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Transient global amnesia (TGA) is a benign memory disorder with etiologies that have
been debated for a long time. The prevalence of stressful events before a TGA
attack makes it hard to overlook these precipitating factors, given that stress has
the potential to organically effect the brain. Cortical spreading depression (CSD) was
proposed as a possible cause decades ago. Being a regional phenomenon, CSD
seems to affect every aspect of the micro-mechanism in maintaining the homeostasis
of the central nervous system (CNS). Corresponding evidence regarding hemodynamic
and morphological changes from TGA and CSD have been accumulated separately,
but the resemblance between the two has not been systematically explored so far,
which is surprising especially considering that CSD had been confirmed to cause
secondary damage in the human brain. Thus, by deeply delving into the anatomic and
electrophysiological properties of the CNS, the CSD-TGA model may render insights into
the basic pathophysiology behind the façade of the enigmatic clinical presentation.

Keywords: transient global amnesia, spreading depolarization, cortical spreading depression, hippocampus,
stress, locus coeruleus, glutamate, glia

INTRODUCTION

Transient global amnesia (TGA) is an episodic memory disorder that affects the hippocampus
(Eustache et al., 1999). It typically occurs in middle-aged to elderly populations (Arena and
Rabinstein, 2015). A large proportion of TGA cases are preceded by stressful events which
may be emotional or physical (Fisher, 1982). Gender differences in these precipitating
incidents vary according to different studies, but men tend to have physical stress, while
women are more likely to experience emotional turmoil prior to attacks (Quinette et al.,
2006). Recurrence is relatively low but it may be increased in those with certain prior
conditions such as head injury or psychological disorders (Tynas and Panegyres, 2020).
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The chief complaint of TGA patients is anterograde amnesia,
which lasts up to 24 h without focal neurological signs and
symptoms (Romero et al., 2013). Anterograde amnesia manifests
as an inability to acquire new information, and patients typically
repeat the same question despite being repetitively provided
with the answer (Agosti et al., 2008). Other features include
retrograde amnesia, mainly confined to recent events that
happened prior to TGA, and/or vegetative symptoms such
as headache or nausea (Arena and Rabinstein, 2015). An
anterograde memory gap is seldom recovered, but certain
retrograde components may be regained (Eustache et al., 1999).
Several etiologies have been proposed, such as migraine, epilepsy,
ischemia, venous congestion, and glutamate toxicity (Romero
et al., 2013; Ogawa et al., 2018; Han et al., 2019). But none
of these disorders could sufficiently explain the disorder in its
entirety. As another postulated cause of TGA, cortical spreading
depression (CSD) has been found to exert a detrimental
impact on patients with critical conditions such as traumatic
brain injury (Dreier et al., 2017). It was first proposed as a
possible etiology of TGA in 1986 (Olesen and Jørgensen, 1986).
Research findings on both TGA and CSD have accumulated
over the past few decades. These two distinct conditions
seem to share many overlapping domains. Nevertheless, the
relationship between the two has not been systematically
delineated so far. In this article, mechanisms underpinning a
stress-induced locus coeruleus-noradrenaline (LC-NE)-related
CSD–TGA model will be explored for the first time, demystifying
this perplexing disorder and bridging the gap between clinical
presentation and the possible electrophysiological alterations on
a holistic perspective.

CORTICAL SPREADING DEPRESSION

CSD or spreading depolarization (SD) perturbs the homeostasis
of neurons and glial cells by increasing the levels of extracellular
K+/glutamate and intracellular Ca2+/Na+/water content,
resulting in cell swelling and unresponsive cells (Dreier, 2011).
SD has been observed in the penumbra in patients with
metabolically stressed brain tissue (Mayevsky et al., 1996).
Under experimental conditions, CSD can be triggered in normal
brain tissue by various methods including direct application
of KCl/glutamate or mechanical/electrical stimulation (Olesen
and Jørgensen, 1986; Zandt et al., 2013). By depolarizing cells to
various degrees, CSD depresses the spontaneous activity of brain
cells and induces hypoxic stress on brain metabolism (Pietrobon
and Moskowitz, 2014).

Upon neuronal activation, the neurovascular unit (NVU)
reacts by dilating the cerebral vasculature in order to meet the
increased metabolic needs of the brain (Iadecola, 2017). This
phenomenon is termed neurovascular coupling (NVC) and is
coordinated by various factors such as vasoactive substances
released from activated neurons and glial cells, contractible
pericytes, endothelial cells mediating retrograde vasodilatation,
and astrocytic end-feet wrapping around the cerebral vasculature
(Henneberger et al., 2010; Itoh and Suzuki, 2012; Mishra,
2017; Iadecola, 2017). Complex electrophysiological changes
during CSD result in unresponsive cells and neurovascular

(NV) uncoupling which manifests as decreased regional cerebral
blood flow (rCBF) by vascular unresponsiveness or even
vasoconstriction after initial depolarization-induced hyperemia,
with long-lasting hypoperfusion (Leao, 1944; Lauritzen, 1984;
Chang et al., 2010; Wainsztein and Rodríguez Lucci, 2018).

CSD–TGA MODEL

Since a large proportion of patients experience emotional or
physical exertion prior to symptoms, stress, as an initiating
factor, may trigger the onset of TGA (Griebe et al., 2019).
Stress-induced memory deficits are not rare considering
that psychogenic factors are more prominent in dissociative
amnesia (Thomas-Antérion, 2017). Focal retrograde amnesia
(FRA) features more profound memory deficits in younger
populations, while the precipitating events are more likely to
be organic, such as traumatic incidents (Stracciari et al., 2008).
Hence, TGA and FRA may share similar pathological features
with varying intensities of insults and different degrees of
hippocampal vulnerability.

Stressful events activate the central nervous system (CNS)
by working on the locus coeruleus-noradrenaline (LC-NE)
system (Berridge and Waterhouse, 2003). The LC is a pontine
nucleus rich in noradrenergic neurons which project extensively
throughout the brain, with dense projections to the entry
zone of the hippocampus-dentate gyrus (DG; Samuels and
Szabadi, 2008; Mancall and Brock, 2011). Upon receiving
stimulation from the LC-NE system, glutamatergic granule
cells in the DG amplify their impact by pairing with multiple
postsynaptic pyramidal cells and interneurons in the cornu
ammonis (CA) which is also rich in glutamatergic neurons
(Okubo and Iino, 2011). Being an effective CSD initiator,
the quantum release of glutamate, accompanied by typical
CSD constellations of substrates such as K+ and Ca2+, would
trigger CSD once it reaches the threshold concentration
(Pietrobon and Moskowitz, 2014). Thus, wide-spread existence
of LC-NE and glutamate neurons give the CSD-TGA model an
anatomical basis.

In TGA, stressful events may trigger physiological cascades
similar to those of CSD. Upon exertion, a volume release
of stress-related neurotransmitters including NE induces the
hyperexcitability of glutamatergic neurons in the hippocampus.
Depolarized neurons, interneurons, and nearby glial cells
result in the cascading mobilization of CSD initiators such as
glutamate, K+, and Ca2+. Once a certain limit is exceeded,
CSD would be initiated. Excess glutamate reaches beyond
the postsynaptic receptors through volume transmission (VT),
spreading electrophysiological cascades to nearby regions
(Okubo and Iino, 2011). Glutamate positive-feedback further
places neurons at a risk of CSD especially when buffered
from astrocytes failure (Xu et al., 2007). Normally, functional
units on astrocytes such as the K+ channels or glutamate
transporters would uptake these CSD initiators as well as other
substances to maintain a biochemical equilibrium in extracellular
space (Kandel et al., 2013). Apart from facilitating uptake,
gap junctions (GJs) also help maintain local homeostasis by
transporting solutes between cells without overwhelming them
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(Epifantseva and Shaw, 2019). Not considered to be major players
in CSD, astrocytes facilitate electrical signaling through IP3-
mediated Ca2+ waves via GJs, featuring glutamate induction
and K+ efflux (Goldberg et al., 2010; Tamura et al., 2011).
Also, if Ca2+ levels reach a certain threshold, GJs shut down
(Kandel et al., 2013). Disrupted astrocytic syncytium further
compromises astrocytic buffering, facilitating the accumulation
of glutamate/K+ and aggravating cell swelling. Both glutamate
and K+ may induce vessel constriction once their concentrations
reach a certain threshold (Seidel et al., 2016; Borgdorff, 2018).
Therefore, the direct vasoactive effects of chemical substrates
are superseded by CSD-induced NV uncoupling. Being a
neuroexcitatory chemical, glutamate may also cause a direct
toxic effect on brain cells. But, considering the naivety of TGA
lesions, there seems to be certain limitations on the impact
of the insult, which renders glutamate toxicity as the cause of
TGA unlikely because it usually leads to irreversible cell death
(Landolt et al., 1998).

The reduced release of nitric oxide (NO) caused by CSD
compromises its permissive role in vasodilating reactions to
CO2 during TGA attack (Scheckenbach et al., 2006; Hunter,
2011). The need to repolarize coupled with vasoconstriction
increases the metabolic stress which manifest itself as increased
lactate concentration on MRS in the hippocampus in TGA
patients and in those with SD-induced secondary ischemia
(Bartsch and Deuschl, 2010; Yuzawa et al., 2012; Dreier et al.,
2017). Contrary to initial depolarization-paired hyperemia and
the increased cerebral metabolic rate of oxygen (CMRO2),
CSD-induced suppression of spontaneous neuronal activity and
oligemia lead to reduced CMRO2 in mice (Shetty et al., 2012;
Yuzawa et al., 2012; Pietrobon and Moskowitz, 2014). In TGA,
decreased metabolic rate and CMRO2 have been observed in
memory-related areas on a PET scan (Baron et al., 1994;
Eustache et al., 2000).

CSD also has temporal characteristics regarding its
phasic progression. NV uncoupling causes contradictory
hemodynamics with hypoperfusion being more prominent on
SPECT during TGA attack (Tanabe et al., 1991; Fabricius and
Lauritzen, 1993). Osmotic imbalances result in swollen cells and
narrowed interstitial space, leaving abnormal restricted diffusion
on an MRI among TGA patients (Strupp et al., 1998; Dreier,
2011). Also, local cell density, topography of the gyrus, and
vascular structures confine the progression of CSD, resulting in
regional DWI lesions (Van Harreveld and Fifková, 1970; McBain
et al., 1990; Bartsch and Deuschl, 2010; Borgdorff, 2018).

Complex ion mobility underpins the slow progression of
CSD (Van Harreveld and Fifková, 1970). This feature results
in the delayed appearance of abnormal diffusion restrictions
and slow recovery from morphological alterations. As observed
in TGA, electrophysiological abnormalities such as reduced
fMRI signal or hypoperfusion on PET in memory networks
often appear during the acute phase, before the cytotoxic
oedema shows on DWI (Tanabe et al., 1991; Peer et al.,
2014). In this regard, the duration of clinical presentation is
typically less than 12 h, whereas positive DWI findings may
manifest 24–48 h after symptom onset and persist for 7–10 days
(Bartsch and Deuschl, 2010).

It has been proposed that bilateral hippocampal deficits might
be common findings if timely radiological examinations are
obtained, since amnesiac symptoms such as TGA could only
be caused by bilateral malfunctions (Peer et al., 2014; Arena
and Rabinstein, 2015). It is unlikely that both hippocampi
are simultaneously loaded with an above-threshold level of
CSD initiators every time TGA happens. But what could be
temporally contiguous enough to cause bilateral hippocampal
malfunction leading to TGA? The two hemispheres of the
human brain coordinate activity via the corpus callosum,
a white matter tract connecting the two hemispheres and
relaying reciprocal information (Mancall and Brock, 2011).
Activation and coordination among neural networks require
effective afferent input, and the lack of which may depress its
downstream connections. In the original findings of Leao, there
is a latency between depression in the CSD-targeted region and
the detectable electrical activities of the corresponding site on
the contralateral hemisphere. It may not be due to the actual
crossing of the original CSD as Leao proposed, since CSD is not
able to spread along the white matter, but may be from the lack
of effective input from the original lesions. As is the case in one
TGA study, decreased activation of memory-related networks
were detected bilaterally in all patients, but DWI lesions were
only observed in the hippocampus unilaterally (Peer et al., 2014).
The side with low activation may be due to an original attack with
comparatively less intensity compared with the other side, or it
may also be due to a smaller signal input from the contralateral
side, or both. Therefore, the malfunctions in memory networks
mentioned above suggest that electrophysiological pathology
underpins TGA pathology. But impaired neuronal connectivity
is not specific to TGA. Any type of lesion interfering with the
functionality of upstream signaling is likely to produce similar
phenomena. For example, thalamic stroke and transient epileptic
amnesia also impair the efficacy of memory circuits, displaying
similar clinical presentations like TGA (Giannantoni et al., 2015;
Takeda et al., 2020).

AMNESIA

The chief complaint of TGA is amnesia, which consists
of anterograde and/or retrograde components. Suppressed
neurons, sustained by energy deprivation, may be unable to
encode and/or store new information by impaired activity-
dependent memory formation, resulting in anterograde amnesia.

Retrograde amnesia mainly comprises ecmnesia (confined to
recent events) and may be subsequently recovered (Eustache
et al., 1999). This may reflect a retrieval problem considering
that decreased activity in the prefrontal cortex is involved
in poor memory retrieval (Zidda et al., 2019). After the
TGA attack, older memories are recovered more efficiently
than recent ones (Peer et al., 2014). Why is this? Newly
formed memories typically undergo consolidation and are highly
unstable, indicating a consolidation gradient (Bisaz et al., 2014).
Long-term potentiation (LTP) and long-term depression (LTD),
by way of gradient excitability and coactivation of both pre- and
post-synapses, contribute to synaptic plasticity (SP) and memory
consolidation in the hippocampus (Hebb, 2002; Feldman, 2012;
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Nicholls et al., 2012). Therefore, neuronal silencing during
CSD may impair plasticity by dissociating Hebbian synaptic
coactivation and by suspending on-going pulses from LTP/LTD.
It is observed that theta waves, which facilitate LTP, are altered
(slow or decreased) in TGA/migraine patients as well as CSD
animal models (Ogunyemi, 1995; Park et al., 2016; Lourenço
et al., 2017). On a biochemical level, CSD interferes with LTP
by manipulating the efficacy of glutamate receptors such as
GluN2A/B and AMPA (Maneepark et al., 2012; Hansrivijit
et al., 2015). CSD may also impair memory consolidation by
attenuating nitric oxide (NO) production since NO facilitates
LTP and LTD (Daniel et al., 1993; Zhang et al., 2002; Bon and
Garthwaite, 2003).

The maintenance of synaptic connections underlying formed
memories requires complex biochemical interactions and
distinct neuronal activities other than LTP and LTD such as
depotentiation (Neves et al., 2008). Considering the drastic
electrophysiological changes produced by CSD, other biological
processes regarding memory formation may also be influenced.
Therefore, retrograde amnesia in TGA may not be confined
to retrieval deficits, but also touches upon active processes of
neural plasticity.

RECOVERY

Recovery from CSD is not a passive process, but an active
coordination among multiple biochemical dimensions. During
CSD, since only a small amount of ATPase is affected,
additional functional units are able to be recruited to re-establish
homeostasis (Drenckhahn et al., 2012; Pietrobon and Moskowitz,
2014). Also, neurotrophic and/or anti-ischemic gene expression,
including glial fibrillary acidic protein (GFAP) and i/nNOS, are
induced during SD in ischemic tissue (Matsushima et al., 1996;
Scheckenbach et al., 2006). When the hippocampus is devoid
of energy supply, brain cells may use other metabolites such as
glutamine as alternative fuels (Amaral et al., 2011; Bernier et al.,
2020). Therefore, brain cells harness self-survival mechanisms to
try to regain homeostasis even under electrical depression, which
gives them the opportunity to bounce back to normal. Especially
when the targeted tissue has a relatively adequate energy reserve,
this coordination can be more efficient and lesion reversibility
is justified.

With the accumulation of metabolic waste in ISF, local
vasculature begins to dilate, bringing oxygenated blood to
hypoxic tissue, allowing for the repolarization of brain cells
(Grafstein, 1956; Dreier, 2011). Local homeostasis is slowly
achieved mainly by recovered functional units (pumps and
channels; Dreier, 2011). Metabolic waste is swept away by the
glymphatic system. In healthy brain tissue, depressed neuronal
activity will recover the moment CSD passes, whereas in
compromised brain tissue the electrical silencing may linger
(Lauritzen et al., 2010). As in TGA, prolonged hemodynamic
disturbances persist after the amnesiac symptoms recover,
accompanying the delayed DWI signals (Bartsch and Deuschl,
2010). This lasting NV uncoupling indicates that a TGA
hippocampus may not be in a ‘‘healthy’’ enough condition in the
first place to allow for spontaneous electrical recovery.

Additionally, TGA may present with sporadic lesions on
DWI, hypoperfusion/functional alterations in the temporal lobe
without abnormal diffusion restrictions, or the absence of
radiological abnormalities (Lampl et al., 2004; Bartsch and
Deuschl, 2010). Damage induced by CSD constitutes a graded
continuum with regard to tissue tolerance for insults (Pietrobon
and Moskowitz, 2014). Greater insults and more metabolically
compromised tissue result in more severe damage (Dreier,
2011; Hartings et al., 2020). In the case of TGA, apart from
different timing, various degrees of insult and/or the inherent
condition of brain tissue may also contribute to the variability
of radiological presentations.

VULNERABILITY OF THE HIPPOCAMPUS

The reason for selectively targeting the hippocampus is unclear.
High metabolic demands and limited energy reservation render
the human brain vulnerable to hemodynamic disturbances,
especially pyramidal cells in the hippocampus (Dugan and
Choi, 1999). The dense distribution of glutamatergic neurons
found in the hippocampal formation may add unique neuro-
excitability to this region (Tamminga et al., 2012). In humans,
graded vulnerability is observed within the hippocampus, with
CA1 being the most easily affected area regardless of the
nature of the insult (Bartsch et al., 2015). The underlying cause
is considered to be greater Ca2+ mobility in CA1, which is
the hallmark of CSD coupled with glutamate release, and the
NMDA receptor is crucial at initiating CSD (Itoh and Suzuki,
2012; Yamashima, 2016). Additionally, when facing a similar
level of depolarization, deep gray matter in the brain stem
withstands CSD better than cortical areas (Richter et al., 2008).
Thus, the unique microanatomical and biochemical composition
of the hippocampus may render CA1 a vulnerable target
in CSD.

Also, the capability of fending off homeostatic disturbances
such as one caused by CSD may be impaired by aging.
Distributed on astrocytic endplates in a polarized manner,
AQP4 is a crucial component in the glymphatic system for
transporting waste from the ISF out of the CNS (Nedergaard,
2013). This distribution pattern declines with age, impairing
the efficacy of the glymphatic system (Kress et al., 2014). Also,
CSD downregulates the glymphatic system through astrocytic
swelling, in combination with an influx of excess CSF into the
ISF due to vessel constriction, resulting in waste accumulation
and brain oedema (Schain et al., 2017; Mestre et al., 2020).
Thus, elderly people with less efficient waste disposal may be less
resilient to acute insults such as CSD. Preclinical research has
demonstrated diverse AQP4 expression in different areas of the
brain, with lower density in the hippocampus (Hubbard et al.,
2015). If this pattern is conserved in humans, the hippocampus
may face additional vulnerability in combating local metabolic
stress induced by CSD.

Not all TGA patients report stressful events, and not all elderly
individuals with stressful experiences develop TGA. It has been
proposed that certain personality traits of TGA patients may
precipitate their hyperactivity to stress, where the prevalence of
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psychological disorders are more profound among these patients
than their healthy controls (Griebe et al., 2019).

Any type of exertion, be it physical or psychological, by
targeting the basic structures of the nervous system, resorts to
a common pathway to make its biological influence. It may do
potential harm if the balance is tipped from evolutionary benefits.
It is observed that TGA patients have a HPA hyperreactivity
to stress and an elevated level of cortisol, a major player in
HPA axis activation during stress (Griebe et al., 2019). Prior
stress may also sensitize LC responsiveness to CRH which
facilitates the activation of the LC-NE system (Reyes et al.,
2006). Thus, stress may create a base for TGA vulnerability
by giving CSD initiators a higher capacity of motivation. It
has been shown that chronic exposure to stress hormones may
predispose the hippocampus to secondary insults (Sapolsky
et al., 1990). This predisposition and potential neurodegenerative
comorbidities in TGA patients (considering its late age of
onset) may increase the vulnerability of these individuals to
TGA attacks. Therefore, in these patients, the hippocampus is
susceptible to insults which would not usually cause symptoms
in their age-specific counterparts.

Long-term exposure to stressful events and cortisol is
associated with the small volume of the hippocampus (Starkman
et al., 1992). A smaller size of the hippocampus among TGA
patients has also been detected (Kim et al., 2017). Thus, the
relationship between pre-onset cortisol level with decreased
hippocampus size among the TGA population remains to
be researched, which may give a certain baseline for their
hippocampal wellbeing.

A recently proposed HPA–TGA model explored the role
of heightened cortisol secretion in response to stress as an
etiological factor of TGA by emphasizing the direct impact
of cortisol on brain tissue via blood flow (Griebe et al.,
2019). Whether or not HPA axis hyperactivity could provide
sufficient cortisol to inflict neurotoxicity on brain tissue and
why blood cortisol selectively affects the hippocampus requires
further exploration, especially considering dilution from blood,
efficient astrocytic buffering, and substrates disposal by the
glymphatic system.

Apart from a reduced volume of the hippocampus, higher
presence of pre-existing hippocampal cavities exists among

TGA patients, although these cavities are considered to be
naive (Uttner et al., 2011; Park et al., 2015). Although it is
believed that hippocampal neurogenesis occurs in the adult
human brain and stress could impair this process, there is strong
evidence that neurogenesis may not actually occur in adulthood
(Warner-Schmidt and Duman, 2006; Sorrells et al., 2018). Either
way, any pre-existing damage may place the hippocampus in
a more vulnerable position especially in people experiencing
long-term stress.

DISCUSSION

The widespread distribution of the LC-NE system and
glutamatergic neurons, the availability of chemical and
anatomical factors for CSD induction and propagation, prevalent
stress-related conditions and altered stress physiology among
TGA patients, and possibly increased hippocampal vulnerability
support the CSD–TGA model. An amount of corresponding
evidence on hemodynamic and morphological changes from
CSD and TGA research, combined with the solid conclusion that
CSD could happen in human brain tissue, indicate that CSD may
play a role in TGA.

The concept of SD spectrum disorders, including migraine,
stroke, traumatic brain injury, and other diseases with secondary
tissue damage induced by SD, has been proposed (Dreier
et al., 2017). Current technical limitations hinder validation of
the relationship between CSD and TGA. Until non-invasive
monitoring techniques become available, TGA remains an
eligible candidate for SD spectrum disorders.
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