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Abstract: Diet-based chemoprevention of cancer has emerged as an interesting approach to evade
the disease or even target its early phases, reducing its incidence or slowing down tumor progression.
In its basis in the essential role of angiogenesis for tumor growth and metastasis, angioprevention
proposes the use of inhibitors of angiogenesis in cancer prevention. The anti-angiogenic potential
exhibited by many natural compounds contained in many Mediterranean diet constituents makes
this dietary pattern especially interesting as a source of chemopreventive agents, defined within the
angioprevention strategy. In this review, we focus on natural bioactive compounds derived from the
main foods included in the Mediterranean diet that display anti-angiogenic activity, as well as their
possible use as angiopreventive agents.
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1. Angiogenesis and Cancer

1.1. Angiogenesis as a Regulated Process

Angiogenesis, the neoformation of vessels from an existing vascular bed, is an important process
during development; however, in adulthood most of the blood vessels remain largely quiescent,
with some physiological exceptions, such as wound healing, ovulation and tissue repair. Angiogenic
phenomena are crucial for normal physiological functions and must be carefully controlled to maintain
healthy conditions. Therefore, it is not surprising that a deregulated angiogenesis plays an essential
role in multiple pathological situations, including atherosclerosis, diabetic retinopathy, rheumatoid
arthritis, macular degeneration, psoriasis, tumor growth, metastasis, and chronic inflammation [1].

The multistep process of angiogenesis starts with the vasodilation and increased permeability
of existing vessels, endothelial cell activation and proliferation in response to angiogenic factors.
Thereafter, the degradation of the capillary wall by extracellular proteinases occurs, followed by
migration of endothelial cells, formation of new capillaries, and finally, the interconnection of the
new vessels (anastomosis) and their stabilization by recruitment of pericytes [2]. All these steps are
controlled by a tight balance, both spatially and temporally, between activators (growth factors, i.e.,
vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet-derived
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growth factor (PDGF), a plethora of cytokines, bioactive lipids, matrix-degrading enzymes, and a
number of small molecules) and inhibitors (angiostatin, interferons, endostatin, IL-12 and retinoids)
that execute their function through different signaling pathways [3].

1.2. Angiogenesis as a Hallmark of Cancer

Cancer represents a leading cause of death in the developed world. Although massive efforts
and investments have been made in cancer therapy to successfully treat localized tumors, medicine
is nonetheless often helpless in the treatment of metastatic processes. Despite the huge diversity
of oncologic diseases, all of them share some fundamental features, pointed out by Hanahan and
Weinberg as “hallmarks of cancer” [4,5]. Interestingly, one of them is angiogenesis induction, since
a persistently activated and deregulated angiogenesis is essential for tumor growth and metastasis.
It is widely accepted that proliferating tumor cells need host support, including the connection of
the so-called “angiogenic switch”. Activation of angiogenesis can occur at any step of the tumor
progression and depends on the type of tumor and its microenvironment. For instance, many tumors
start growing in an avascular phase until reaching a steady state within the proliferating cells. At this
stage, the “angiogenic switch” activates endothelial cells to undergo a series of phenotypic changes to
finally differentiate into a new vessel. Angiogenesis is therefore a rate-limiting step in progression
to solid tumor malignancy. Blood vessels supply nutrients and oxygen, and serve as a route for the
elimination of waste, contributing to exponentially enhance the tumor growth. Additionally, the new
vasculature also provides a pathway for tumor cells to escape from the primary tumor, invade nearby
tissues, move throughout the body, and colonize distant organs, giving rise to metastasis [6].

Tumor angiogenesis significantly differs from physiological angiogenesis. The newly-formed
vasculature is aberrant, with altered interactions between endothelial cells and pericytes, abnormal
blood flow, and increased permeability—all due to a chaotic and poorly-regulated expression of pro-
and antiangiogenic factors. As a consequence, tumor vessels are often disorganized, incomplete,
lacking structural integrity, and prone to collapse, resulting in areas of inadequate perfusion and
transient hypoxia [7].

Angiogenesis has been defined as an “organizing principle” in biology, allowing connections
between unrelated phenomena. Favoring therapies initially designed for the treatment of cancer could
be used to treat other non-neoplastic angiogenesis-dependent diseases, including age-related macular
degeneration, some retinopathies, psoriasis, or rheumatoid arthritis, among others [8].

1.3. Antiangiogenic Therapies in Cancer

The early hypothesis by Judah Folkman in 1971 that tumor dormancy could be maintained by
preventing neovascularization of microscopic cancers could not be clinically validated until 2004,
when the first antiangiogenic drug received the U.S. Food and Drug Administration (FDA) approval
for the treatment of cancer patients [9,10]. Although many questions still remain unanswered,
accumulating clinical evidence of antiangiogenic therapies in extending survival in cancer patients
make antiangiogenesis one of the most promising anticancer targets [11]. Antiangiogenic inhibitors
are unique cancer-fighting agents that can block the growth of blood vessels that support tumor
growth rather than interfering with the growth of tumor cells themselves. Over the last decades,
angiogenesis has become an appealing target in cancer therapy, being of great interest in the fields of
pharmacology and drug discovery. Angiogenesis inhibitors can interfere with one or various steps of
the blood vessel growth [10]. This has favored a continuous growth of antiangiogenic drugs in the
cancer field, with a myriad of molecules being evaluated in preclinical studies and several hundred
reaching clinical trials [12]. Importantly, several compounds have been already approved by the
FDA, and they are registered for the clinical treatment of different tumors (Table 1). This list includes
humanized antibodies such as bevacizumab or ramucirumab, fusion proteins such as aflibercept, and
low molecular weight molecules, including sorafenib, sunitinib, or vandetanib, among others (recently
reviewed in [13–15]).
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Table 1. Antiangiogenic drugs approved by Food and Drug Administration (FDA)/ European Medicines
Agency (EMA) for the treatment of solid tumors. Referenced from [13–15].

Drug Type Molecular Target Malignancies

Axitinib
(Inlyta) TKI VEGFR-1-3,

PDGFRβ Advanced RCC

Bevacizumab
(Avastin)

Humanized
monoclonal antibody VEGF

MCRC, NSCLC, OC, MBC, glioblastoma,
metastatic RCC, endometrial cancer,
Mesothelioma, and cervical cancers

Cabozantinib
(Cometriq) TKI VEGFR-2,

Tie2

Refractory advanced RCC,
metastatic medullary TC, and pancreatic

neuroendocrine tumors

Cediranib TKI VEGFR-1-3 OC

Everolimus
(Afinitor) TKI mTOR

RCC, gastrointestinal cancer, lung carcinoma,
advanced breast cancer, pancreatic

neuroendocrine tumors (PNETs), and
subependymal giant cell astrocytoma

Lenalidomide
(Revlimid) Amino acid VEGF, bFGF Myeloma (myelodysplastic syndrome (MDS))

and mantle cell lymphoma

Levantinib
(Lenvima) TKI

VEGFR-1-3,
PDGFRα,
FGFR-1-4

TC, HCC, and RCC

Pazopanib
(Votrient) TKI

VEGFR-1-3,
PDGFRβ,
FGFR-1-2

Metastatic STC and advanced RCC

Ramucirumab
(Cyramza)

Human monoclonal
antibody VEGFR-2 MCRC, NSCLC, and gastric adenocarcinoma

Regorafenib
(Stivarga) TKI

VEGFR-1-3,
PDGFRβ,
FGFR-1-2

Chemo-refractory MCRC, unresectable HCC,
and GIST

Sorafenib
(Nexavar) TKI VEGFR-2,

PDGFRβ
Advanced RCC, metastatic differentiated TC,

and unresectable HCC

Sunitinib
(Sutent) TKI VEGFR-1-2,

PDGFRσ/β
Metastatic RCC, gastrointestinal stromal

tumors, and pancreatic neuroendocrine tumors

Thalidomide
(Synovir, Thalomid) Amino acid VEGF, bFGF Multiple myeloma

Temsirolimus
(Torisel) TKI mTOR RCC

Vandetanib
(Caprelsa) TKI VEGFR-2 Unresectable or metastatic TC

Ziv-Aflibercept
(VEGF-Trap)

(Zaltrap)

Fusion protein
(VEGFR chimera)

VEGF-A/B,
PlGF MCRC

VEGF (vascular endothelial growth factor), VEGFR (vascular endothelial growth factor receptor), bFGF (basic fibroblast
growth factor), FGFR (fibroblast growth factor receptor), PDGFR (platelet-derived growth factor receptor), mTOR (mammalian
target of rapamycin), PlGF (placental growth factor), TKI (tyrosine kinase inhibitor), MCRC (metastatic colorectal carcinoma),
NSCLC (non-small cell lung cancer), OC (ovarian cancer), MBC (metastatic breast cancer), RCC (renal cell carcinoma), HCC
(hepatocellular carcinoma), GIST (gastrointestinal stromal tumor), TC (thyroid carcinoma), STC (soft tissue carcinoma).

Clinical data have shown that angiogenesis inhibitors appear to be most effective when used
in combination with other antiangiogenic or traditional anticancer therapies [16], probably due to a
“normalization” of tumor vasculature that could help drugs to penetrate the mass and to function more
effectively [17]. Nowadays, the use of antiangiogenic strategies is being actively explored to increase
the effectiveness and diminish the risk of immune-related adverse effects of immunotherapy, a major
therapeutic modality that is revolutionizing the treatment of cancer [18].
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2. Angioprevention

In the last decades, many research efforts have focused on cancer chemoprevention, a concept
firstly defined by Michael B. Sporn in 1976 as the use of natural, synthetic, or biologic agents to
prevent, suppress, or reverse tumor progression [19]. Whereas early detection of cancer is a broadly
accepted approach, cancer chemoprevention is still a matter of debate in the scientific community,
mainly due to the controversial results obtained in some reported preventive interventions [20]. Cancer
chemoprevention approaches are based in the interference of one or several of the hallmarks of
cancer-using drugs that could slow down the initiation and progression of tumors. In this context,
the concept of angioprevention, firstly coined by Adriana Albini and colleagues, arose as the prevention
of cancer by inhibition of tumor angiogenesis [21]. Angioprevention applies angiogenesis inhibition to
those predisposing conditions, including chronic inflammation, pre-neoplastic or hyperplastic lesions,
and microscopic tumors, so that modulation of the tumor microenvironment could help the host
defense systems to more efficiently avoid the development of clinically detectable tumors [22].

There are different levels at which the cancer preventive action could be implemented, depending
on the targeted population (Figure 1) [23].
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Figure 1. The three levels of cancer chemoprevention. The figure represents the three levels at which
cancer preventive action could be implemented, showing the targeted population, the main goals, and
the angiopreventive strategies at each level.

The primary prevention stage is focused on decreasing the incidence of disease in a broad healthy
population, mainly by reducing the exposure to carcinogenic factors or by increasing the individuals’
resistance to them. Possible interventions include nutritional recommendations, dietary supplements,
and natural inhibitors of angiogenesis, which could help to stop early events in tumorigenesis.
The primary preventive agents group also includes all supplements able to induce the intrinsic
properties that suppress blood vessel formation by endogenous angiogenesis inhibitors present within
the host microenvironment (endostatin, thrombospondin-1, angiostatin, and many others) [2].

Secondary prevention is directed at reducing the mortality from a particular cancer in higher-risk
populations, with actions focused on early detection and treatment in the subclinical stages of
the disease before symptoms appear. The high-risk population is composed of individuals with
genetic abnormalities, usually associated with their lifestyle, specific syndromes, or family history.
Improvement in the screening programs and the diagnostic tests will facilitate the early detection
of tumors or pretumoral lesions. Inhibitors of angiogenesis may provide a valuable tool to prevent
the growth of undetectable primary tumors in this population, a concept that was implicit in
Judah Folkman’s visionary idea [9]. For secondary prevention of cancer, a number of natural
or synthetic antiangiogenic compounds are available, including fumagillin, fumagillol, genistein,
or difluoromethylornithine, among many others [10]. Because of the long-term nature of the earlier
preventive strategies, these compounds should be fulfilled with some premises, namely minimal
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toxicity, low cost price, and capability to promote the physiological anti-tumoral responses of the
tumor microenvironment [22].

Tertiary prevention is directed to cancer patients in more advanced stages of the disease and
is aimed at improving the oncologic treatment results, their survival rate, and their quality of life.
Preventive actions at this level include prevention of recurrence of a pre-existing cancer and the
development of new secondary tumors. In this scenario, an aggressive and sustained chemopreventive
approach may be required, as tumor cell dissemination is likely to exist. Tertiary prevention could
include antiangiogenic cancer agents already approved by the regulatory agencies (Table 1), and others
under clinical trials, used either along or after the treatment in order to prevent a relapse. In any case,
more sustainable and less aggressive antiangiogenic strategies, such as those used for primary and
secondary prevention, could also be of application for cancer patients in order to halt the growth of
those undetectable microscopic metastasis that could remain after primary tumor resection.

Increasing evidence supports the angioprevention approach in preclinical models, as well as in
epidemiological and clinical intervention studies in humans [24]. The availability of antiangiogenic
molecules in dietary sources suggests that a rationally designed antiangiogenic diet could be a natural
and cost-effective strategy for cancer prevention [25].

3. The Mediterranean Diet: A Cultural Heritage of Humanity

The influence of diet and diet components in health is currently an open study question. Among
the known dietary models, the Mediterranean diet (MD) stands out. In as early as 1980, Ancel Keys
reported in his Seven Countries Study that the MD was associated with lower risk of major chronic
diseases and highest life expectancies [26]. Extended from centuries in the civilizations along the
Mediterranean coast, the MD is mainly characterized by the general intake of fruits and vegetables,
legumes, cereals, dried fruits, and nuts, together with a low consumption of red meat, low/moderate
intake of dairy products, and moderate/high consumption of fish, seasoned by the daily intake of a
low quantity of red wine with meals [27]. Although specific MD components exhibit some differences
depending on the country, all the observed variants share a common component, that is, the use of
virgin olive oil as main addition fat. However, diet components are not the only elements that define
the MD, as this ancient dietary pattern—transmitted through generations—includes social and cultural
aspects that make it a marker of identity of people who live in the Mediterranean basin, up to the point
that the MD was included in 2013 in the Representative List of the Intangible Cultural Heritage of
Humanity of UNESCO (United Nations Educational, Scientific and Cultural Organization) [28].

Despite the extended and ancient tradition of the MD in Mediterranean countries, in the last
decades, the adherence to this diet has experienced a marked decline, turning to a dietary pattern closer
to the western diet model (essentially the nemesis of MD, mainly characterized by the high intake of
saturated fats, highly processed foods, regular consumption of red meat, high presence of added-sugar
products, and low presence of vegetables, fruits, and fiber [29,30]). Suggested explanations of this
so-called “westernization” process point to a rise in the availability of non-Mediterranean food products,
together with socioeconomic factors such as the increasing prices of typical products of the MD [31,32].
Unlike this observed negative tendency, the evidence of the health benefits derived from the MD has
sparked the interest of the scientific community. Indeed, MD adherence is related to a lower incidence
of cardiovascular diseases, as was firstly reported in the Seven Countries Study and confirmed later by
many other studies [33–37]. Besides its cardioprotective effects, MD has been associated with a lower
risk of certain types of cancer and a decreased total cancer mortality [38–41], although a higher number
of studies are needed to undoubtedly establish this relationship. Indeed, a recent exhaustive umbrella
review of meta-analyses of observational studies and randomized trials evidenced that adherence to
MD is related to a reduction in cancer incidence, with its role in overall cancer mortality still weakly
suggested by current data [42].
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The precise molecular mechanism responsible for the effects of MD in health is currently under
research. At a molecular level, MD components include a high number of bioactive compounds, with it
being difficult to define the precise contribution of any of them. In general, it has been suggested
that the combination of components of the diet essentially exert a complex common role in reducing
inflammation and oxidative stress, therefore counteracting the progress of several malignancies,
including cardiovascular diseases and cancer [43]. It is noteworthy that MD adherence has revealed a
protective role against these and many other of the most prevalent diseases [42], connecting this dietary
pattern to chemoprevention. The cardioprotective role of MD is rather well defined, since its beneficial
influence on traditional atherosclerotic and cardiovascular risk factors has been proven [44–47].
In contrast, the chemopreventive effect of this dietary pattern on cancer is still misunderstood, although
encouraging studies point to the risk-reducing effect of the MD on certain types of cancer, as is
the case of breast and colorectal cancer [39,48–51]. In this context, angioprevention is an important
concept to take into account, since angiogenesis prevention through bioactive compounds present in
the MD components could explain in part the chemopreventive effect of this diet model in cancer.
By extension, angioprevention derived from the MD would be interesting in the prevention of other
angiogenesis-dependent diseases, such as diabetic retinopathies or atherosclerosis. In this review, we
propose an angiopreventive role of some of the most distinctive components of MD, based on their
content of bioactive compounds exhibiting antiangiogenic properties.

4. Olive Oil as a Source of Antiangiogenic Molecules

Despite the differences in the components of MD depending on the country, the use of olive oil in
cooking and seasonings could be considered the most remarkable common denominator of the diet.
It is noteworthy that the health effects of olive oil in several pathologies have been long recognized [52].
Olive oil is defined as oil extracted from the fruit of olive trees (Olea europaea sativa). Depending on the
degree of processing, olive oils can be classified into different categories. Virgin olive oils are obtained
solely by mechanical means that do not lead to alterations in the oil, with extra virgin olive oil being the
one of highest quality. Oils simply labelled as “olive oil” have normally been subjected to a refinement
process [53].

Olive oil contains a complex mixture of different types of compounds, whose proportion will
vary depending on the type of olive, maturation, growing conditions, storage, extraction method,
and refinement degree [53–55]. In general, olive oil components fall into the saponifiable fraction
(98–99% w/w) or the unsaponifiable fraction (1–2% w/w). The saponifiable fraction consists mainly of
triglycerides, although diglycerides, monodiglycerides, and free fatty acids are also found in a much
smaller proportion. The main triglyceride fatty acid in this fraction is oleic acid, representing 55–83%
of the total fatty acid content. In the unsaponifiable fraction, a greater diversity of compounds are
found, responsible for stabilizing and protecting the olive oil integrity, preserving its organoleptic
characteristics [56]. In this fraction, mainly hydrocarbons, tocopherols, pigments, sterols, triterpene
acids, volatile compounds, and phenolic compounds are included. Among them, phenolic compounds
of olive oil (including simple phenols, flavonoids, secoiridoids, and lignans) have shown interesting
biological activities [55,57]. Extra virgin olive oil shows the highest content of phenolic compound,
which are almost absent in refined oils as they are lost during the refinement process [58].

Although traditionally the health effects of olive oil were attributed to its high content in oleic
acid, nowadays a high number of scientific studies has demonstrated that these effects must be
also attributed to some minority compounds of olive oil, especially those included in the phenolic
fraction [59]. Among other multiple biological activities, antiangiogenic properties have been reported
for some compounds present in the olive oil, shown in Figure 2 and presented below.

4.1. Oleuropein

Oleuropein, a secoiridoid present in olive oil, has been proposed to be a chemopreventive agent,
based on its capability to modulate several oncogenic signaling pathways [60]. Regarding angiogenesis,
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it inhibits VEGFR-2 autophosphorylation at specific sites (Tyr951, Tyr1059, Tyr1175 and Tyr1214),
suppressing the VEGF-induced proliferation and migration of macrovascular and microvascular
human endothelial cells, as well as their morphogenic differentiation into tubular-like structures in
Matrigel [61]. The antiangiogenic activity of this compound could be associated with the inhibition
of PMA-induced COX-2 expression, and the decrease in MMP-9 protein release and gelatinolytic
activity [62].
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During olive ripening, the enzyme β-glucosidase transforms oleuropein into oleuropein aglycone,
which by hydrolysis renders elenolic acid and hydroxytyrosol, an interesting bioactive compound that
is discussed below.

4.2. Hydroxytyrosol

Hydroxytyrosol (2-(3,4-dihydroxyphenyl) ethanol) and tyrosol (2-(4-hydroxyphenyl) ethanol) are
the most abundant simple phenols contained in olive oil, also being the major phenolic constituents of
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wine. Both compounds derive from the natural hydrolysis of the aglycone form of oleuropein and
ligstroside, respectively, during olive maturation. In addition to other biological activities, including
antitumoral, antiinflammatory, cardio-, and neuroprotective activities, hydroxytyrosol has been shown
to inhibit angiogenesis in vitro and in vivo [63–67]. In vitro assays evidenced that hydroxytyrosol is
able to inhibit the endothelial cell growth, migration, and tubular-like structures formation. The effect
on the endothelial proteolytic balance was demonstrated by a decrease in the release of MMP-2
and MMP-9 by endothelial cells. Ex vivo (rat aortic ring) and in vivo (CAM) angiogenesis assays
supported the antiangiogenic activity of hydroxytyrosol [66], which could be related to the inhibition
of COX-2 and VEGFR-2 phosphorylation [61,67]. Recently, the antiangiogenic activity of synthetic
molecules derived from hydroxytyrosol has been described, showing that chemical modifications in
the original molecule may improve the bioactivity of the natural compound, therefore reinforcing their
utility as angiopreventive compounds [68]. In contrast with the antiangiogenic activity described for
hydroxytyrosol, the closely related compound tyrosol, also present in olive oil, did not show capability
to inhibit angiogenesis in vitro [66].

4.3. Triterpene Acids

Pentacyclic triterpenes, such as betulinic, oleanolic, ursolic, and maslinic acids, are present
in olives, olive tree leaves, and virgin olive oil. There is a large amount of literature that clearly
illustrates the significant anti-neoplastic effects of triterpenes, exhibiting multiple biological and
pharmacological properties.

Betulinic acid inhibited in vitro the bFGF-induced invasion and the tubular-like structure formation
of bovine aortic endothelial cells (BAECs) [69]. This activity has been related to the activation of the
proteasome-dependent degradation of the transcription factors, specifically protein Sp1, Sp3, and Sp4,
which also regulate VEGF expression [70].

Oleanolic acid, also present in several traditionally-used plants used to treat cancer, is considered
to be a chemopreventive compound, probably due to its capability to suppress multiple molecular
targets involved in both the development and progression of cancer [71]. Oleanolic acid inhibits
angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways, which could
be one of the underlying mechanisms of its antitumoral effect [72]. Inhibition of VEGFR-2 signaling
pathway has been recently linked to the antiangiogenic activity of this compound [73].

Ursolic acid antitumor activity has long been recognized, probably being responsible for the
anticancer properties of some plants used in Chinese traditional medicine. The antiangiogenic activity
of ursolic acid was evidenced by the early observation that it interfered several steps of the angiogenic
process in vitro [74], later being characterized as an inhibitor of multiple signaling pathways controlling
cancer growth and angiogenesis [75], including that of HIF-1α [76]. In addition, studies of the
ursolic acid biodisponibility after oral administration in mice, and the toxicity, pharmacokinetic, and
pharmacodynamics of liposomal ursolic acid in humans have shown promising results, supporting its
use in cancer chemoprevention [77]. Extensive effort is being devoted to the synthesis of more effective
ursolic acid derivatives with improved chemopreventive potential [78,79].

Maslinic acid, aside from its anti-oxidant, anti-inflammatory, and anti-viral activities, exhibits
significant anticancer and antiangiogenic properties that could be mediated by the decrease in the
expression levels of NF-κB-regulated genes. These include genes involved in tumor cell proliferation
(Cyclin D1, COX-2, and c-Myc), apoptosis (Survivin, Bcl-2, Bcl-xl, XIAP, and IAP-1), invasion (MMP-9
and ICAM-1), and angiogenesis (VEGF) [80].

The pharmacological relevance of all the aforementioned activities of the natural triterpenes
found in olive oil has fueled the interest either in the synthesis of new synthetic derivatives with
higher potency and efficacy, or in the development of new delivery approaches that could increase the
therapeutic potential of those compounds [81,82], which could be better used in the angioprevention
of cancer.
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4.4. Other Antiangiogenic Compounds Present in Olive Oil

The antineoplastic properties of some other compounds found in olive oil have been described,
many of them also exhibiting antiangiogenic activities. They include flavonoids, carotenoids, vitamin E,
diterpenoids, and sterols (Figure 2).

Taxifolin, a flavanonol (flavonoid) present in olive oil, inhibits the in vitro formation of tubular-like
endothelial cell structures on Matrigel, as well as the in vivo formation of new blood vessels in the
CAM and the murine dorsal skinfold chamber models [83]. Mechanistically, the antiangiogenic activity
of taxifolin could be due to the inhibition of the autophosphorylation of several tyrosine residues in
VEGFR-2 [61].

Carotenoids are C40 tetraterpenoids, a widely distributed group of lipid-soluble pigments
found in vegetables and fruits. Olive oil contains several types of carotenoids, with lutein and
β-carotene being the main compounds present. The antiangiogenic potential of β-carotene has
been demonstrated by means of the rat aorta ex vivo and murine in vivo assays. This pigment
has been described to inhibit—in vitro—endothelial proliferation, migration, and tube formation.
β-Carotene downregulates the expression of MMP-2, MMP-9, prolyl-hydroxylase, and lysyl-oxidase,
and upregulates the expression of the tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2 [84].
Dietary lutein inhibits mammary tumor growth by induction of apoptosis in tumor cells, and inhibition
of angiogenesis [85]. Since lutein/zeaxanthin is the eye macular pigment, an adequate intake of
lutein-rich foods could also be recommended to the general population in order to reduce the
progression of age-related macular eye disease and cataracts [86].

Vitamin E now refers to eight different isoforms that belong to two categories, tocopherols
(four saturated analogues, α, β, γ, and δ), and tocotrienols (four unsaturated analogues), with all these
compounds beiing found in virgin olive oil [87]. Tocotrienol, but not tocopherol, inhibits both the
proliferation and tube formation of BAECs. The most active compound is δ-tocotrienol, which inhibits
proliferation, migration, and tube formation of human endothelial cells at low micromolar doses,
whereas similar doses of α-tocopherol did not show any effect [88,89]. Mechanistically, downregulation
of VEGF expression, suppression of VEGFR-2 signaling, and activation of apoptosis in endothelial cells
could be behind the antiangiogenic activity of this compound, confirmed in vivo by the CAM and the
Matrigel plug assays [87,89,90].

Although less characterized, a putative antiangiogenic potential for the acyclic diterpenoid
phytol, and campesterol and β-sitosterol—two components of sterol fraction of olive oil—has been
suggested [91–93].

5. Antiangiogenic Polyphenols from Fruits and Red Wine

The MD is characterized by a high consumption of fruits and vegetables. It may also include
having a glass of wine with lunch every day—mainly red wine, which has been shown to exert a
positive influence upon health. Several non-alcoholic components of wine, mainly polyphenols, which
are also present in grapes and other fruits, may be responsible for a considerable part of the reported
cardioprotective effects of a moderate wine intake [94]. Red wine polyphenolic compounds also exhibit
antitumoral activities, which could be, at least in part, mediated by their antiangiogenic activity [95].
Some of these compounds are presented here (Figure 3).

5.1. Resveratrol

Resveratrol (3,4′,5-trans-trihydroxystilbene) is a non-flavonoid polyphenol contained in the skin of
red grapes, but also found in peanuts and berries. It is probably the most studied red wine polyphenol,
and it presents a clear antiangiogenic activity mediated by the inhibition of VEGF expression in tumor
cells and by suppressing the endothelial cell response to this angiogenic factor [96,97]. Unlike this
antiangiogenic role of resveratrol in cancer, this compound has been described as proangiogenic
in some diseased contexts with defective vascularization [98–100]. This dual effect of resveratrol
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could be due to a dose-response activity, since high concentrations of resveratrol induce angiogenesis,
whereas low doses are antiangiogenic [101]. The exact mechanisms of the antiangiogenic activity of this
compound are not yet completely unraveled, although the modulation of the VEGF/VEGFR-2 pathway
through several axes (HIF-1α and GSK3b/β-catenin/TCF) could be in the basis of this effect [102–104].
In vitro studies show that trans-resveratrol is the most active stereoisomer [105]. Because of the
pharmacological interest of resveratrol, derivatives with improved antiangiogenic activity have been
synthetized [106].
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5.2. Piceatannol

Piceatannol (3,3′,4,5′-tetrahydroxystilbene), a natural occurring stilbene found in grapes
and red wine, is a metabolite derived from resveratrol through the activity of the cytochrome
P4501B1 enzyme [107]. This compound confers cardiovascular disease protection, preventing
atherosclerosis [108], as well as exhibiting anti-aging, anti-inflammatory, anti-diabetic, and anti-tumoral
activity [109]. Focusing on its antiangiogenic effects, piceatannol was found to inhibit the in vitro
tubular-like structure formation by endothelial cells, most likely by the inhibition of the spleen
tyrosine kinase [110]. Piceatannol was also found to decrease the levels of some pro-angiogenic and
pro-lymphangiogenic factors, such as VEGF-A, VEGFR-2, VEGF-C, and LYVE-1, through modulation of
NF-κB and STAT3 transcription factors in breast cancer in vivo, and diminished macrophage infiltration
in tumor tissue via attenuating the MCP-1 and M-CSF chemoattractants [111].
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5.3. Fisetin

Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a bioactive flavonol found in wine, as well as in several
fruits (strawberries, apples, mangoes, persimmons, kiwi, and grapes), vegetables (tomatoes, onions,
and cucumbers) and nuts. This compound exhibits a multiple bioactive role in chronic diseases,
showing anti-inflammatory, antidiabetic, antioxidant, antitumorigenic, antiinvasive, antiangiogenic,
neuroprotective, and cardioprotective effects [112]. The inhibition of in vivo and in vitro angiogenesis
by this compound suggests its angiopreventive potential [113]. Fisetin has been reported to decrease
ADAM9, a disintegrin and metalloproteinase implied in tumorigenesis and angiogenesis, with this
reduction being related to the inhibition of migration and invasion in glioma cells [114]. Indeed, fisetin
diminishes VEGF expression in lung adenocarcinoma cells via a HIF-1α independent mechanism [115].
Inhibition of migration and invasion has also been seen in melanoma cells through reduction of MAPK
and NFκB signaling pathways, and could be related to the observed disruption of angiogenesis in
xenograft melanoma tumors [116,117]. However, the effects of fisetin are not exclusive to tumor cells,
since this flavonoid causes microtubule stabilization in endothelial cells [118], that could be, at least
partially, the cause of the observed inhibition of migration and tube formation of endothelial cells
in vitro, and of the reduction on microvessel density in lung adenocarcinoma tumors [119].

5.4. Delphinidin

The antiangiogenic activity of delphinidin (3,3′,4′,5,5′,7-hexahydroxyflavylium), an anthocyanin
present in red wine and in many pigmented fruits and vegetables, has been clearly demonstrated
by a number of in vitro assays showing inhibitory effects on proliferation, migration, and tube
formation by endothelial cells. This activity was confirmed in vivo by the CAM and the Matrigel
plug models [120,121]. This activity has been linked to a blockade of VEGF and PDGF-signaling
pathways [121,122], although recent results have indicated that it could be also mediated by inhibition
of HIF-1α and VEGF expression in tumor cells [123].

5.5. Myricetin

Myricetin (3,3′,4′,5,5′,7-hexahydroxyflavone) is a flavonoid found in red wine and grapes, onions,
and berries, with an interesting potential in chemoprevention of skin cancer [124]. With a similar
chemical structure to that of delphinidin, its role as an angiogenesis inhibitor has been studied in
different cancer types, being reported to inhibit the PI3-K/Akt pathway, both in tumor and endothelial
cells [125]. Moreover, in a mouse model of skin tumorigenesis, myricetin inhibited UVB-induced
angiogenesis, decreasing VEGF, HIF-1, MMP-2, MMP-9, and MMP-13 expression [126,127].

6. Other Components of the MD with Angiopreventive Potential

6.1. Fish

One of the characteristics of the MD is the high intake of oily cold-water fish, including sardines,
tuna, mackerel, and anchovies. These all are known to contain high amounts of omega-3 fatty
acids—long-chain polyunsaturated fatty acids with the first double bond three carbons from the methyl
end of the chain. Humans cannot desaturate this double bond, and hence omega-3 fatty acids are
essential and must be included in the diet, with their consumption being advisable instead of that of
omega-6 fatty acids in order to prevent the onset of several types of cancer [128–130].

The beneficial effects of omega-3 fatty acids could be related to their inhibitory effects on
angiogenesis, either by a direct antiangiogenic activity, or by a reduction of the levels of angiogenic
factors and their receptors. In this regard, eicosapentanoic acid and derivatives have been shown
to inhibit some angiogenic characteristics, such as tube formation, migration, metalloproteinase
expression, and VEGFR-2 activation in vitro [131,132]. Docosahexanoic acid derivatives were also
able to inhibit angiogenesis in vitro and in vivo [133]. Enzymes from the arachidonic acid metabolic
pathway seem to be essential for the antiangiogenic activity of polyunsaturaled fatty acids [134,135].
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In addition, dietary omega-3 diminished VEGF levels in several in vivo models of cancer [136],
which is in agreement with the decreased levels of circulating VEGF observed in healthy volunteers
after an omega-3 rich diet [137]. Furthermore, beneficial effects of omega-3 fatty acids in rats with
2-4-6-trinitrobenzen sulfonic acid (TNBS) induced colitis has been related to the downregulation of
VEGFR-2 [138].

6.2. Tomatoes

As a consequence of Christopher Columbus’s voyages, novel foods from the New World were
incorporated into the MD, including tomatoes (Solanum lycopersicum). Nowadays, tomatoes are
essential in Mediterranean cuisine, being highly consumed either raw, in salads, or in cold soups
such as the refreshing and tasty Andalusian gazpacho, or cooked as an essential ingredient of sauces
and other meals. Increasing evidence supports a correlation between tomato consumption with a
reduced risk of cardiovascular diseases and cancer [139,140]. Tomato is an important source of vitamin
C, potassium, folic acid, and carotenoids, such as lycopene. The postulated cancer chemopreventive
potential of lycopene [141–144] (Figure 3) could be reinforced by the use of this compound in
angioprevention. Lycopene inhibits angionesis in vitro and in vivo at a concentration that should
be achievable by dietary means [145]. This activity has been related to the MMP-2/uPA system
inhibition through VEGFR-2-mediated PI3K-Akt and ERK/p38 signaling pathways [146]. Aside from
lycopene, cystine-knot miniproteins present in tomato fruit (TCMPs) are now being postulated as
useful inhibitors of angiogenesis. These proteins, present in mature tomato fruits, display resistance to
gastrointestinal proteolytic attack and resistance to industrial processing [147]. Their antiangiogenic
activities, demonstrated in vitro by the inhibition of endothelial tube formation and migration, as well
as in vivo by using a zebrafish model, suggest that these proteins, along with lycopene and other
antioxidants, may confer beneficial effects to tomato dietary intake [148,149].

6.3. Dairy Products

At a low level, the consumption of dairy products is included in the MD. These dairy products
are, according to the ancient MD, mainly yoghurt (usually strained, a procedure that decreases lactose
and increases protein content) and soft white fermented cheese (feta cheese in Greece or myzithra in
Crete), with full-cream goat and sheep milk consumption being reserved for children [150]. Some
components of milk have been studied in the context of angiogenesis modulation and chemoprevention
of cancer, especially proteins and peptides [151,152], suggesting that milk components could play
a role in angiogenesis inhibition and hence in angioprevention. In particular, the bovine milk
proteins lactoferrin and lactoferricin (a pepsin-generated peptide derived from lactoferrin) have been
described as angiogenesis inhibitors by using in vivo tumor models and in vitro approaches [153–155].
Mechanistically, both proteins seem to exert a similar activity by inhibiting the VEFG-A165-mediated
angiogenesis in vivo [155,156]. Although these milk components support the potential role of dairy
products in angioprevention, this property is not still well defined, as other proteins present in milk
have shown proangiogenic activity. In particular, angiogenin-2, present in bovine milk and serum,
has shown a proangiogenic effect in vivo using the CAM model [157]. Lactadherin (also known
as MFG-E8 (milk fat globule epidermal growth factor-8)), another bioactive milk protein, has been
described as a promoter of VEGF-dependent angiogenesis, exhibiting a protumoral role in different
in vivo models [158–160].

6.4. Beverages

Attending to beverages included in the MD, apart from the daily consumption of water and the
low intake of red wine within principal meals, the moderate consumption of coffee and herbal tea
represents an important part of the MD [150]. Coffee contains a high variety of bioactive compounds,
such as caffeine, chlorogenic acid, diterpenes, alkaloids, and polyphenols. Focusing in the potential role
of coffee as an angiopreventive beverage, some of these compounds have shown its ability to inhibit
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angiogenesis [161,162]. This is the case of kahweol (Figure 3), an antioxidant diterpene present in coffee
beans and unfiltered coffee beverages. Kahweol has been shown to inhibit key steps of angiogenesis
in vitro, showing a potent antiangiogenic activity ex vivo (mouse aortic ring assay) and in vivo
(CAM and zebrafish intersegmental vessel models) [161]. It also targeted inflammatory molecules
such as COX-2 and MCP-1 in endothelial cells. Interestingly, kahweol palmitate, the diterpene ester
derived from kahweol, maintained the antiangiogenic properties of kahweol in vitro, pointing to a
mechanism of action that involves downregulation of the Akt pathway through negative modulation
of VEGFR-2 [162]. Coffee is a highly consumed beverage worldwide, but the content of kahweol and
other bioactive compounds is variable depending on the type of coffee and its processing (filtering
of coffee is a critical step in affecting the content of kahweol). For this reason, it is important to
remark that traditionally, the coffee included in the MD is the boiled (unfiltered) Greek coffee, which is
rich in kahweol, as well in polyphenols and other antioxidants, and containing moderate amount of
caffeine [163,164]. Indeed, in the interesting Ikaria study, the consumption of this type of coffee was
associated with improved endothelial function [165].

6.5. Nuts

Other sources of bioactive compounds in the MD that are relevant to angioprevention are nuts.
The MD includes mainly almonds, hazelnuts, walnuts, pistachios, and pine nuts, which are consumed
moderately in the form of snacks, as part of cooked meals, or as nut-based desserts. The content in
nutrients and phytochemicals in nuts is variable, but in general these foods are rich in unsaturated fats,
vitamin B (folate), vitamin E (tocopherols), and polyphenols [166]. Among the key MD nuts, walnuts
are especially relevant for angioprevention, as they represent a very important source of both linoleic
and α-linolenic acid (omega-3 fatty acids) and contain significant amounts of the aforementioned
inhibitor of angiogenesis—tocopherol. The effect of linoleic acid on angiogenesis modulation is
contradictory, since both pro- and antiangiogenic roles have been described for this fatty acid in several
models [167–170]. An interesting study showed that in vivo and in vitro treatments with linoleic acid
produced an increase in the DNA methylation level of the VEGF-B promoter, which translated into
lower levels of expression of the VEGF-B gene [171].

6.6. Seasonings

Traditional seasoning in the MD includes olive oil and herbs/spices. Although the quantity of herbs
as a part of a diet is low, in the context of the MD, these traditional seasonings exhibit an interesting
potential as a natural source of compounds able to inhibit angiogenesis. One of the most commonly
used seasoning herbs in the MD is dry oregano (Origanum vulgare), which contains polyphenols in a
high proportion [172]. Of note, the antiangiogenic effect of an ethanol extract of oregano (containing
mainly phenolic acids and flavonol derivatives) was assessed in vivo and in vitro in the context of
breast cancer, showing a decrease in the expression of VEGFR-2 in tumour cells [173]. Another example
of a popular herb used in MD seasoning is rosemary (Rosmarinus officinalis), containing carnosol and
carnosic acid, two diterpenes that have been described as inhibiting angiogenesis in vitro and in vivo
by a mechanism that implies apoptosis induction in endothelial cells [174,175].

7. Conclusions

The scientific evidence pointing to the deep influence of diet on health involves an important
change in biomedical research and clinical practice. Nutrients and bioactive compounds contained
in foods have become essential players in numerous diseases at multiple levels, from initiation to
progress, opening the possibility of studying the preventive and therapeutic role of certain elements of
diet and even of specific dietary patterns. However, perhaps the main implication arising from this
evidence is that the general population, to a certain extent, can control by themselves their own health
easily by adapting their diet to a healthier model and consuming foods with bioactive compounds
that could prevent the onset of certain diseases. A better understanding of how the genetic makeup
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of an individual modulates his/her differential response to nutrients, identifying and characterizing
the gene–diet interactions, could help to optimize the individual dietary choices aimed at increasing
quality of life, health, and longevity [176]. The use of integrative nutritional biomarkers could facilitate
the achievement of “precision nutrition”, understood as personalized dietary recommendations that
could produce optimal health effects in particular individuals [177].

In this context, the MD emerges as an interesting dietary pattern because of the reported beneficial
effects of this diet on numerous pathologies, mainly cardiovascular diseases, but also diabetes,
neurodegenerative diseases, and cancer [43]. The MD represents an important source of biologically
active compounds and the preventive and therapeutic role of several of them in specific pathologic
contexts constitutes a large subject to study. Aside from the interesting individual effects of the
bioactive components of the MD, it is important to remark that these compounds usually are low-dose
components of food, so it is feasible to argue that the preventive benefits of the MD on certain diseases
could reside in the combination of foods containing different bioactive compounds that row in the
same direction. This idea is reinforced by the fact that these diet-derived compounds exhibit relative
non-toxic and safety profiles; hence, the long-term consumption of several of them in foods at the same
time would rarely represent a risk.

Angioprevention, and specifically diet-mediated angioprevention, is an emerging concept with
important consequences for the prevention of cancer and other angiogenesis-dependent pathologies [22].
The link between angioprevention and MD has been minimally explored, even though there is
clear implication of several MD components in angiogenesis inhibition, as reviewed here, which is
summarized in Figure 4. The implementation of the MD concept at the three levels of cancer prevention
would require in turn three levels of management (Figure 1). At the first level, adopting a high
adherence to a MD would imply a certain level of angioprevention in the general population; at the
second level, supplementation of the MD with specific purified components or even nutraceuticals
would lead to a reinforced preventive effect on the risk population; and finally, in the third level,
either isolated MD bioactive molecules or their derivatives could be administered as drugs to increase
therapy efficacy, diminish side effects, or enlarge the disease-free time of cancer patients. Prevention
is probably the most cost-effective long-term anticancer strategy. With increasing frequency, cancer
becomes a chronic disorder for many patients, who must be treated for a long time. In this context,
angiopreventive strategies based on the MD components could help to control the disease, with
reasonable cost and minimizing long-term toxicities.Nutrients 2019, 11, x FOR PEER REVIEW 15 of 24 
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In parallel to the growing evidences of the benefits of the MD in health, in recent years, a worrisome
tendency towards a western diet in Mediterranean countries has been assessed, with clear possible
implications in the general health status [29,30]. Hence, the importance in increasing the current
adherence of the population to the MD is a crucial point in disease prevention. Present and future
research about the molecular basis of the angiopreventive role of the MD could help to promote the
return to a healthier way of life.

8. Future Perspectives

The Mediterranean diet arises as a rich and varied source of natural antitumoral and antiangiogenic
compounds, pointing to a relevant chemopreventive potential that should be confirmed by clinical
studies. For the general population, increasingly interested in the self-control of health, the knowledge
of angiopreventive strategies based in consumption of selected foods should help to promote healthier
dietary habits, preventing the initiation and/or progression of cancer. Personalized angiopreventive
programs would be of useful application to the population with a high risk of developing cancer,
for which improvement in the screening programs and the diagnostic tests are needed. Finally, cancer
is becoming, with an increasing frequency, a chronic disorder for many patients, who must be treated
for a long period of time. In this context, angiopreventive strategies based on MD components could
help to control the disease with reasonable cost and minimizing long-term toxicities.
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