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Abstract

The causes and consequences of the nonrandom structure of the standard genetic code (SGC) have been of long-standing
interest. A recent study reported that mutations in present-day protein-coding sequences are less likely to increase
proteomic nitrogen and carbon uses under the SGC than under random genetic codes, concluding that the SGC has been
selectively optimized for resource conservation. If true, this finding might offer important information on the environ-
ment in which the SGC and some of the earliest life forms evolved. However, we here show that the hypothesis of
optimization of a genetic code for resource conservation is theoretically untenable. We discover that the aforementioned
study estimated the expected mutational effect by inappropriately excluding mutations lowering resource consumptions
and including mutations involving stop codons. After remedying these problems, we find no evidence that the SGC is
optimized for nitrogen or carbon conservation.
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Because the atomic constituents vary among different
nucleotides and amino acids, environmental nutrients can
shape the nucleotide and amino acid compositions of a spe-
cies through resource-driven selection (Elser et al. 2006, 2011;
Grzymski and Dussaq 2012; Mende et al. 2017; Berube et al.
2019). For example, in the bacterium Escherichia coli and yeast
Saccharomyces cerevisiae, the amino acid composition of the
proteins in sulfur and carbon assimilation pathways is such
that sulfur and carbon atoms are underrepresented relative to
those in other proteins (Baudouin-Cornu et al. 2001). In the
same vein, probably because every guanine–cytosine (GC)
nucleotide pair uses eight nitrogen atoms whereas every ad-
enine–thymine (AT) pair uses only seven nitrogen atoms, the
genomic GC content is higher in nitrogen-fixing bacteria than
in nonfixing members of the same genus (McEwan et al.
1998). Similarly, bacteria living in the deep sea, where the
environmental nitrogen is abundant, have a higher GC con-
tent in their genomes and a higher nitrogen content in their
proteomes when compared with surface-dwelling bacteria
(Mende et al. 2017). In a recent study, Shenhav and Zeevi
(2020) extended the analysis of the impact of environmental
nutrients to the evolution of the genetic code. They reported
that point mutations in protein-coding sequences are less
likely to increase proteomic nitrogen and carbon uses under
the standard genetic code (SGC) than under random genetic
codes (RGCs), suggesting that the SGC has been optimized
for resource conservation. This is reminiscent of the classic
finding that coding mutations are more likely to conserve the
physicochemical properties of the encoded amino acids un-
der the SGC than under RGCs (Haig and Hurst 1991; Freeland
and Hurst 1998; Archetti 2004; Goodarzi et al. 2004). If
Shenhav and Zeevi’s conclusion is correct, it provides

important information about the environment in which
the SGC and some of the earliest life forms evolved.
However, we find that the hypothesis of selective optimizion
of the genetic code for resouce conservation is untenable
because the optimzation requires a second-order selection
that would be in the opposite direction of a much stronger
first-order selection. Indeed, we show that Shenhav and
Zeevi’s results are attributable to two problemetic assump-
tions in calculating the expected mutational cost.

Contrasting First- and Second-Order Selections for
Resource Conservation
Let us consider a hypothetical organism with only two
codons, A and B. Under the wild-type genetic code, A enc-
odes amino acid L that uses a low amount of a particular
environmental resource, whereas B encodes amino acid H
that uses a high amount of the resource (fig. 1). Let us assume
that A and B often play similar functional roles in proteins. If
the organism lives in an environment where the resource is
limited, selection for resource conservation will lead to a
higher frequency of A than B in the genome, for example,
80% of A and 20% of B. If all codons have the same probability
of mutation, 80% of mutations will result in L-to-H changes
whereas 20% result in H-to-L changes, causing an average
mutation to increase the proteomic resource consumption
(fig. 1). Now imagine a code-table-altering mutation that
makes A code for H and B code for L. After the occurrence
of this mutation, 80% of future mutations will result in H-to-L
changes whereas 20% result in L-to-H changes, causing an
average future mutation to decrease the proteomic resource
consumption (fig. 1). Although this code-table-altering mu-
tation is beneficial and favored by second-order selection for
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resource conservation when future mutations are considered,
it is deleterious on arrival because it immediately increases the
proteomic resource consumption given that 80% of the
codons now code for the more costly amino acid (fig. 1).
Therefore, the first-order selection for resource conservation
will triumph over the second-order selection and prevent the
fixation of the code-table-altering mutation. The principle
illustrated by this toy example applies to any genetic code
and organism, meaning that the hypothesis of optimization
of a genetic code for resource conservation is not theoretically
tenable.

Correcting ERMC Calculation Alters the Purported
Resource Conservation of the SGC
To understand why Shenhav and Zeevi’s empirical results
contradict the above theoretical conclusion, we examined
how they calculated the expected random mutation cost
(ERMC) in proteomic nitrogen/carbon usage under each
code table. Surprisingly, they considered only the increase
(positive cost) but not the decrease (negative cost) of the
proteomic nitrogen/carbon content caused by mutations. In
a nitrogen/carbon-limited environment, if mutations increas-
ing the proteomic nitrogen/carbon content are deleterious,
those lowering the content would be beneficial. Hence, the
net expected random mutation cost (nERMC) should be the
sum of the positive and negative costs of mutations.
Additionally, Shenhav and Zeevi included in their ERMC cal-
culation mutations that involve stop codons and treated the
proteomic atom usage as 0 at stop codons. There are two
types of point mutations involving stop codons. The first type
converts a sense codon to a stop codon, causing premature
termination of protein synthesis, whereas the second type
converts a stop codon to a sense codon, leading to an exten-
sion of the protein sequence. In both cases, the mutations
affect not only the proteomic atom usage at the mutated

codon but also that due to the change in protein length, the
latter being much greater than the former. Shenhav and
Zeevi’s treatment of mutations involving stop codons is
thus inappropriate. Considering that mutations involving
stop codons are incomparable with missense mutations in
their impacts on the resource consumption, we included only
missense mutations in nERMC computation, which is also
consistent with the general practice in the field (Haig and
Hurst 1991; Freeland and Hurst 1998; Geyer and Madany
Mamlouk 2018; Xu and Zhang 2021).

Shenhav and Zeevi (2020) reported that the “square” ar-
rangement in the SGC, where nitrogen-rich amino acids are
concentrated in one section of the code table instead of being
spread over the entire table, reduces its ERMC. In fact, the
“square” arrangement causes mutations to be less likely to
increase as well as reduce the proteomic nitrogen usage.
Specifically, if a mutation from codon i to j increases the
nitrogen usage, this effect is completely offset by a reverse
mutation from j to i. Let lij, the mutation rate from i to j, be
the probability that a codon i is mutated to j in a unit time.
When lij equals lji for all codon pairs—assumed in Shenhav
and Zeevi (2020) and here—and when all codons are equally
frequent, the mutational cost measured by nERMC is zero,
because the expected numbers of forward and backward
mutations between any two codons are equal. This result
holds regardless of the structure of the code table or the
transition/transversion mutation rate ratio (j), a factor con-
sidered by Shenhav and Zeevi. In other words, under the
above condition, the SGC is equally optimized as RGCs in
nutrient conservation. Further, even when the above condi-
tion is not met but the number of mutations from any codon
i to any codon j equals the number of mutations from j to i,
the SGC is equally optimized as RGCs in nutrient
conservation.

Amino acid L
Amino acid H

80%
20%

Codon A
Codon B

A
B

              WT code

B
A

                   Mutant code
(favored by 2nd-order selection, but 
disfavored by 1st-order selection)

Mutational spectrum
20%

80% 80%
20%

Code-altering mutation
Genetic code table

20% 80%Proteome 80% 20%

Genome

FIG. 1. Schematics contrasting first- and second-order selections for resource conservation. A hypothetical organism living in a resource-limited
environment has two codons; 80% of its codons are A and 20% are B. Under the wild-type (WT) genetic code, A encodes amino acid L that has a low
cost of resource, whereas B encodes amino acid H that has a high cost of resource. Under the mutant code, A encodes H, whereas B encodes L. The
code-table-altering mutation immediately increases the proteomic resource consumption but will lower the cost of future mutations, so the code-
table-altering mutation is favored by the second-order selection but disfavored (to a greater extent) by the first-order selection for resource
conservation. Codon-amino acid relationships are indicated by solid arrows, whereas mutations are indicated by broken arrows.
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Under unequal codon frequencies (but equal mutation
rates), nERMC varies among different code tables, with an
expectation of zero across all RGCs. Regarding the SGC, if the
frequencies of codons in a genome for nitrogen/carbon-rich
amino acids are lower than those for nitrogen/carbon-poor
amino acids, for example, as a result of the resource-driven
selection aforementioned, mutations will tend to raise the
proteomic nitrogen/carbon content, yielding a positive
nERMC or a “less optimized” SGC than RGCs in nutrient
conservation.

With the above consideration in mind, we turned to em-
pirical data. For each of the 39 diverse species examined by
Shenhav and Zeevi, we computed Pearson’s correlation across
the 61 sense codons between the frequency of a codon (in the
genome) and the number of nitrogen or carbon atoms in the
amino acid encoded by the codon. For nitrogen, the correla-
tion is negative in every species (fig. 2A), confirming the avoid-
ance of codons encoding nitrogen-rich amino acids in these
species (Grzymski and Dussaq 2012). For carbon, however,
both positive and negative correlations are observed depend-
ing on the species concerned (fig. 2A). Because of the among-
gene variation in expression level, we further computed co-
don frequencies in the transcriptome instead of the genome,
and observed similar results (supplementary fig. S1A,
Supplementary Material online) from the analysis of three
bacterial and three unicellular eukaryotic species with avail-
able transcriptomic data (supplementary data S1,
Supplementary Material online). We thus predict that, com-
pared with RGCs, the SGC will not look optimized in nitrogen
conservation but may look optimized for carbon conserva-
tion in those few species with strong codon preferences for
carbon-rich amino acids.

To verify these predictions, we compared the nERMC be-
tween the SGC and 1 million RGCs generated following
Shenhav and Zeevi (2020), under the respective empirical
codon frequencies of the 39 species at a series of j values
ranging from 0.2 to 5. Indeed, under no condition does the
SGC exhibit a significantly lower nERMC for nitrogen when
compared with the RGCs (fig. 2B). By contrast, the SGC shows
a significantly lower nERMC for carbon (fig. 2C) and CN (car-
bon and nitrogen) (fig. 2D) in three species under a few j
values, although the significance levels are much weaker than
originally reported (Shenhav and Zeevi 2020). As predicted,
the SGC is generally less optimized than RGCs for nitrogen
conservation (reflected by P> 0.5 in all species in fig. 2E), and
the three species exhibiting significant SGC carbon conserva-
tion have the strongest codon preferences for carbon-rich
amino acids (red dots in fig. 2A). Furthermore, as illustrated
in figure 1, our results quantitatively verify that the stronger
the resource-driven selection on codon frequencies, the less
optimized the SGC is (fig. 2E and F; supplementary fig. S1B
and C, Supplementary Material online). Clearly, the
“optimization” of the SGC for nutrient conservation
(Shenhav and Zeevi 2020) is unrelated to the origin and evo-
lution of the SGC but a side effect of codon usage in present-
day gene sequences.

We also repeated the above analysis by considering both
positive and negative mutational costs but followed Shenhav

and Zeevi in treating mutations involving stop codons. The
results (supplementary fig. S2, Supplementary Material on-
line) are similar to those in figure 2B–D, except that the mu-
tational cost is significantly lower in the SGC than RGCs for
carbon and CN in more cases, indicating that Shenhav and
Zeevi’s observations were largely but not entirely owing to
their neglect of negative mutational costs and that mistreat-
ing mutations involving stop codons also contributed. The
reason for the latter finding is simple. Because stop codons are
selectively underrepresented in coding sequences, random
mutations under the SGC tend to increase the number of
stop codons. The same is not true under most RGCs because
the stop codons under the SGC are no longer stop codons
under most RGCs. Consequently, Shenhav and Zeevi’s con-
sideration of zero resource consumption by stop codons
tends to lower the mutational cost under SGC relative to
that under RGCs.

Our Results Are Robust to Different Classes of RGCs
When generating RGCs, Shenhav and Zeevi did not allow the
number of codons for an amino acid to deviate from that in
the SGC, departing from the common practice in testing
optimizations of the SGC (Haig and Hurst 1991; Geyer and
Madany Mamlouk 2018). To examine whether the results in
figure 2 obtained under the RGCs generated using Shenhav
and Zeevi’s method are robust, we generated another million
RGCs using the commonly used method (see Materials and
Methods); the number of codons for a given amino acid varies
from one to six among these RGCs. We then compared these
RGCs with the SGC in terms of nERMC. In none of the 39
species was the SGC significantly better than the RGCs in
nitrogen conservation (supplementary fig. S3A,
Supplementary Material online). And in only one species
(Pyrococcus abyssi) under some j values was the SGC signif-
icantly better than the RGCs in carbon (supplementary fig.
S3B, Supplementary Material online) or CN (supplementary
fig. S3C, Supplementary Material online) conservation. Again,
the apparent carbon and CN conservation of the SGC in this
species is likely a side effect of its preference for codons
encoding carbon-rich amino acids (see the second red dot
from the right in fig. 2A). Furthermore, the statistical signifi-
cance here disappears if we correct for multiple testing (due
to testing under multiple j values in multiple species).

Conclusion
As we have shown, Shenhav and Zeevi’s finding of optimiza-
tion of the SGC for nitrogen/carbon conservation was an
artifact of inappropriately calculating mutational effects; their
results no longer hold when this problem is remedied. More
importantly, we showed that lowering nERMC of the SGC is
intrinsically coupled with raising the nutrient usage of the
present-day proteome. Because selection on future nutrient
usage is much weaker than that on the present-day nutrient
usage, nutrient-driven selection for resource conservation
cannot possibly lower nERMC. In other words, optimization
of the SGC for resource conservation is theoretically
untenable.
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FIG. 2. Testing the optimization of the SGC for resource conservation using RGCs generated by Shenhav and Zeevi’s method and nERMC. (A)
Pearson’s correlation (Rcodon frequency–N/C content) between the genomic frequency of a codon and the number of nitrogen or carbon atoms in its
encoded amino acid in each of 39 species examined. Each dot represents one species. A dot for nitrogen or carbon is marked in red if one or more of the
nine examined j (transition/transversion mutation rate ratio) values yield significant results in the corresponding species in (B) or (C); otherwise it is
marked in blue. The box plot shows the distribution of the 39 data points, with the left and right edges of the box representing the first (qu1) and third
(qu3) quartiles, respectively, the vertical line inside the box indicating the median (md), and the whiskers extending to the most extreme values inside
inner fences, md61.5(qu3�qu1). (B–D) Heat map of the significance level of the optimization of the SGC for conservation of nitrogen (B), carbon (C),
or both carbon and nitrogen (D). Colors indicate the nominal P value, which is the fraction of RGCs whose nERMC is smaller than that of the SGC. (E
and F) Relationship between Rcodon frequency–N/C content and the significance level of the optimization of the SGC for nitrogen (E) or carbon (F)
conservation. The significance level of optimization is determined under j¼ 3 because j is around 3 in most species (Zou and Zhang 2021). Pearson’s
correlation between Rcodon frequency–N/C content and the significance level of optimization is �0.75 (P< 0.0001) in (E) and �0.92 (P< 0.0001) in (F).

Genetic Code and Resource Conservation . doi:10.1093/molbev/msab239 MBE

5125



Materials and Methods

Calculation of nERMC
We used the same method as Shenhav and Zeevi’s, except
that we considered all mutations that do not involve stop
codons whereas they considered all mutations that increase

the nutrient content. That is, nERMC ¼

P61

i¼1

P61

j¼1

wij½n jð Þ�n ið Þ�

P61

i¼1

P61

j¼1

wij

,

where i refers to the ith sense codon in the code table, n(i)
is the number of nitrogen or carbon atoms in the amino acid
encoded by codon i, and wij is the relative frequency of con-
version from codon i to j, which equals the frequency of
codon i when i and j differ by a transversion, the frequency
of codon i multiplied by j when i and j differ by a transition,
and 0 otherwise. The codon frequency data of the 39 taxa
were from a previous paper (Athey et al. 2017) and provided
to us by Dr Zeevi. A series of j values (1/5, 1/4, 1/3, 1/2, 1, 2, 3,
4, and 5) were considered.

Random Genetic Codes
In figure 2, the RGCs were generated using Shenhav and
Zeevi’s method. Specifically, let us first call every four codons
in the SGC that differ only at the third codon position as a
box. To create a RGC, we randomly shuffled the positions of
the boxes in the SGC with the constraint that the sole stop
codon in a box can reach one of the other two stop codons by
exactly one transition. Consequently, the number of codons
encoding any amino acid in any RGC is the same as that in
the SGC.

In supplementary figure S3, Supplementary Material on-
line, the RGCs were generated following the conventional
method (Haig and Hurst 1991). Specifically, starting from
the SGC, we kept the positions of the three stop codons
unchanged and shuffled the amino acid labels among the
20 synonymous codon sets. As a result, the block structure
of synonymous codons in the SGC is maintained but the
number of codons encoding a given amino acid can vary
among RGCs.

Given how little we know about the actual process of the
origin of the SGC, it is unclear which of the above two ways of
generating RGCs is more meaningful and whether there are
other more meaningful ways than these two ways.
Rozhonova and Payne (2021) reported that, when the original
ERMC was used, consistent evidence for the optimization of
the SGC in nitrogen conservation was found in only one of
the ten different ways of RGC generation tried.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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