do not participate in this cascade, those connections
may be present in other sensory cascades or they may play a role in feedback (or second-order)
interactions that are not captured by the “first ripple” scope of the ALT model. To help with the
visualization, we place the nodes in eight layers, so that cascade edges only point from a layer to a
higher layer (never to the same or lower layer). The vertical position of each node is slightly “jittered”
to avoid cluttering due to anatomical connections between nodes of the same layer.
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modalities are included in the Supporting Information (see SI Section “The ALT cascade of each

sensory source”). Note that the activation of the source triggers the activation of 11 other ROIs.

Only a few of them, however, play a major role in extending the cascade to the rest of the

network: ECT (ectorhinal), PTLp (posterior parietal association), VISl (lateral visual), and POST

(postsubiculum). PTLp in particular causes the activation of seven more ROIs at the next step

of the cascade. The activation of the claustrum (CLA), in this cascade, takes place through the

sequence of ECT, followed by TEa (temporal association).

We emphasize that the hierarchical layout shown in Figure 4 is specific to each sensory

modality and it represents the activation cascade from the corresponding source to the rest of

the cortex. This notion of hierarchy should not be confused with the hierarchical organization

of the cortex (Markov et al., 2013) that results from anatomical distinctions of intracortical

connections (feedforward versus feedback, based on laminar markers; Harris et al., 2018). The

latter is an anatomical hierarchical structure, it is not specific to any particular sensorymodality,

and it does not convey any functional information about how one ROI may be affecting another

in the presence of a specific external or internal stimulation. An activation cascade, on the

other hand, reveals the putative sequence and causal dependencies through which ROIs get

activated after an initial activation at the source ROI.

The reader can find the activation cascade of each sensory source in SI Section “The ALT

cascade of each sensory source.” It turns out that only about half the connections of the anatom-

ical connectome appear in sensory activation cascades, and a quarter of the former appear in

only one sensory cascade. In Section Figure SI-4 we examine: which anatomical connections

are more important in terms of MSI? The results of that analysis suggest that sensory cascades

spread through short connections connecting physically adjacent regions, rather than through

the (relatively few) long connections that connect remote regions.

Model Validation

We examine the validity of the ALT model predictions using functional imaging data dur-

ing sensory stimulation experiments, as discussed in “Comparison of Modeling Results With

Functional Dat” section. The question we focus on is the following: After stimulating a specific

sensory modality (e.g., visual), if the ALT model predicts that an ROI X should be activated

before an ROI Y, is it true that X gets activated before Y in the functional imaging data? When

this is the case, we count the pair (X, Y) as a temporal agreement. If X gets activated before

Y in the ALT model but the opposite is true for the experimental data, we count (X, Y) as a

temporal disagreement. Because of the finite temporal resolution in the experimental results

(each frame is sampled every 7 ms roughly), there are also cases where X and Y appear to be

activated during the same frame, while the model always predicts a temporal difference be-

tween two activations. When that is the case, we count (X, Y) as a case of insufficient temporal

resolution.

Figure 5A shows the percentage of (X, Y) ROI pairs that show temporal agreement, temporal

disagreement, and insufficient temporal resolution between the activation order of X and Y in

the modeling results and the mouse experiments. The plot shows results for five animals and

for five sensory stimulations. Even though the variability across animals is considerable, we

observe that the percentage of temporal agreement pairs, averaged across the five animals, is

higher than 50% and it varies between 55% to 80% depending on the sensory modality. On

the other hand, the corresponding percentage of temporal disagreement is less than 10%–20%,

depending on the stimulation. In the rest of the cases, the temporal resolution is not sufficient.
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Figure 5. Comparison between model-based and experimental temporal ordering of ROI activa-
tions. (A) The y-axis shows the percentage of (X, Y) ROI pairs that show temporal agreement (green),
temporal disagreement (red), and insufficient temporal resolution (blue) between the activation or-
der of X and Y in the modeling results and the mouse experiments. The plot shows results for five
animals and for five sensory stimulations (a touch at the whiskers, forelimb, and hindlimb, as well
as an auditory and a visual stimulation). (B) The same comparison, but here we have randomized
the ROIs that are active during each frame, preserving the number of ROI activations in each frame.

Note that the VSD experiments were repeated 10 times (for each animal, and for each

sensory stimulation), as described in (Mohajerani et al., 2013). In our analysis however, we

only have access to the aggregated results of those 10 experiments, and so we have a single

sample for each animal and for each sensory stimulation. This is a limitation of the current
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analysis. To quantify the variability of these results, we show five point estimates, one for each

animal.

We also compare the ALT modeling results with a randomized sequence of experimental

activations in which we preserve the number of ROIs that are activated in each frame but

assign random ROI activations during each frame. This comparison shows that the ALT model

has significant prediction power on the temporal sequence of ROI activations, relative to a

randomized baseline.

Finally, we analyzed the temporal disagreement cases between VSD experiments and mod-

eling results to examine whether certain brain regions, or pairs of regions, are overrepresented

in those disagreements (see SI Section “Analysis of disagreement cases between VSD data and

ALT modeling results”). The main result of that analysis is that the ROIs with highest disagree-

ment cases appear at the boundary of the cortical surface at the VSD datasets and they are

only partially visible. So, it is likely that the VSD data may not accurately capture the time at

which those boundary regions are activated after each stimulation.

Core ROIs and Hourglass Architecture

In this section, we analyze the collection of 10 activation cascades (one cascade for eachHourglass architecture:
Given a set of activation cascades,
the corresponding network has an
hourglass architecture if almost all
source-to-target paths go through a
small number of intermediate nodes
(the waist of the hourglass).

source) using the network analysis approach described in Section “Analysis of Activation

Cascades.” The total number of source-target paths in the 10 cascades is 560. The path cen-

trality distribution, which captures how many activation paths traverse each node, is shown in

Figure 6A. Almost half of the nodes have very low path centrality (2% or less). On the other

hand, there are four nodes with much larger path centrality—each of them covering about

20% of the source-target paths in the collection of activation cascades. These ROIs are the

CLA (claustrum), SSs (supplemental somatosensory), PTLp (posterior parietal association), and

AUDv (ventral auditory) areas.

Some activation paths can traverse more than one of these highly central regions. For this

reason, we compute the minimal set of nodes that cover a given fraction τ of all source-

target paths, that is, what is referred to as τ-core (Sabrin & Dovrolis, 2017). Figure 6B shows

the fraction of covered source-target paths as we increase the size of the τ-core. The “knee-

shaped” shape of this curve suggests that a small set of nodes is sufficient to cover almost

all source-target paths in the activation cascades, forming a bottleneck in the MSI process.

For instance, a set of nine nodes is sufficient to cover more than 90% of all source-target

paths. These nine ROIs account for 14.7% of the brain volume of the ROIs we consider in the

network Nc.

The small size of the τ-core, relative to the size of the network, suggests that the cortex

follows an hourglass architecture, in which the sensory information from different modalities

is first integrated (other terms could be “encoded” or “compressed”) by a small set of τ-core

ROIs that form the “waist” (or bottleneck) of the hourglass. Those τ-core ROIs then drive a

large number of downstream ROIs that presumably operate on multisensory information and

contribute in higher level cognitive processes. The benefit of an hourglass architecture is that it

reduces the dimensionality of the input, computing amore compact intermediate-level sensory

representation at the waist of the hourglass.

The τ-core nodes for τ = 90% are listed in Figure 6. Together with the percentage of addi-

tional source-target paths that each node contributes to the τ-core (path coverage), the figure

also shows the path centrality (PC) rank of that node. As expected, the node with the highest

PC is the first node in the τ-core. After that point, the order in which nodes join the τ-core

does not follow their PC ranking. The top three nodes (CLA, PTLp, AUDv) are sufficient to col-

lectively cover about 60% of the activation paths. Note that none of these τ-core ROIs are a
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Figure 6. Path centrality and τ-core analysis. (A) Path Centrality (PC) histogram for the 67 regions in Nc, considering all source-target paths
across the 10 activation cascades. (B) Cumulative path coverage by the top X core nodes for X = 1, · · · , 67. Nine regions are sufficient to
cover τ = 90% of all paths. (C) Core regions for τ = 90% also showing the path coverage contributed by each of them and its path centrality
rank. (D) The location of the top five core regions.
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primary sensory region (i.e., a source node). Instead, they are either ROIs that are not typically

associated with a single sensory modality (CLA, PTLp, ACAd, ECT) or they are ROIs that are

often thought of as secondary or supplemental to a certain sensory modality (AOB, AUDv, SSs,

MOs, or VISl). If we exclude the MOB cascade, the only difference is that the τ-core will not

include the AOB region.

The previous analysis is based on the path centrality metric and the τ-core notion. In

SI Section “Comparison with other centrality metrics and other network core notions,” we

examine the correlation between the path centrality metric and other, more commonly used

centrality metrics. That section also compares the nodes in the τ-core with other core node

sets (rich-club and Rombach core-periphery).

Further, in SI Section “Activation cascades when two sensory sources are activated simul-

taneously,” we extend the previous analysis in the case that two source nodes become simul-

taneously active. It turns out that the core nodes are the same with the single-source case,

except that the anterior cingulate area—dorsal part (ACAd) and the ectorhinal area (ECT)—are

replaced by the perirhinal area (PERI).

Location of τ-Core Nodes in Activation Cascades

Location Relative to Sources. In this section, we first investigate the topological location (rather

than anatomical location) of the τ-core nodes relative to the source of each activation cascade.

Are the τ-core nodes, which form the waist of the hourglass architecture, closer to the sources

or targets of the activation cascades? And how does their location compare with the location

of the sources and of other cortical ROIs? These questions are related to recent experimental

work suggesting that cross-modal representations are constructed at early stages of the sensory

information flow (Cayco-Gajic & Sweeney, 2018).

We focus on the top four τ-core nodes (CLA, PTLp, AUDv, SSs), which collectively cover

about τ = 70% of all source-target paths (see Figure 6). Figure 7A visualizes in gray scale the

location of each node (matrix row) in each activation cascade (matrix column). Each source

node (represented with red) is obviously at a distance of 0 in its own activation cascade. Note

however that source nodes can be at a much larger distance from sources of other activation

cascades. For instance, the primary visual cortex (VISp) appears at the maximum distance in

the nose (SSp-n) and gustatory (GU) cascades.

The four τ-core nodes we consider (represented with yellow rows) are relatively close to all

source nodes: AUDv has the lowest average distance to all of the primary source areas, while

SSs and PTLp are ranked as third and fourth. The claustrum (CLA) is slightly farther away from

the sources, ranked 13th (out of 67) in the previous ranking. If we consider a higher value of

τ = 90%, the additional τ-core nodes (MOs, ACAd, VISl, and ECT) are ranked as 17th, 5th,

22nd, and 9th in terms of their average distance from sources. In summary, all τ-core nodes

appear in the top one third of the distance ranking, and so they are closer to the sources of the

hourglass architecture than to its targets.

Location Relative to Targets—Influence. Another way to examine the location of a node v in the

hourglass architecture is in terms of how many nodes appear in activation paths downstream

of v—a metric that we refer to as the influence of v. Figure 7B visualizes in gray scale the

influence of each node (matrix row) in each activation cascade (matrix column). The source

of a specific cascade has, by definition, maximal influence (i.e., all network nodes) in its own

cascade—but it may have a much lower influence in other cascades. Indeed, the influence of

source ROIs (shown in red) does not seem to follow a coherent pattern: The gustatory (GU) and

somatosensory area of the lower limb (SSp-ll) are sources with high influence but the primary
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Figure 7. Location-related metrics. In both matrices, a column represents one of the 10 activation cascades, originating at the node shown
at the top of the column. (A) Each row represents the source-distance of the corresponding node from the source of that column’s cascade.
White denotes a distance of one hop, while black denotes the maximum distance for that cascade. Rows are ordered in terms of the average
distance (in number of hops) of the corresponding node from the sources of all activation cascades (excluding the MOB cascade, which is
very different). (B) Each row represents the influence of the corresponding node, that is, the number of nodes that are reachable from that node
in the activation cascade that the column represents. White denotes an influence of one (only that node), while black denotes an influence
that covers all network nodes. Rows are ordered in terms of the average influence of the corresponding node across all activation cascades
(excluding the MOB cascade).
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visual cortex (VISp), the primary auditory cortex (AUDp), and the main olfactory bulb (MOB)

are sources with low influence in other cascades.

On the other hand, the four most important τ-core nodes (CLA, PTLp, AUDv, and SSs) also

occupy the top four positions in terms of influence. The next four τ-core nodes (MOs, ACAd,

VISl, and ECT) have high influence as well, ranked as 12th, 13th, 9th, and 20th, respectively.

Combining the previous observations about the influence of τ-core nodes as well as their

distance from sources, we can summarize our findings as follows: τ-core nodes are close

to most sensory sources and they also influence the activation of many downstream nodes.

These two features place τ-core nodes at a location that allows them to both integrate sensory

information from different sources as well as to use that integrated information in driving many

downstream ROIs.

Robustness of τ-Core Nodes

In this section, we examine the robustness of the previous results regarding the τ-core when we

randomize the edges and weights of the underlying connectome. We also examine whether

the length and/or weights of these connections are responsible for the hourglass effect and for

the specific regions that form the τ-core.

We create ensembles of random connectomes, derived from the mouse connectome in four

different ways:

1. Randomize the weight assigned to each edge, reallocating the weights of the original

connectome across randomly selected connections but maintaining the topology.

2. Randomize the physical length of each edge (and thus its communication delay in the

ALT model), again reallocating randomly the lengths of the original connections but

maintaining the topology.

3. Randomize both the weights and the lengths assigned to each edge, as previously men-

tioned. We do not maintain any correlation between weights and lengths.

4. Randomize the connectome’s topology by swapping connections between randomly se-

lected pairs of nodes. This randomization method preserves the in-degree and out-degree

of each node.

Figures 8A–8D focus on the first three randomization methods: weights, lengths, and their

combination. In all cases, the τ-core size of the original network is contained in the 5% confi-

dence interval of 100 randomized networks. In other words, the weights and physical lengths

of the connectome’s connections do not play a significant role in the number of τ-core nodes,

for any value of τ

On the other hand, when we randomize the topology of the connectome, the τ-core size

doubles in size when τ = 90%: from 9 nodes in the original network to 18. Additionally, it takes

about half of the entire network to cover all activation paths in the collection of 10 A-DAGs.

So, it is the graph structure of the connectome (i.e., its topology) that leads to a small τ-core

size, not the weight and/or length of the connections.

Even though the weight and length of the connections do not have a strong effect on the

τ-core size, do they affect the identity of the ROIs that participate in that τ-core? To answer

this question, Figure 8E shows the fraction of random networks that include each of the nine

τ-core nodes in Figure 6C. The claustrum (CLA), for instance, appears in the MSI τ-core of

88% of the networks that have randomized connection lengths (89% for randomized weights)
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Figure 8. Robustness results. The effect of different connectome randomization methods on the
core size. Light blue shade marks the 5% to 95% values among 100 randomization runs, while the
solid blue line is the median of these runs. The red line represents the τ-core size for the original
connectome. The dotted green line marks the τ-core size for τ = 90%. The table at the bottom
shows the fraction of random networks that include each of the eight τ-core nodes.

but in only 13% of the networks that have randomized topology. The results are similar for

the top six MSI τ-core nodes: They appear in the MSI τ-core of most randomized networks

when we randomize connections weights and/or lengths, but they rarely appear in the MSI τ-

core when we randomize the topology. For the last two MSI τ-core nodes (VISl and ECT) their
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membership in the MSI τ-core is not as robust: Randomizing connection lengths has a major

effect in the appearance of VISl in the τ-core, and randomizing any aspect of the network has

a major effect in the appearance of ECT in the τ-core.

Finally, we have applied the ALT model on the four types of randomized connectomes (ran-

domized weights, lengths, weights and lengths, and topology) and compared the resulting cas-

cades with the corresponding VSD-based visual cascade. The results of this comparison (see SI

Section “Modeling versus experimental results on randomized connectomes”) confirm that the

randomization of lengths and/or weights has a minimal effect, while topological randomiza-

tion causes a major reduction in the percentage of ROI pairs that show “temporal agreement”

between modeling and experimental results.

Effect of Subcortical Regions on Cortical Cascades

In this section, we examine the effect of subcortical regions on cortical sensory cascades. The

cascade sources remain the same 10 cortical primary sensory regions. The network on which

we apply the ALTmodel, however, now covers the entire mouse connectome. So, the activation

paths that originate from a source can now also traverse both cortical and subcortical regions

One first observation is that using the same activation threshold value (θ = 0.98) as in the

cortical network, the cascade from every source covers the entire brain, including all subcorti-

cal regions. In other words, the activation threshold is sufficiently low to include all subcortical

regions in the sensory cascades.

When we consider the whole connectome, the activation paths that originate from a cer-

tain source node can be classified in three major groups: C-paths (traversing only cortical

regions), CS-paths (crossing the cortical-subcortical boundary once and terminating at subcor-

tical regions), and CSC+-paths (crossing the cortical-subcortical boundary twice or more but

terminating at cortical regions.3

Across all 10 sources, C-paths account for 25%, CS-paths for 65%, and CSC+-paths for

about 10% of all paths. In the rest of this section, we focus on the union of C-paths and CSC+-

paths because, first, the validation of the ALT-based cascades with VSD data is only applicable

to cortical regions, and second, we are primarily interested in multisensory integration in the

cortex.

To examine whether the inclusion of subcortical regions affects the sensory cascades in the

cortex, we examine, for a given source (e.g., visual stimulation), how similar the ALT-based

cascades that terminate at cortical nodes are, with and without the CSC+-paths. Note that we

do include CS-paths because they do not participate in that portion of the cascades. At the

visual cascade, for instance, the Kendall τ coefficient between the two activation sequences is

92% (p value < 10−27). The correlations are similarly high for the other sources. This suggests

that the inclusion of subcortical regions does not significantly affect the timing sequence at

which cortical regions get activated after a sensory stimulus.

We also compute the τ-core for the union ofC-paths and CSC+-paths. The results are shown

in Table 1 for τ = 90%. The core is now slightly larger (14 nodes instead of the 9 nodes

in Figure 6C). The top six nodes are the same as in Figure 6C but in different order. The core

3 The fraction of paths that cross the cortical-subcortical paths twice or more and terminate at the subcortex
is negligible.
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Table 1. Core nodes for τ = 90% when we include the subcortical regions in the cortical sensory cascades.

Node Description Region Size Path Coverage PC Rank

SSs Supplemental somatosensory area Isocortex 5,729 18 1

PTLp Posterior parietal association areas Isocortex 3,498 16 4

AOB Accessory olfactory bulb Olfactory areas 571 15 3

CLA Claustrum Cortical subplate 885 10 2

AUDv Ventral auditory area Isocortex 2,554 9 5

MOs Secondary motor area Isocortex 10,098 4 10

RT Reticular nucleus of the thalamus Thalamus 1,395 4 25

ACAd Anterior cingulate area, dorsal part Isocortex 2,789 3 18

VISl Lateral visual area Isocortex 880 3 12

PP Peripeduncular nucleus Thalamus 111 2 53

PERI Perirhinal area Isocortex 1,412 2 8

MOp Primary motor area Isocortex 11,760 2 19

MA Magnocellular nucleus Pallidum 376 2 59

ENTm Entorhinal area, medial part, Hippocampal 3,106 1 13

dorsal zone formation

now also includes three subcortical regions: The reticular nucleus (RT) and the peripeduncular

nucleus (PP) in the thalamus, and the magnocellular nucleus in the pallidum.

The appearance of RT in this list is not surprising: This region is known to be highly inter-

connected with many cortical areas, and it provides a strong modulatory input to cortex that

drives the brain into different attentional states (Halassa et al., 2014) and gates the flow of

many different sensory streams to cortex (Zikopoulos & Barbas, 2007).

DISCUSSION

This work built a suite of modeling and analysis tools to study multisensory integration from

the perspective of communication dynamics. We chose to analyze the mouse connectome

because of the availability of a detailed mesoscale anatomical map and because the prob-Mesoscale network:
A graph that models the structural
connectivity between brain regions,
typically at the spatial resolution of
few hundreds of micrometers.

lem of multisensory integration is relatively well studied in rodents (Meijer, Mertens, Pennartz,

Olcese, & Lansink, 2019). In particular, we analyzed the cortical brain network from the Allen

Mouse Brain Connectivity Atlas (Oh et al., 2014) and focused on “early" dynamics of sen-

sory integration. By early we specifically mean the first wave of cortical activity, starting from

primary sensory areas and propagating to the whole hemisphere. This point differentiates our

work from earlier models of multisensory integration (Ripp et al., 2018; Zamora-López, Zhou,

& Kurths, 2010).

The underlying anatomical pathways recruited by diverse sensory modalities (e.g., visual,

auditory, somatosensory) branch out rapidly and become increasingly complex as they reach

the higher associative cortical areas (Mohajerani et al., 2013). To capture the nonlinear and

asynchronous nature of these dynamics, we used a diffusion model that can capture both

nonlinearity and communication delays, called asynchronus linear thresholding (ALT). While

this model is surprisingly simple, we found that ALT can closely recapitulate sensory cascades

when compared with VSD datasets from sensory stimulation experiments on mice (Mohajerani

et al., 2013).
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ALT is a phenomenological model that aims to describe (but not explain mechanistically)

the diffusion of information at the ROI level. As such, it does not model the underlying mech-

anisms of neuronal communication through chemical or electrical synapses, and it cannot

capture more complex dynamics such as sustained oscillations at certain frequencies or feed-

back from a newly activated region back to regions that were activated earlier. Modeling such

dynamics would require more elaborate neural mass models (Destexhe & Sejnowski, 2009).

The validation of such models, however, would require whole-brain neuroimaging data of

fine spatial and temporal resolution (higher temporal resolution than fMRI and higher spa-

tial resolution that EEG). Additionally, those more complex models may not be necessary

when the goal is to map the feedforward initial propagation of brain activity after a sensory

stimulation.

Similar to neuroimaging modalities of similar spatial resolution (such as task-based fMRI),

ALT aims to capture how a certain activity, namely the stimulation of a primary sensory region,

causes the activation of other brain regions. A difference with fMRI or MEG, however, is that

the resulting activation cascades can be analyzed to infer interactions between ROIs that par-

ticipate in the cascade. Additionally, ALT depends on the communication delays and weights

of the connections between brain regions. Thus, it produces a timeline of activation events,

one for each ROI that participates in the cascade. The length of the time interval between

activation events, at least in relative terms, can be compared with experimental results from

neuroimaging modalities such as VSD (used in this study) or calcium imaging.

We emphasize that ALT is not the only plausible modeling approach to study the diffusion

of sensory information in the brain. There are several other models in the literature that attempt

to capture communication dynamics in the brain based on shortest path lengths, search infor-

mation (Goñi et al., 2014), navigation (Seguin, van den Heuvel, & Zalesky, 2018), diffusion

efficiency (Goñi et al., 2013), and others (Avena-Koenigsberger, Misic, & Sporns, 2018). Which

of these models produces the most accurate results, compared with experimentally observed

activation cascades, is an open question that deserves further investigation.

A major result of this study is that relatively few cortical regions are responsible for integrat-

ing almost all sensory information. This finding supports the idea that multisensory integration

is performed through an hourglass architecture. The benefit of an hourglass architecture is

that first it reduces the input dimensionality of the sensory stimulus at few intermediate-level

modules that reside at the hourglass waist. Second, it reuses those compressed intermediate-

level representations across higher level tasks, reducing redundancy between the latter. The

hourglass analysis framework was first developed in Sabrin & Dovrolis (2017), and it has been

recently applied in the connectome of C. elegans (Sabrin, Wei, van den Heuvel, & Dovrolis,

2020). There are two fundamental differences in our study: (a) We rely on communication

dynamics, while Sabrin et al. (2020) uses a predefined set of “routing mechanisms” to con-

struct ensembles of sensory pathways. (b) The sources and targets of the C. elegans cascade

are the sensory and motor neurons, respectively. Nonetheless, it is interesting that the hour-

glass architecture emerges in both studies. One possibility is that this architecture is selected

by evolution because it drives a network towards reusing a small set of intermediate functions

in constructing a range of redundant output functions.

Rather than studying each sensory cascade in isolation, our analysis framework is based on

the combination of all sensory cascades. Comparative and competitive cascades have been

studied in Mišić et al. (2015) to quantify the combined effect of multiple cascades, using si-

multaneously activated source nodes. Sensory stimuli of different modalities, however, do not
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need to arrive at the cortex simultaneously in order to be integrated (Noel, Łukowska, Wallace,

& Serino, 2016). Different sensory stimuli travel at different speeds through body receptors

(Zhou et al., 2019). The analysis framework that we followed constructs unisensory cascades

and merges their activation paths. We have also experimented with cascades originating from

two simultaneously activated sources (see SI Section “Activation cascades when two sensory

sources are activated simultaneously”). The hourglass architecture is still observed in that case,

and the core nodes are mostly the same.

The claustrum is known for its anatomical uniqueness (Baizer, Sherwood, Noonan, & Hof,

2014) and its precise function has been enigmatic (Mathur, 2014; Van Horn, 2019). The late

F. Crick has hypothesized that the claustrum may be a potential gateway to consciousness

(Crick & Koch, 2005). More recent results have demonstrated that the claustrum is important

in gating sensory information, and in attention mechanisms in visual perception (Van Horn,

2019). These and other studies provide strong evidence that the claustrum is a crucial node

for multisensory integration. Our findings are in agreement with this growing body of work.

The posterior parietal cortex is the second most important region for MSI, according to our

analysis. This stems from its strong and immediate connectivity to primary sensory regions and

its projections to motor areas. PTLp’s connectivity points to its role in integrating sensory infor-

mation to direct immediate motor commands (Whitlock, 2017). The experiments of Nikbakht,

Tafreshiha, Zoccolan, and Diamond (2018) provide direct evidence that PTLp is multisensory

at both the behavioural and the neurophysiological levels, and it provides sensory-independent

information about the orientation and categorization of objects in the environment. We refer

the reader to Mohan, de Haan, Mansvelder, & de Kock (2018) for further discussion.

Three additional core nodes have been associated with specific sensory modalities in the

past: ventral auditory area (AUDv), supplemental somatosensory area (SSs), and lateral visual

area (VISl). However, all of them have also been implicated to some extent with multisensory

processing. For instance, Hishida, Kudoh, and Shibuki (2014) found that activity propagating

to the parietal association area passes through the ventral auditory region, irrespective of the

sensory stream source (visual, auditory, or somatosensory). Similarly, Menzel and Barth (2005)

suggest that SSs has a major role in bringing context to the sensory pathways (Romo,

Hernández, Zainos, Lemus, & Brody, 2002). VISl is on the dorsal visual stream is associated

mostly with spatial location action guidance (Marshel, Garrett, Nauhaus, & Callaway, 2011),

while the other secondary visual areas participate in the ventral stream (Hebart & Hesselmann,

2012).

Various nuclei in the thalamus or the superior colliculus are known to be crucial in MSI

(Stein, Stanford, & Rowland, 2014). An integrated model of both cortical and subcortical activ-

ity, in the context of sensory integration, may help in the future to explain the complex cortico-

thalamic feedback mechanisms (Jiang, Wallace, Jiang, Vaughan, & Stein, 2001; Tyll, Budinger,

& Noesselt, 2011). Disentangling such communication dynamics requires working at finer

spatial resolutions, and including distinct cortical layers (laminar divisions) (Goulas, Zilles,

& Hilgetag, 2018). Incorporating high-resolution (Knox et al., 2018) and cell-type-specific

(Harris et al., 2018) information about connectivity in our pipeline is an interesting direction

that can allow segregation of different communication channels. By increasing the spatial res-

olution and the complexity of the model dynamics, we may be able to capture more complex

population-level activity patterns (e.g., Wilson-Cowan [Destexhe & Sejnowski, 2009]) and bet-

ter understand the role of mesoscale network topology in constructing a coherent perceptual

state from raw sensory streams.
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