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INTRODUCTION

Food safety and security are vital to guarantee a sustainable and reliable energy source for
human. There is a recent trend of nano-encapsulating bioactive compounds from both plant
and animal sources and their utilization for various food applications (1). Nanoencapsulation
has gained special attention because of its unique feature for efficient encapsulation, enhanced
stability, and better controlled release of encapsulated materials (2, 3). Nanoencapsulation is
also applied for food packaging system with the use of biodegradable polymers reinforced with
nanofillers as a sustainable and environmentally friendly option (4). However, the incorporation
of compounds into the food packaging system at nanoscale (particle size between 1 and 100 nm)
has raised concerns on their migration and release into food matrices and the health effects lying
with the consumption of such foodstuffs. Hence, it becomes paramount to study the migration
behavior into food matrices and associated toxicity after entering the human body as well as the
biodegradability/toxicity and its role in the environment.

Several concerns on the use of nanoparticles (NPs), their release kinetics, absorption behavior in
the body, degradation kinetics and their long-term effects are uncertain and unexplored, therefore,
in-depth research is required on these aspects to understand the broader figure of the story. Hence,
we strongly recommend exploring these aspects to reveal and disseminate the underlying safety
concerns associated with the use of nano-encapsulated particles and to avoid any unfortunate and
unprecedented outcomes in the future.

ABSORPTION BEHAVIOR OF NANOPARTICLES IN THE BODY

The particles within nanometer range may behave differently within the human body with different
biological fate i.e., the levels of absorption, distribution, metabolism, excretion and potential.
The biological fate of NPs is dependent on their physicochemical properties (e.g., composition,
dimensions, interfacial properties structure and physical state) as well as the changes they undergo
while passing the gastrointestinal tract (GIT) (5). For example, the biological fate of lipid NP varies
depending on whether it is directly absorbed or normally digested by the human body (6, 7). The
smaller indigestible NPs accumulate in organs at a faster rate compared to a larger size. Besides this,
metallic (Ag and Au) and inorganic (TiO2 and SiO2) non-digestible nanoparticles are reported
to cross the layer of epithelial cells through various routes such as paracellular, transcellular, or
persorption (8). Similarly, mineralo-organic NPs formed from calcium, carbonate and phosphate
can lead to ectopic calcification and kidney stones. Further the mineral particles may be involved
in the immune tolerance against the gut microbiota and food antigens (9). The NP may be
either digested, accumulated or transferred into the systemic circulation via the blood or lymph
systems after being absorbed into an epithelium cell (10). NPs may translocate through the human
body followed by metabolization, excretion, or accumulation within certain tissues after exiting

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2021.663229
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2021.663229&domain=pdf&date_stamp=2021-04-08
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pkbiotech@gmail.com
https://doi.org/10.3389/fnut.2021.663229
https://www.frontiersin.org/articles/10.3389/fnut.2021.663229/full


Mahato et al. Nanoencapsulation and Associated Health Concerns

Graphical Abstract | Applications of nanoencapsulation for agri-food industry.

epithelial cells (6). However, an in-depth investigation is desired
to reveal the fate of direct adsorption of both indigestible and
digestible lipid NPs in humans.

Fu et al. (11) observed the toxic effects of Ag NPs after being
absorbed through the intestine to the liver of the mice when
administered orally. The Ag NPs were also reported in spleen
and liver when administered intravenously. However, with a
lower absorption rate and the NPs were finally excreted through
urine and feces. Choi et al. (12) demonstrated that non-cationic
surface charged NPs (<34 nm) could efficiently translocate from
the lungs to mediastinal lymph nodes. NPs (<6 nm) were
rather translocated rapidly from lungs via lymph nodes to the
bloodstream and finally cleared by the kidneys. Further, Gerloff
et al. (13) reported the cytotoxic with DNA damaging effects
of TiO2, SiO2, ZnO and MgO NPs along with carbon black on
human intestinal Caco-2 cells. Alterations in the microbiome
in GIT leads to various gut disorders like inflammatory bowel
diseases and metabolic syndrome (14). It is speculated that TiO2

and Ag NPsmay alter the gut microbiota (15). This is attributable
to the antimicrobial property of NPs and the production of
reactive oxygen species (ROS) (15, 16). However, further in-
depth research is required to reveal the absorption behavior and
biological fate of various NPs.

RELEASE KINETICS OF NANOPARTICLES

The release of bioactive compounds is referred to their
translocation from one site to another over a time period. Several
factors influence the release of NPs, namely (i) thermodynamic
factors; (ii) kinetic factors; (iii) chemical structure, particle size

andweight of nano-encapsulates; (iv) physicochemical properties
like volatility and hydrophobicity; (v) concentration; and (vi) oral
processing behavior (17). Release of the bioactive components
at the target site known as “Targetability” is another important
aspect of release kinetics. This can be achieved through the
utilization of liposomes, nanoliposomes or any other nanocarrier

systems. The target mechanism can be either active or passive.

For example, incorporating antibodies in the lipid carriers is a
form of active mechanism while targeting through the particle
size of the vesicles is a passive form (18, 19).

Several in vivo studies using various NPs demonstrate
hazard identification, however, caution should be taken
while extrapolating their mechanistic results for hazard
characterization and subsequent risk on human health (20).
Different NPs have been reported to trigger the release of ROS

and subsequently leading to oxidative stress and inflammation

via their interaction with the reticuloendothelial system (20).
NPs do not bind to the cell membrane but have direct access to
the intracellular proteins, organelles and DNA, thereby leading to
potential toxicity (21). Having said that, the plausible interactions
of NPs with cell components are not fully understood and need
further in-depth research. Few studies suggest that NPs may
pass the blood-brain barrier but still not clear whether it is a
generic effect or shown only by specific subgroup (22). Further,
the transfer of NPs across the placenta or via breast milk has
the potential for embryotoxicity (23). The data on distribution
behavior of NPs in the reproductive cells are insufficient
to draw any conclusion. Therefore, investigation should be
focused on repro-toxicity of NPs and their passage through the
placenta (6).
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In addition, after the release of NPs into the environment,
surface water forms on the NP’s surface creating the entry
points and dispersion into soil and soil biota. At this stage, NPs
undergo various transformations such as physical, chemical and
biological transformations (24). NPs can be bio/geo-transformed
in the soil leading to their toxicity, generation of oxidative
stress, and absorption by plants that ultimately pose alarming
concerns for human health via entering into the food chain
(25). NPs get absorbed through roots and then translocate
and accumulate to aerial parts via biotransformation and
bioaccumulation (26). These scenarios highlight the need for
in-depth kinetic studies of NPs and their potential health and
environmental concerns.

TOXICITY OF NANOPARTICLES

Among the various compounds, food-grade TiO2 is widely used
for food applications and hence the safety aspects of its NPs
should be evaluated (27). Studies suggest TiO2 NPs to be more
toxic compared to larger particles of TiO2 (28). Oral ingestion
of TiO2 (>100 nm) has a lower toxicity than TiO2 (<100 nm)
(29). A study revealed an elevated level of elemental Ti in human
blood for 6 h after intake of food-grade TiO2 (30) suggesting
easy absorption of NPs in the GIT (31). Besides this, TiO2 NPs
may lead to reproductive issues upon acute oral exposure. For
example, Philbrook et al. (32) observed fatality in pregnant mice
treated with 100 and 1,000 mgkg−1 TiO2 NPs. In addition,
the effects on cardiac and inflammatory responses (33); blood
and bone marrow system (34) were noticed in mice exposed to
TiO2 NPs.

Another aspect of toxicity lies with how NPs interact
with various food components. NPs can interact with food
components (e.g., phospholipids, sugars, nucleic acids) and
influence the absorption and release kinetics (35). Proteins
along with other biomolecules bind and trap NPs which affects
their digestion process. Similarly, carbohydrates, fatty acids and
proteins play a significant role in the uptake of Ag NPs into Caco-
2 cells where food components resulted in enhanced uptake of
NPs by 60% (36). In addition, water activity of food impacts the
release kinetics of NPs (37). pH and composition of the food also
affect the stability, dissolution, and toxicity of NPs (38). Solubility
is another crucial factor for the toxicity of NPs. TiO2 and SiO2

NPs are insoluble while Ag and ZnONPs are partially/completely
soluble in GIT fluids (37). Therefore, uptake and toxicity of
soluble NPs (e.g., ZnO NPs) are enhanced (39).

Further, the cytotoxic effects of Ag NPs via altered membrane
permeability and integrity has been observed in mammalian
cells (40). NPs entering the mammalian cells via endocytosis
are translocated to lysosomes, while NPs passing the plasma
membrane via diffusion enter the cytoplasm and are less toxic
compared to earlier (41). NPs attach to the membrane proteins,
damage mitochondria and DNA, produce ROS, alter enzyme
activity, integrity and functions of cells (40). The toxicity is
a result of Ag NPs interaction with proteins and creation of
protein corona with altered functions (42). Even the changes and
mutation in DNA may occur (43). However, toxicity varies with
the type of NPs and therefore, proper hazard analysis of all types
of NPs for food applications are essential (44).

The wide applications of nano-fertilizers and nano-pesticides
into the cultivated soils for agri-food production have concerns
for their long-term effects which needs to be evaluated (45). For

TABLE 1 | Nanoencapsulation of bioactive compounds for agri-food applications.

Bioactive compound Nanoencapsulation

technique

Wall material Application References

Vitamin B2, Vitamin C Ionic gelation Alginate/chitosan Controlled release of vitamins for usage in food

industry

(53, 54)

Satureja hortensis L.

Essential Oil (EO)

Ionic gelation Sodium

trypolyphosphate-Chitosan

As antimicrobial and antioxidant agents with

enhanced stability against adverse

environmental conditions

(55)

Curcumin Coacervation Chitosan Enhanced antioxidant activity with novel

delivery system

(56)

Glucose oxidase Electrospinning Polyvinyl-alcohol/chitosan/tea-

extract

Novel food packaging system for food

preservation

(57)

Eugenol Emulsion-ionic gelation Trypolyphosphate-Chitosan For improved thermal stability and antioxidant

activity

(58)

Oil: Medium chain triglyceride High-pressure

homogenized emulsions

and layer-by-layer shell

assembly

Modified starch- chitosan-lambda

carrageenan

Development of nanocapsules for food

industries

(59)

Lysozyme Electrospinning- layer by

layer assembly

Chitosan Preservation of pork against Escherichia coli

and Staphylococcus aureus

(60)

Lippia sidoides EO Spray drying Angico gum/chitosan For enhanced release property (61)

α-tocopherol Freeze drying Zein-chitosan Enhanced stability and protection against

environmental conditions

(62)

Lime EO Nanoprecipitation Chitosan Antibacterial properties against food-borne

pathogens

(63)
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example, it is estimated that 95% of Cu used will eventually
end accumulating with a concentration of 500 µgkg−1 (46) and
ZnO up to 16 µgkg−1 (47) in the soil and aquatic sediments.
Studies have shown NPs causing damage to the lung in rats by
the consumption of TiO2 NPs (20 nm) and Fe NPs (48). Further,
TiO2 NPs potentially damage the brain in dogs and fish (49). Both
Ag and TiO2 NPs have demonstrated cytotoxic and genotoxic
effects due to ROS generation leading to cell proliferation and
DNA damage in mice and human cells (50). Therefore, NPs
could be dangerous for both human beings and the environment.
Hence the application of nanoencapsulation and associated NPs
for agri-food application should be tackled with great care and
responsibility. The unauthorized and haphazard use of NPs can
contaminate both soil and plant systems and ultimately intoxicate
the agricultural ecosystem (51).

DISCUSSION

Nanoparticles are widely used in agriculture and food sector
for enhancing the productivity and quality of foods (52).
Despite the various positive applications of nano-encapsulated
bioactive compounds widely reported by several studies for agri-
food applications (Table 1), the associated potential risks for
human health should not be underestimated. The mechanisms
of release kinetics of nanoparticles from various formulations
and production processes need to be characterized and fully
elucidated. In addition, the knowledge gap concerning the
biological fate, distribution and accumulation of NPs in humans
raises concerns for their use and potential toxic effects (6).

The applications of NPs for food packaging can cause toxic
effects upon migration of the NPs from packaging system to the
foodstuffs (64). Since nanotoxicology and nanoecotoxicology are

novel scientific fields, therefore risk assessments are paramount
(65). In addition, the proper rules and regulations need to be
set up to check the haphazard and extensive use of NPs without
investigating the possible long-term effects on human and animal
health. The lack of information on risk assessment and proper
regulation highlights the need for further in-depth research (66).

Therefore, with these unanswered questions and valid reasons
for health and environmental concerns associated with the use of
NPs for agri-food application, we strongly advocate for in-depth
and unbiased additional research in the field to ensure safe and
sustainable agri-food products. This will further guarantee the
safety and security of food and nutrition for human and animal
health besides a sustainable environment.

CONCLUSION

As concluding remarks, there is an urgency to increase and
spread the knowledge and perception on NPs, their beneficial
applications as well as associated risk for agri-food applications
and how to tackle them to guarantee the safe, healthy and
sustainable agri-food and environment for future generations.
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