
Mammalian circular RNAs result largely from splicing errors

Chuan Xu1,2, Jianzhi Zhang2,3,*

1Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric 
Disorders of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China

2Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 
48109, USA

3Lead contact

SUMMARY

Ubiquitous in eukaryotes, circular RNAs (circRNAs) comprise a large class of mostly non-coding 

RNAs produced by back-splicing. Although some circRNAs have demonstrated biochemical 

activities, whether most circRNAs are functional is unknown. Here, we test the hypothesis 

that circRNA production primarily results from splicing error and so is deleterious instead of 

beneficial. In support of the error hypothesis, our analysis of RNA sequencing data from 11 

shared tissues of humans, macaques, and mice finds that (1) back-splicing is much rarer than 

linear-splicing, (2) the rate of back-splicing diminishes with the splicing amount, (3) the overall 

prevalence of back-splicing in a species declines with its effective population size, and (4) 

circRNAs are overall evolutionarily unconserved. We estimate that more than 97% of the observed 

circRNA production is deleterious. We identify a small number of functional circRNA candidates, 

and the genome-wide trend strongly suggests that circRNAs are largely non-functional products of 

splicing errors.
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In brief

Circular RNAs (circRNAs) comprise a large class of mostly non-coding RNAs generated through 

back-splicing of pre-mRNAs, but the biological functions of circRNAs are largely unknown. Xu 

and Zhang provide evidence that most mammalian circRNAs are products of splicing errors and 

likely do not confer benefits.

INTRODUCTION

Circular RNAs (circRNAs) are a class of eukaryotic, endogenous, single-stranded, mostly 

non-coding RNA; unlike the regular RNAs formed by canonical linear-splicing, circRNAs 

are generated by back-splicing that covalently links a downstream splice-donor site to an 

upstream splice-acceptor site (Chen, 2016; Kristensen et al., 2019; Vicens and Westhof, 

2014). Back-splicing requires canonical splicing signals (Starke et al., 2015), uses the 

canonical splicing machinery (Kristensen et al., 2019), and competes with canonical pre­

mRNA splicing (Ashwal-Fluss et al., 2014). The length and location of circularized exons 

and the sequence content and length of the flanking introns of the back-spliced sites 

have been shown to impact circRNA biogenesis (Jeck et al., 2013; Memczak et al., 2013; 

Salzman et al., 2012; Zhang et al., 2014).

circRNAs generally include canonical exons (Zhang et al., 2016), are predominantly 

cytoplasmic (Huang et al., 2018; Salzman et al., 2012), and are exceptionally stable (Enuka 

et al., 2016; Memczak et al., 2013). High-throughput RNA sequencing (RNA-seq) coupled 
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with circRNA-specific bioinformatics has discovered numerous circRNAs (Glažar et al., 

2014; Guo et al., 2014; Ivanov et al., 2015; Jeck et al., 2013; Ji et al., 2019; Salzman et 

al., 2012; Wang et al., 2014; Westholm et al., 2014). For example, over 50% of human 

protein-coding genes have been found to produce circRNAs (Ji et al., 2019). circRNAs are 

specific to tissue (Ji et al., 2019; Xia et al., 2017), cell type (Guo et al., 2014; Salzman et 

al., 2013), developmental stage (Szabo et al., 2015; Tan et al., 2017), and even subcellular 

location (Zhang et al., 2019). For instance, many circRNAs are dynamically expressed in the 

mammalian brain and are enriched in synapses (Ji et al., 2019; Rybak-Wolf et al., 2015; Xia 

et al., 2017). Some circRNAs act as microRNA sponges (Kristensen et al., 2019; Patop et 

al., 2019). The best known example is CDR1as/CiRS-7, which carries over 70 binding sites 

for miR-7, efficiently tethers miR-7, and drastically suppresses miR-7’s activity in binding 

its mRNA targets (Hansen et al., 2013; Memczak et al., 2013). Some circRNAs bind to and 

titrate out RNA-binding proteins (RBPs) (Abdelmohsen et al., 2017; Ashwal-Fluss et al., 

2014). For instance, circMbl, derived from muscleblind (MBL/MBNL1), can titrate out extra 

MBL proteins (Ashwal-Fluss et al., 2014). Additionally, some circRNAs act as scaffolds 

to mediate the formation of complexes between specific enzymes and substrates (Du et 

al., 2016) and recruit proteins to particular locations (Chen et al., 2018). Furthermore, a 

small subset of circRNAs may take effect through their protein products resulting from cap­

independent translation (Pamudurti et al., 2017). These demonstrated biochemical activities 

can be important, although they have been found in only a tiny fraction of all circRNAs. In 

fact, a genome-wide analysis suggested that most circRNAs are neither microRNA sponges 

nor translated (Guo et al., 2014).

In the early days after the discovery of circRNAs (Hsu and Coca-Prados, 1979), these 

molecules were thought to be the product of erroneous splicing (Cocquerelle et al., 1993), 

a view that we refer to as the error hypothesis of circRNA production. However, the high 

prevalence of circRNAs, along with the demonstrated biochemical activities of a small 

number of them, has led to an alternative view that circRNAs are a large group of functional 

RNAs widely used in gene regulation (Barrett and Salzman, 2016; Chen, 2016; Ebbesen 

et al., 2017; Kristensen et al., 2019; Li et al., 2018; Memczak et al., 2013; Meng et al., 

2017; Patop et al., 2019; Qu et al., 2017; Salzman, 2016). The popularity of this view 

is reflected by a rapid growth in the interest in circRNAs; only 8 years after the report 

of circRNAs produced from hundreds of human genes (Salzman et al., 2012), the term 

circRNAs appeared in the title or abstract of over 2,900 papers in 2020 alone. We will name 

this now prevailing view the adaptive hypothesis because circRNA production is beneficial 

according to this view. The adaptive hypothesis includes the scenario of exaptation in which 

circRNAs originate as functionless molecular errors but have since been co-opted to become 

functional and beneficial today.

Despite the popularity of the adaptive hypothesis, the error hypothesis is not out of the 

question for most circRNAs. Back-splicing that creates circRNAs is a type of alternative 

splicing, which is known to be error prone (Melamud and Moult, 2009; Pickrell et al., 

2010; Saudemont et al., 2017). Hence, back-splicing as a splicing error could occur to 

the transcripts of many genes. Furthermore, the error hypothesis is not inconsistent with 

the fact that only a tiny fraction of circRNAs have demonstrated biochemical activities. 

Furthermore, it is unknown how many of these activities are selected and how many have 
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no appreciable fitness effects (Doolittle et al., 2014; Graur et al., 2013). Distinguishing 

between the error and adaptive hypotheses of circRNA production is important because 

it will shed light on the origin, function, and biological significance of this large group 

of ubiquitous RNAs of eukaryotes and guide future circRNA research. Here, we make a 

series of distinct predictions of the error hypothesis about genomic patterns of back-splicing 

and circRNAs that are not expected a priori under the adaptive hypothesis. By analyzing 

high-throughput RNA-seq data from multiple tissues of humans, macaques, and mice, we 

provide comprehensive evidence that the production of most mammalian circRNAs is due to 

splicing error and is selectively disfavored.

RESULTS

Back-splicing rates are generally very low

Under the error hypothesis, back-splicing is a splicing error, which is expected to be 

generally detrimental. Thus, natural selection should have minimized the rate of back­

splicing, which is defined as the probability that a splicing event leads to back-splicing 

instead of linear-splicing. In contrast, the adaptive hypothesis does not predict a priori a 

low rate of back-splicing because, under this hypothesis, back-splicing rates should be high 

enough to yield sufficient circRNAs for them to have functional impacts (Palazzo and Lee, 

2015).

To distinguish between the error and adaptive hypotheses, we investigated back-splicing 

rates by using a RiboMinus RNA-seq dataset from the human, macaque, and mouse (see 

STAR Methods). We focused on the 11 tissues in the dataset that are shared among the 3 

mammals to facilitate among-species comparisons (Table S1). We then identified linearly 

spliced reads, which indicate linear-splicing, and back-spliced reads, which indicate back­

splicing (see STAR Methods). We define the splicing amount of a gene by the total amount 

of back-splicing and linear-splicing of the gene. To ensure a certain level of accuracy in 

the estimation of back-splicing rates, we considered only those protein-coding genes for 

which the expression level is at least 1 transcript per kilobase million (TPM) and the 

splicing amount is at least 1 spliced read. As previously reported for this dataset (Ji et 

al., 2019), a relatively large fraction of genes show back-splicing. Among the 11 tissues, 

the median fraction of genes exhibiting back-splicing is 27.2%, 37.8%, and 25.5% in the 

human, macaque, and mouse, respectively (first column in Figure 1A). However, the median 

fraction of splice sites subject to back-splicing is only 3.9%, 6.2%, and 2.9% for human, 

macaque, and mouse, respectively (second column in Figure 1A). Most importantly, the 

median rate of back-splicing, measured by the median fraction of spliced reads that are 

back-spliced, is only 0.2%, 0.16%, and 0.04% in human, macaque, and mouse, respectively 

(third column in Figure 1A), indicating that the overall back-splicing rate is three to four 

orders of magnitude lower than the linear-splicing rate. In any tissue of any of the three 

species, even when only genes exhibiting back-splicing (i.e., back-spliced genes) in the 

tissue are considered, back-spliced reads constitute no more than 2% of all spliced reads 

(fourth column in Figure 1A). We further examined the distribution of the fraction of spliced 

reads that are back-spliced among back-spliced genes. Again, we found this fraction to be 

below 10% in human and below 5% in the other species in most genes (Figure 1B). Due to 
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the exceptional stability of circRNAs relative to linear RNAs, the actual back-splicing rates 

are likely even lower than the above estimates. Together, these observations show that the 

back-splicing rate is orders of magnitude lower than the linear-splicing rate, as expected if 

back-splicing is a splicing error.

Back-splicing rates decrease with splicing amount

Under the error hypothesis, there are at least three reasons why back-splicing is likely 

detrimental and selected against. First, back-splicing lowers the fraction of functional 

mRNA molecules. Second, it wastes materials and energy in producing and degrading 

circRNAs and possibly their protein products. Third, it may result in circRNAs and/or 

their protein products that are toxic. Under a given rate of back-splicing, the harm of 

back-splicing due to the above first cause is independent of the total splicing amount but 

that due to the second and third causes increases with the total amount of splicing. Hence, 

natural selection against back-splicing at a splice site (or in a gene) should intensify with the 

amount of splicing at the splice site (or in the gene). As a result, the error hypothesis predicts 

that the back-splicing rate should decrease with the splicing amount. In contrast, the adaptive 

hypothesis does not predict this negative correlation a priori because, under this hypothesis, 

the back-splicing rate depends on the specific function and regulation of the gene and/or the 

circRNA produced.

To distinguish between the error and adaptive hypotheses, for each (expressed and spliced) 

gene, we estimated its splicing amount by the total number of spliced reads in the gene, 

which rises with the transcript concentration of the gene as well as its number of introns. 

Because natural selection against splicing error in a gene depends on the product of the 

above two variables, we do not consider them separately. We estimated the back-splicing 

rate of a gene by its proportion of spliced reads that are back-spliced. We started by 

focusing on back-spliced genes in the human kidney. Consistent with the prediction of the 

error hypothesis, the rank correlation (ρ) between the splicing amount of a gene and its 

back-splicing rate is significantly negative (ρ = −0.63, p < 10−300; Figure 2A). Qualitatively 

similar results were observed in all examined tissues of the human, macaque, and mouse 

(Figure 2B). For comparison, we marked in Figure 2A the host genes of two functional 

circRNAs, namely, circ-ZNF609 (Legnini et al., 2017) and circ-FBXW7 (Yang et al., 2018); 

the back-splicing rates are much greater in these two genes than in most other genes of 

comparable splicing amounts.

The above correlation analysis is subject to two potential statistical problems. First, because 

the detectability of back-splicing increases with the splicing amount, both low and high 

rates of back-splicing are observable in genes of high splicing amounts whereas only high 

rates of back-splicing may be observed in genes of low splicing amounts. Consequently, a 

negative correlation between the back-splicing rate and splicing amount could have resulted 

simply from this potential detection bias. Second, because the splicing amount is used as the 

denominator in the estimation of the back-splicing rate, any measurement error of splicing 

amount can cause a spurious correlation between splicing amount and back-splicing rate. To 

avoid these potential problems, we used a supergene approach (see STAR Methods). Briefly, 

we ranked all genes by the splicing amount and grouped them into 10 bins such that each bin 
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had the same total splicing amount. We then computed the overall back-splicing rate of each 

bin by considering all genes in the bin together as a supergene. The uniformity of the total 

splicing amount among bins rids the potential problems mentioned. In the human kidney, 

the back-splicing rate of a bin decreases almost monotonically with the median splicing 

amount of all genes in the bin (ρ = −0.99, p < 10−300; Figure 2C). Similar results were 

found in all tissues of the three mammals (Figure 2D). Note that this negative correlation 

cannot be caused by potentially false signals of back-splicing created by sequencing or other 

technical errors because such errors are random and so should not occur more frequently to 

genes of lower splicing amounts. Furthermore, the negative correlation could not have been 

caused by an impact of the amount of back-splicing on the total splicing amount (e.g., under 

the hypothesis that back-splicing is a functional regulation of gene expression) because the 

former is such a tiny fraction of the latter (Figure 1) that the variation of the former has 

effectively no influence on the variation of the latter. To exclude the possibility that the 

above results are statistical artifacts, we performed a computer simulation analogous to the 

analysis in Figure 2C, except that we randomly shuffled the back-splicing rates among genes 

before the analysis. As expected, no significant correlation was observed between the overall 

back-splicing rate of a bin and the median splicing amount of the genes belonging to the bin.

Different genes differ in multiple aspects in addition to the splicing amount, and so they 

may not be comparable. To minimize the influences of potential confounding factors in 

the above analysis, we compared the back-splicing rates between paralogous genes because 

paralogs are similar in gene structure, DNA sequence, regulation, and function (Zhang, 

2013). We required the splicing amount to be at least two times different between the two 

paralogs to ensure sufficient power of the analysis. Consistent with the error hypothesis, 

for a paralogous pair, the back-splicing rate tends to be higher for the gene of a relatively 

low splicing amount. For example, in the human kidney, 75.3% of paralogous pairs show 

such a trend, which is significantly more than the random expectation of 50% (p = 1.89 

× 10−25, binomial test; Figure 2E). In the above analysis, we randomly chose two genes 

from each gene family annotated by Ensembl. To ensure that the observation in Figure 2E 

is robust, we repeated the above analysis 100 times; the significant trend in Figure 2E was 

confirmed in each of the 100 replications. Furthermore, the pattern in Figure 2E holds in 

all analyzed tissues of the three mammals (Figure 2F). Because the supergene approach 

cannot pair paralogous genes, we used a downsampling approach (see STAR Methods) to 

remove the potential statistical problems mentioned. Specifically, for each pair of paralogs, 

we randomly sampled the spliced reads from the paralog with a relatively high splicing 

amount to the number of spliced reads observed in the other paralog. Wefoundthe results 

from the downsampled data to be virtually identical to those from the original data (Figure 

2F).

The back-splicing rate correlates negatively with splicing amount across tissues

The back-splicing rate of a gene can be influenced by cis-acting elements, which are present 

on the same DNA molecule as the gene, and trans-acting factors, which are not present on 

the same DNA as the gene. In the above comparison of backing-splicing among different 

genes in the same tissue, all genes are in the same environment of trans-acting factors, 

so the among-gene variation must be caused by the variation in cis-acting elements that 
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affect splicing. Because different tissues can provide qualitatively or quantitatively different 

trans-acting factors, the back-splicing rate of the same gene may differ among tissues. 

The error hypothesis predicts that, for a given gene, natural selection against splicing error 

should intensify in the tissue where the splicing amount of the gene is higher. This should 

result in a negative correlation between the back-splicing rate and splicing amount across 

tissues for individual genes. In contrast, no such prediction is made a priori by the adaptive 

hypothesis because, under the adaptive hypothesis, the back-splicing rate of a gene in a 

tissue would depend on the specific function of the circRNA produced in that tissue.

Because the back-splicing rate is low or even zero for most genes (Figure 1B), sampling 

error would swamp the potential signal in among-tissue comparisons of individual genes. To 

circumvent this problem, we randomly grouped every 250 genes into a supergene, except for 

the last supergene that comprised the remainder of fewer than 250 genes after the grouping. 

The number 250 was chosen to ensure that each supergene contains sufficient genes with 

back-splicing and that sufficient supergenes are present to permit a meaningful statistical 

analysis. We examined the back-splicing rate and splicing amount of each supergene in each 

tissue. To allow for an among-tissue comparison of the splicing amount, we computed the 

splicing amount of a supergene in a tissue by the number of spliced reads for the supergene 

per million total reads (SRPM) in the tissue. As shown in Figure 3A for an example, the 

back-splicing rate of this particular human supergene in a tissue generally decreases with its 

splicing amount in the tissue. Indeed, in each of the three species examined, significantly 

more than 50% of supergenes show this negative correlation (numbers at the bottom of 

Figure 3B), and this trend is robust as long as supergenes are composed of at least 250 

genes. Because each supergene does not have the same splicing amount across tissues, to 

avoid potential statistical artifacts, we downsampled the spliced reads of a supergene in a 

tissue to the lowest observed level among all tissues for the supergene and then recomputed 

the back-splicing rate of the supergene in each tissue. The final results still hold (Figure 3). 

Thus, the variation of the back-splicing rate among tissues supports the error hypothesis. 

Because the among-tissue variation of the back-splicing rate is not always concordant 

among (super) genes, we infer that the variation not only is due to differences in trans-acting 

factors among tissues but also contributed by interactions between trans-acting factors of 

individual tissues and cis-acting elements of individual genes.

Back-splicing is not evolutionarily conserved

Back-splicing is expected to be evolutionarily conserved if it is beneficial; otherwise, it 

should be unconserved. Thus, a comparison between species that have been separated for 

a sufficiently long time allows differentiation between the adaptive and error hypotheses. 

To this end, we compared back-splicing between a primate and a rodent. If an orthologous 

splice-acceptor (or donor) is used in back-splicing in the same tissue of the two species, 

the acceptor (or donor) is considered shared between the two species (Figure 4A). For each 

tissue, we calculated the fraction of back-spliced acceptors in human or macaque that are 

shared with mouse. For example, in the kidney, human has 9,133 back-spliced acceptors, of 

which only 1,539 (or 16.9%) are shared with mouse. This fraction has a median value of 

17.0% in human and 12.3% in macaque across the 11 tissues examined (Figure 4B).
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Nevertheless, sharing of a spliced acceptor or donor between species may not indicate 

functional back-splicing because non-functional back-splicing could be shared by chance. 

To estimate the amount of sharing expected by chance, we first examined patterns of 

back-splicing in human (of a given tissue) by computing the relative probabilities that a 

back-spliced read mapped to a splice donor is also mapped respectively to the first upstream 

acceptor, second upstream acceptor, and so on (Figure 4A). We then used the overall 

probability distribution (Data S1) of all back-spliced reads observed in the species and tissue 

to simulate back-splicing. If n back-spliced reads were observed for a donor, we would 

simulate n back-spliced reads for this donor, but the acceptors will be randomly decided 

based on the overall probability distribution determined above. The simulation allows the 

survey of the set of acceptors expected by chance when the donors are given. We repeated 

the analysis and surveyed the set of acceptors expected by chance in mouse and then 

computed the fraction of acceptors in human shared with mouse by chance. For example, 

this value is 14.6% for the kidney. Hence, the observed fraction of shared acceptors is only 

16.9 − 14.6 = 2.3 percentage points above the chance expectation (Figure 4C), indicating 

that most acceptors shared between human and mouse are by chance. Similar patterns are 

observed for other human tissues and for all macaque tissues (Figure 4C).

We similarly analyzed the sharing of back-spliced donors between a primate and a rodent 

(Data S2). Again, we found moderate sharing of donors given the acceptors (Figure 4D) 

but most are explainable by chance (Figure 4E). Note that some values in Figure 4C and 

Figure 4E are negative, which is likely due to sampling error caused by the stochasticity of 

evolution and/or simulation. Regardless, the small positive to small negative values suggest 

that there is little excess in between-species sharing of back-spliced acceptors (given donors) 

or donors (given acceptors) when compared with the chance expectation, supporting the 

error hypothesis and refuting the adaptive hypothesis. Note that some acceptors and donors 

are used more often than others for back-splicing (Data S1 and S2), but we do not know the 

molecular determinants of their relative usages, which await future mechanistic studies.

Conservation of splicing signals is uncorrelated with the amount of back-splicing

Back-splicing depends on the canonical splicing machinery and splicing signal. Thus, 

with proper controls, intraspecific and interspecific variations of splicing motifs—GU as 

the donor and AG as the acceptor—can indicate whether back-splicing is protected by 

purifying selection. If back-splicing is functional, motifs associated with larger amounts of 

back-splicing should be subject to stronger purifying selection. In contrast, if back-splicing 

results mostly from molecular error and is not beneficial, no such correlation is expected. 

To this end, we used the number of back-spliced reads associated with a donor (or acceptor) 

in a human tissue as the measure of its back-splicing amount in that tissue. We used (1) 

the number of single-nucleotide polymorphisms (SNPs) per site (SNP density) in humans, 

(2) the mean derived allele frequency (DAF) in humans, and (3) the percent sequence 

divergence between human and macaque at a donor (or acceptor) splicing motif—the first 

(or last) two nucleotides of the relevant intron—as indicators of purifying selection. All 

three indicators should decline with the level of purifying selection but have different 

properties. The interspecific sequence divergence measures long-term average purifying 

selection and is insensitive to interferences from selections at linked nucleotide sites but 
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would be powerless if the functionality of the associated back-splicing is limited to humans. 

The other two indicators are useful even if the functionality of the associated back-splicing 

is limited to humans but could be influenced by linked selection. In addition, SNP density 

could be affected by mutation rate variation among sites, whereas DAF is robust to this 

variation.

We observed only trivial and mostly statistically non-significant correlations between the 

back-splicing amount and SNP density among back-spliced donors or acceptors (Figure 

5A). Note that these correlations may not be due to selection on back-splicing because 

the donors and acceptors are also used by linear-splicing. Indeed, we observed significant, 

negative correlations between the linear-splicing amount and SNP density across donors and 

acceptors (Figure 5B). To remove the confounding factor of linear-splicing, we performed 

partial correlations between the back-splicing amount and SNP density by controlling the 

corresponding liner-splicing amount. Interestingly, all the partial correlations are around 

zero and none of them are statistically significant (Figure 5C). Similar patterns were 

observed for DAF (Figures 5D–5F) and interspecific sequence divergence (Figures 5G–

5I). Together, both intraspecific polymorphisms and interspecific divergences of donor and 

acceptor motifs suggest no purifying selection protecting back-splicing motifs, which is 

inconsistent with the adaptive hypothesis but supports the error hypothesis.

Overall rate of back-splicing declines with the effective population size

If back-splicing arises from splicing error and is detrimental, natural selection will lower its 

rate. Because the strength of the selection increases with the effective population size (Ne) 

of the species (Ohta, 1992), the rate of back-splicing upon selection is expected to be lower 

in species with larger Ne. That is, the error hypothesis predicts that the back-splicing rate 

reduces from the human to macaque to mouse, given that Ne increases substantially from 

the human to macaque to mouse (Phifer-Rixey et al., 2012; Xue et al., 2016). In contrast, no 

such prediction is made a prior by the adaptive hypothesis because the back-splicing rate in 

a species would depend on the function of back-splicing and the environment of the species 

under the adaptive hypothesis.

To compare the overall rate of back-splicing among the three species, we grouped the 

splicing data from all 11 tissues of each species. We first calculated the overall back-splicing 

rate of all (expressed and spliced) genes in each species, which is the total number of 

back-spliced reads divided by the total number of spliced reads. This rate is 0.26% in 

humans, 0.19% in macaques, and 0.09% in mice, with all between-species differences being 

significant (p < 10−15, Fisher’s exact test; Figure 6A). Because the number and types of 

genes vary among species, we also compared one-to-one orthologous genes among the three 

species. Now the back-splicing rate is 0.31% in humans, 0.22% in macaques, and 0.11% in 

mice (all p < 10−15, Fisher’s exact test; Figure 6B). We confirmed that the above pattern 

of interspecific differences holds when orthologous genes are stratified into groups of low 

(<10 SRPM), intermediate (10–100 SRPM), and high (>100 SRPM) splicing amounts (all p 

< 10−15, Fisher’s exact test; Figure 6C). These results are not caused by outliers, which is 

evident from the among-gene distribution of the back-splicing rate of each species (Figure 

6D). Furthermore, a comparison of splicing rates of individual genes among the three 
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species supports that the splicing rate generally reduces from human to macaque to mouse 

for orthologous genes (all p < 10−238, Wilcoxon signed-rank test; Figure 6D). Together, 

the relative overall back-splicing rates in the three mammals supports the error hypothesis. 

Nevertheless, because the above analyses were based on only three species, our finding 

should be further scrutinized in the future when circRNA data of the same tissues become 

available from additional species.

Most back-splicing is deleterious

Together, the above analyses strongly suggest that most back-splicing events are deleterious. 

Below, we use an established method to estimate the fraction of back-splicing that is 

deleterious (Li and Zhang, 2019; Saudemont et al., 2017; Xu and Zhang, 2020a). This 

estimation is based on the reasonable assumption that the fitness effect of a back-splicing 

event at a splice site before the action of natural selection is independent of the splicing 

amount at the site. Because the strength of natural selection against back-splicing increases 

with the splicing amount, we assume that all deleterious splicing has been selectively 

removed in genes of the highest splicing amounts. In other words, the observed back­

splicing rate in these genes is the non-deleterious back-splicing rate (ND). Similarly, we 

assume that none of the deleterious back-splicing has been selectively purged in genes of 

the lowest splicing amounts. That is, the observed back-splicing rate in these genes reflects 

the total back-splicing rate (T). Thus, the fraction of deleterious back-splicing is Fdel = 

(T-ND)/T = 1 − ND/T. We defined genes of the lowest and highest splicing amounts by 

using a variety of cutoffs. In theory, using more stringent cutoffs makes the estimate of Fdel 

more accurate but less precise due to the reduction in sample size. When the data from 

all tissues were combined, we found Fdel to be greater than 96% for each species under 

any combination of cutoffs (Figure 7A). For example, when the cutoffs of <1 SRPM and 

>500 SRPM were adopted in defining genes of the lowest and highest splicing amounts, 

respectively, human T = 5.96 × 10−3 and ND = 6.46 × 10−5, so Fdel = 98.9%. Similarly, 

under these cutoffs, Fdel = 99.8% for the macaque and 99.1% for the mouse. Note that the 

above Fdel values of the three species are not directly comparable because the same SRPM 

cutoffs mean different degrees of validity of the above two assumptions for different species 

as a result of their different Ne values.

Under these same cutoffs, we also estimated Fdel for each tissue in each species. All Fdel 

values are >73% except for the human brain, which has an Fdel of 42% (Figure 7B). Upon 

examination of the 29 genes of >500 SRPM in the human brain, we found a gene (RIMS1) 

with an unusually high back-splicing rate of 8.7%. Because the circRNAs produced from 

RIMS1 were reported to be potentially functional in neurons (Chen et al., 2019; Ji et al., 

2019; You et al., 2015), we re-estimated Fdel after removing RIMS1. Now, Fdel = 91.6% 

in the human brain and remains virtually unchanged in the other tissues or species (Figure 

7B). Although Fdel varies among tissues, we observed a median Fdel of 98.8%, 98.4%, 

and 98.0% in the human, macaque, and mouse, respectively (Figure 7B), which are similar 

to the Fdel estimates from all tissues together (Figure 7A). Note that our Fdel estimates 

are conservative because very slightly deleterious back-splicing may not have been fully 

removed by selection in the genes of the highest splicing amounts and because some 
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strongly deleterious back-splicing may have been removed by selection even in the genes of 

the lowest splicing amounts.

Note that Fdel measures the fraction of back-splicing that is deleterious before the action of 

purifying selection. Because some deleterious back-splicing has been removed by selection, 

the fraction of observed back-splicing that is deleterious should be lower. The deleterious 

fraction of observed back-splicing (Odel) can be estimated by regarding the overall back­

splicing rate from all genes (Figure 6A) as T and the back-splicing rate from genes of >500 

SRPM as ND. When the data from all tissues are merged, Odel is 97.5% for human, 99.7% 

for macaque, and 98.9% for mouse, respectively. The Odel values are only slightly lower 

than the corresponding Fdel values because apparently most deleterious back-splicing has 

not been selectively purged due to the preponderance of genes of relatively low splicing 

amounts. It has been estimated that the fraction of linear-splicing that arises from error 

is about 70% in humans (Saudemont et al., 2017), suggesting that error accounts for a 

much greater proportion of back-splicing than linear-splicing. Taken together, our estimation 

demonstrates that the vast majority of all or observed back-splicing is deleterious, which 

is broadly consistent with the finding of virtually no excess in between-species sharing of 

back-spliced acceptors or donors over the chance expectation and the finding of no purifying 

selection protecting back-splicing signals.

DISCUSSION

The discovery of a large number of circRNAs from many eukaryotes and the demonstration 

that some of them possess biochemical activities have led to the prevailing view that 

circRNA production is generally beneficial. In this work, we challenged this adaptive view 

by providing comprehensive evidence for an alternative view that back-splicing that leads 

to circRNA production arises mostly from splicing error and is detrimental. Our evidence, 

based on the transcriptomes of 11 tissues from each of the human, macaque, and mouse, 

comprises the findings that (1) the back-splicing rate is orders of magnitude lower than the 

linear-splicing rate, (2) the back-splicing rate in a gene decreases with the splicing amount 

of the gene, (3) the back-splicing rate of a gene in a tissue tends to reduce with the splicing 

amount of the gene in the tissue when multiple tissues are compared, (4) there is little 

between-species sharing of back-spliced acceptors or donors beyond the chance expectation, 

(5) purifying selection protecting the motifs for back-splicing is lacking, and (6) the overall 

rate of back-splicing in a species declines with its effective population size. None of these 

observations are predicted a prior by the adaptive hypothesis, but all fit the predictions of 

the error hypothesis. Although most of the evidence is derived from the 11 tissues analyzed, 

the above fifth line of evidence is based on the polymorphism and divergence of genome 

sequences and so is not limited to the specific tissues analyzed. Together, the empirical 

evidence strongly suggests that most mammalian back-splicing events and by inference most 

circRNA productions are detrimental rather than beneficial.

Aside from the above evidence, there are several observations reported in the literature 

that are consistent with the error hypothesis or inconsistent with the adaptive hypothesis. 

First, the proposal that binding to microRNAs is a general function of circRNAs has been 

challenged (Enuka et al., 2016; Guo et al., 2014; Ragan et al., 2019). For example, Ragan et 
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al. (2019) reported that only about 12% of circRNAs contain microRNA binding sites. Guo 

et al. (2014) found only two circRNAs with more microRNA binding sites than expected 

by chance, and Enuka et al. (2016) found no enrichment of microRNA binding sites in 

circRNAs in general. Second, although some circRNAs can act as the sponge of RBPs 

(Zang et al., 2020), this activity is not generalizable because a genome-wide analysis did 

not find enriched binding sites of RBPs in circRNAs compared with their corresponding 

linear mRNAs (You et al., 2015). Third, researchers failed to detect a significant association 

of circRNAs with polysomes (Guo et al., 2014; You et al., 2015), arguing against the 

notion that circRNAs generally function through their protein products (Kristensen et al., 

2019; Li et al., 2018; Pamudurti et al., 2017). circRNA translation depends on having 

internal ribosome entry sites (IRESs) (Pamudurti et al., 2017), but <1.5% of circRNAs 

contain IRESs (Fan et al., 2019). Recently, however, IRES-like elements were found in 

many circRNAs, and hundreds of circRNA-encoded peptides were identified from mass 

spectrometry data (Fan et al., 2019). Notwithstanding, the translation of a circRNA does 

not prove that it confers an advantage because the translation itself could be an error due 

to spurious translational initiation and the protein product could be functionless or even 

toxic. In fact, the sequence similarity of circRNA orthologs between human and mouse is 

no higher than that of their neighboring linear exons, suggesting a lack of circRNA-specific 

purifying selection (Guo et al., 2014). Finally, it is worth stressing that the existence of 

regulation or regulatory mechanisms of circRNA biogenesis or degradation (Conn et al., 

2015; Liang et al., 2017; Zhang et al., 2014) is not evidence for circRNA functionality 

because this phenomenon can arise as a byproduct of other biological processes. As an 

analogy, simply because trash is removed once a week on a particular day, the amount of 

trash in a house would exhibit a cyclic pattern resembling regulation, but the regulation does 

not prove that the trash is useful.

It is worth noting that the brain shows more back-spliced genes and a higher back-splicing 

rate than the other 10 tissues studied here (Figure 1). Nevertheless, for the following 

four reasons, this observation does not necessarily support the proposal that circRNAs 

play important roles in the brain (Rybak-Wolf et al., 2015). First, even in the brain, the 

back-splicing rate is still very low (Figure 1), and other analyses (Figures 2, 3, 4, 5, and 

6) do not suggest that the brain is an outlier of the general patterns of circRNAs observed 

across tissues. Second, there is no between-species sharing of back-spliced acceptors or 

donors beyond the chance expectation in the brain (Figure 4C and 4E), and the fraction 

of deleterious back-splicing is at least 73.2% (Figure 7B) in the brain. Third, alternative 

splicing and its regulation are more complex in the brain than in other tissues (Raj and 

Blencowe, 2015), which might increase the chance of splicing error. Fourth, because brain 

cells typically have longer lifespans than other cells (Magrassi et al., 2013), circRNAs, 

which are exceptionally stable, might accumulate to a higher level in the brain than in other 

tissues, explaining why the back-splicing rate looks higher (Figure 1A) and the fraction of 

deleterious back-splicing (Figure 7B) looks lower in the brain than in other tissues.

Taken together, our findings and those discussed above provide unequivocal evidence that 

most back-splicing events are detrimental splicing errors and that most circRNAs do not 

have beneficial functions. Thus, circRNA is generally a class of junk RNA (Brosius, 2005; 

Palazzo and Lee, 2015). This conclusion requires a paradigm shift in circRNA research. 
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Instead of assuming that all or most circRNAs are functional in today’s research, our 

conclusion requires that we treat all circRNAs as non-functional until proven otherwise. 

Nevertheless, our conclusion does not preclude the occasional observation of circRNAs that 

possess beneficial functions, as has been suggested for CDR1as/CiRS-7 and several other 

circRNAs mentioned in the Introduction. In this context, it is highly valuable to identify 

functional circRNAs even though they account for only a small fraction of all circRNAs. 

Although identifying functional circRNAs is beyond the scope of the present study, we 

explored the possibility that highly expressed genes with exceptionally high back-splicing 

rates host functional circRNAs. Specifically, we regressed between the back-splicing rate 

and splicing amount across genes in Figure 2A and calculated Cook’s distance for each 

gene (see STAR Methods). We then defined a gene as an outlier if its Cook’s distance is 

more than 4 times the mean Cook’s distance of all genes. Among these outliers, 15 genes 

have a back-splicing rate of at least 10% and an expression level of at least 10 TPM (Table 

S2). Interestingly, these 15 genes include the host genes of 2 known functional circRNAs 

aforementioned, namely, circ-ZNF609 and circ-FBXW7 (Figure 2A). We suggest that the 

circRNAs from the remaining 13 genes be studied in the future as candidates of functional 

circRNAs and the approach proposed above for identifying potentially functional circRNAs 

be systematically evaluated.

Our findings on back-splicing, along with previous studies on linear-splicing (Melamud 

and Moult, 2009; Pickrell et al., 2010; Saudemont et al., 2017), demonstrate that 

splicing is generally error prone. Together, they echo other recent findings that a 

number of steps in transcription and translation are fallible, including, for example, 

transcriptional initiation, RNA synthesis, polyadenylation, posttranscriptional modification, 

translational initiation, translational elongation or decoding, translational termination, and 

posttranslational modification (Gout et al., 2017; Landry et al., 2009; Li and Zhang, 2019; 

Liu and Zhang, 2018a, 2018b; Park and Zhang, 2011; Ribas de Pouplana et al., 2014; Xu et 

al., 2019; Xu and Zhang, 2014, 2018, 2020b). These findings indicate that cellular life is far 

less perfected than is commonly portrayed, which has broad and profound implications for 

biology (Lynch, 2007, 2014; Warnecke and Hurst, 2011; Zhang and Yang, 2015).

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Jianzhi Zhang (jianzhi@umich.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data. The accession numbers for 

the datasets are listed in the Key resources table.

• This paper does not report original code.
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• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The original datasets analyzed in the present study are provided in the Key resources table.

METHOD DETAILS

Linear-splicing and back-splicing—Because the regular RNA-seq captures poly(A)­

enriched linear RNAs, many other RNA species that are not linear or do not have poly(A) 

tails are lost. RNase R treatment during the RNA library construction can efficiently enrich 

back-spliced circRNAs but will filter out linear RNAs. Thus, neither type of datasets is 

appropriate for our study. To identify back-splicing and linear-splicing simultaneously, we 

chose data from RNA-seq experiments that only remove rRNAs by RiboMinus treatment 

during the library construction. The recently published RNA-seq data by Ji et al. (2019), 

comprising deeply sequenced transcriptomes from 11 tissues each from humans, macaques, 

and mice (Table S1), fulfill our requirements. We downloaded the data from NGDC (https://

ngdc.cncb.ac.cn/).

Back-splicing is inferred from RNA-seq reads that span back-spliced junctions and therefore 

map non-linearly to the genome. Several pipelines and algorithms have been developed to 

identify specifically non-linear reads and predict the landscape of circRNAs (Szabo and 

Salzman, 2016). According to comparisons of many circRNA prediction pipelines (Hansen 

et al., 2016; Zeng et al., 2017), we chose CIRCexplorer2 (Zhang et al., 2016) and CIRI2 

(Gao et al., 2018) to infer back-splicing. The former tool uses STAR (Dobin et al., 2013) 

as the mapper and is dependent on gene annotations, while the latter is based on the 

mapper BWA (Li and Durbin, 2009) and predicts back-splicing de novo. We first used 

CIRCexplorer2 under default parameters to identify back-spliced sites and associated back­

spliced reads. We then added back-spliced sites identified by CIRI2 under default parameters 

that were not reported by CIRCexplorer2 and added the associated back-spliced reads.

Linear-splicing was retrieved by Tophat2 (Kim et al., 2013) using default parameters, 

including annotated and newly identified splicing junctions. The genome assemblies 

used were GRCh38 for human, Mmul 8.0.1 for macaque, and GRCm38 for mouse, 

all downloaded with gene annotations from Ensembl release 89. Although the genomic 

annotation is less extensive for the macaque than for the human and mouse, this variation 

should not bias our analyses because (1) we used de novo identification of back- and linear­

splicing sites in addition to annotations and (2) most of our analyses were within-species 

comparisons.

Because the start and end of a gene are variable due to alternative transcriptional initiation 

and alternative polyadenylation, we defined a gene from the nucleotide that is 500 bp 

upstream the annotated 5′-most transcriptional start site (Forrest et al., 2014) to the 

nucleotide that is 1000 bp downstream the annotated 3′-most polyadenylation site (Derti 

et al., 2012). Any splicing junction located in a defined gene region was considered to 
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belong to the gene. Only splicing junctions uniquely mapped to a gene were considered in 

the study.

Splicing amount—The total number of linear- and back-spliced reads mapped to a splice 

site is the splicing amount of the splice site. The total number of linear- and back-spliced 

reads mapped to all splice sites of a gene is the splicing amount of the gene. To allow 

comparing the splicing amount of a gene among samples, we computed the number of 

spliced reads per million total reads in the sample (SRPM). The back-splicing rate at a splice 

site, in a gene, or in a supergene was calculated as the number of back-spliced reads mapped 

to the site, gene, or supergene, relative to the total number of spliced reads mapped to the 

site, gene, or supergene.

We used RNA-seq downloaded from NGDC to measure gene expression levels (Table 

S1). The reads were mapped to the human (GRCh38), macaque (Mmul 8.0.1), or mouse 

(GRCm38) genome using TopHat2 (Kim et al., 2013). Fragment per kilobase of transcripts 

per million mapped reads (FPKM) of a gene was first calculated by cufflinks (Trapnell et 

al., 2012) and then converted to TPM using the formula of TPM = (FPKM × 106)/(sum of 

FPKM) (Li and Dewey, 2011). Only genes expressed (TPM ≥ 1) and spliced (# of spliced 

reads ≥ 1) were considered in our study.

Corrections of unequal surveys of splicing events among genes—Due to the 

variation of the splicing amount among genes, splicing is surveyed more extensively for 

some genes than other genes by RiboMinus RNA-seq. To remove the potential influence of 

this unequal survey, we used two different approaches unless otherwise mentioned. The first 

is the supergene approach. Unless otherwise noted, we first ranked all genes by their splicing 

amounts. We then grouped the genes into 10 bins representing 10 supergenes, requiring 

the total splicing amount per bin to be the same for all bins. Numbers of back-spliced, linear­

spliced, and spliced reads were respectively summed up across all genes in the bin. The 

supergene approach cannot be used under certain circumstances. Under these circumstances, 

we used downsampling. For example, when comparing a pair of paralogous genes in a 

sample, we randomly picked the number of spliced reads from the gene of the relatively 

high splicing amount to the level observed in the gene of the relatively low splicing amount. 

This downsampling equalized the survey depth of splicing between the two genes. The 

supergene approach is preferred over downsampling when both can be used, because the 

former uses all data while the latter uses only part of the data. In the analysis among 11 

tissues, because many back-spliced genes would have no back-spliced reads in multiple 

tissues upon downsampling, causing a loss of statistical power, we combined the supergene 

approach with downsampling, as described in Results.

Cook’s distance—Cook’s distance (Di) is used in regression analysis to find influential 

outliers in a set of predictor variables (Cook, 1977). An observation with Cook’s distance 

larger than four times the mean Cook’s distance was deemed an outlier in this study. Cook’s 

distance of gene i is
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Di =
∑j = 1

n yj − yj(i)
2

p ⋅ MSE ,

where yj is the jth gene’s fitted response value, yj(i) is the jth gene’s fitted response value 

when gene i is removed, n is the number of genes, MSE is the mean squared error, and p is 

the number of coefficients in the regression model.

Paralogs and orthologs—Paralogous genes were downloaded from Ensembl (release 

89; May 2017) for the three species. We obtained 3,678 human protein-coding gene families 

with 51,657 pairs of paralogs, 3,912 macaque gene families with 46,718 pairs of paralogs, 

and 3,856 mouse gene families with 79,968 pairs of paralogs, respectively. We randomly 

selected from each gene family only one paralogous pair that exhibits a two-fold or greater 

difference in splicing amount to allow a sufficient statistical power.

Orthologous genes among human, macaque, and mouse were downloaded from Ensembl 

(release 89; May 2017), and only one-to-one orthologous genes were considered in our 

analysis. The numbers of orthologs between human and macaque, between human and 

mouse, and between macaque and mouse are 19,754, 16,797, and 15,170, respectively. 

From these data, we obtained 14,882 one-to-one orthologs among the three mammals. To 

identify orthologous splice sites between species, we used the UCSC liftOver tool (https://

genome.ucsc.edu/util.html) to align the splice sites of one species with the genome of 

another species.

Polymorphism and divergence—Human polymorphism data, including allele 

frequencies, from Interim Phase 3 of the 1000 Genomes project (Sudmant et al., 

2015), were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

supporting/GRCh38_positions/ (last accessed Feb. 28, 2020). This dataset comprises the 

genotypes of 2,504 individuals from 26 populations and includes a total of 78,136,341 

autosomal SNPs. Only SNPs were included in the analysis. The nucleotide observed at a 

SNP was categorized as ancestral if it is the same as the nucleotide of the ‘AA’ field in 

the polymorphism VCF file; other nucleotides at the SNP are derived. The derived allele 

frequency at a SNP is the frequency of the derived allele at the SNP. Nucleotide differences 

at splice-acceptors and donors were based on a comparison between human (GRCh38) and 

macaque (Mmul 8.0.1) genomes through liftOver from UCSC.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses are described in Results, figure legends, and the above Method details 

section. R was used in statistical analysis (see Key resources table).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The rate of back-splicing for a gene declines with its degree of splicing

• The abundance of back-splicing in a species declines with its effective 

population size

• Mammalian circRNAs are overall evolutionarily non-conserved

• More than 97% of the observed circRNA production is deleterious
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Figure 1. Low rates of back-splicing in mammals, see also Table S1
(A) Various measures of the rate of back-splicing in 11 tissues from 3 mammals. Only 

expressed and spliced genes are considered. From the left to the right are percentage of 

genes with back-splicing, percentage of splice sites that show back-splicing, percentage of 

spliced reads that are back-spliced, and percentage of spliced reads that are back-spliced 

among back-spliced genes.

(B) Distribution of the percentage of spliced reads that are back-spliced among back-spliced 

genes. In each boxplot, the left and right edges of a box represent the first (qu1) and third 

(qu3) quartiles, respectively; the vertical line inside the box indicates the median (md); and 

the whiskers extend to the most extreme values inside inner fences, md ± 1.5(qu3 − qu1).
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Figure 2. The back-splicing rate of a gene (or supergene) decreases with the splicing amount of 
the gene (or supergene)
The rate of back-splicing is measured by the fraction of spliced reads that are back-spliced, 

see also Table S2.

(A) The back-splicing rate of a gene decreases with the splicing amount of the gene in 

the human kidney. Each dot represents a back-spliced gene, and the solid line shows the 

linear least-squares regression. Spearman’s rank correlation (ρ) and associated p value are 

presented. The host genes of two functional circRNAs are marked in red.

(B) Spearman’s correlation between the back-splicing rate of a gene and its splicing amount 

among back-spliced genes in each tissue of each mammal examined. All correlations have p 

< 10−126.

(C) The back-splicing rate of a supergene decreases with the median splicing amount of all 

genes belonging to the supergene in the human kidney. Each triangle represents a supergene. 

All supergenes have the same total splicing amount.
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(D) Spearman’s correlation between the median splicing amount of a supergene and its 

back-splicing rate in each tissue of each mammal examined. All correlations have p < 0.01.

(E) The back-splicing rate in the human kidney of the paralog with the relatively low 

splicing amount tends to exceed that of the paralog with the relatively high splicing 

amount within a paralogous gene pair. The original data are used here. Each dot represents 

a paralogous gene pair. Dots above and below the diagonal are colored red and blue, 

respectively. Numbers of red and blue dots are indicated with the corresponding color. The p 

value is from a binomial test of the null hypothesis of equal numbers of red and blue dots.

(F) Proportion of paralogous gene pairs for which the back-splicing rate of the paralog 

with the relatively low splicing amount exceeds that of the paralog with the relatively 

high splicing amount in each tissue of each species examined. Both original (squares) and 

downsampled (triangles) data are used. All fractions are significantly greater than the chance 

expectation of 50% (p < 10−4).
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Figure 3. Negative correlation between the back-splicing rate and splicing amount across tissues
The back-splicing rate is the number of back-spliced reads divided by the number of spliced 

reads in a supergene.

(A) The back-splicing rate of a particular supergene in a tissue decreases with the total 

splicing amount of the genes belonging to the supergene in the tissue. The virtually 

superimposed black and red lines are the linear least-squares regressions for the original 

and down-sampled data, respectively.

(B) Distribution of Spearman’s correlation coefficient between back-splicing rate and 

splicing amount across tissues for all supergenes. In each boxplot, the lower and upper edges 

of a box represent qu1 and qu3 quartiles, respectively; the horizontal line inside the box 

indicates the md; and the whiskers extend to the most extreme values inside inner fences, 

md ± 1.5(qu3 − qu1). Below each boxplot is the fraction of supergenes showing a negative 

correlation; all fractions significantly exceed 50% (p < 0.05, binomial test).
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Figure 4. Fractions of human or macaque back-spliced acceptors or donors that are shared with 
mouse, see also Data S1 and S2
(A) A diagram illustrating various terms used in the analysis. Dotted curves show 

all potential back-splicing, while red and blue stars indicate realized back-splicing in 

observation and simulation, respectively.

(B) Fraction of human or macaque back-spliced acceptors shared with mouse.

(C) Difference between the fraction of back-spliced acceptors shared with mouse and the 

chance expectation.

(D) Fraction of human or macaque back-spliced donors shared with mouse.

(E) Difference between the fraction of back-spliced donors shared with mouse and the 

chance expectation.

In (B)–(E), the median value across the 11 tissues is provided in the parentheses after each 

species.
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Figure 5. Back-splicing signals are not protected by purifying selection
(A) Spearman’s correlation between human SNP density at a splice-acceptor or donor site 

and the associated back-splicing amount.

(B) Spearman’s correlation between human SNP density at a splice-acceptor or donor site 

and the associated linear-splicing amount.

(C) Partial rank correlation between human SNP density at a splice-acceptor or donor site 

and the associated back-splicing amount, upon the control of the linear-splicing amount.

(D–F) Same as (A)–(C) except that human SNP density is replaced with human mean 

derived allele frequency (DAF).

(G–I) Same as (A)–(C) except that human SNP density is replaced with human-macaque 

divergence. Statistical significance of a correlation is indicated by a dash (non-significant) or 

star (significant at p = 0.05) at the bottom of each panel.
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Figure 6. The overall back-splicing rate in a species declines with its effective population size
(A) Overall back-splicing rates in the human, macaque, and mouse when all (expressed and 

spliced) genes are considered.

(B) Overall back-splicing rates in the three species when only one-to-one orthologous genes 

are considered. In (A) and (B), the difference between any two species is significant (p < 

10−15, Fisher’s exact test).

(C) Among-species comparison of back-splicing rates of one-to-one orthologous genes after 

the genes are stratified into bins of low (<10 SRPM), intermediate (10 to 100 SRPM), and 

high (> 100 SRPM) splicing amounts according to the mean splicing amount across species. 

SRPM, number of spliced reads per million total reads in a sample. At each of the three 

levels of splicing amount, the difference in back-splicing rate between any two species is 

significant (p < 10−15, Fisher’s exact test).

(D) Boxplot showing the distribution of the back-splicing rate among one-to-one 

orthologous genes in each species. The difference between any two species is significant 

(p < 10−238, Wilcoxon signed-rank test). In each boxplot, the lower and upper edges of a box 

represent qu1 and qu3, respectively; the horizontal line inside the box indicates the md; and 

the whiskers extend to the most extreme values inside inner fences, md ± 1.5(qu3 − qu1).
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Figure 7. Fraction of deleterious back-splicing
(A) Estimated fractions of deleterious back-splicing for each species when data from all 

tissues are combined, under different cutoffs for genes of the lowest and highest splicing 

amounts.

(B) Estimated fractions of deleterious back-splicing in each tissue of each species examined 

under the cutoffs boxed in (A), either when all genes are considered or when RIMS1 is 

excluded. Back-splicing of RIMS1 in the human brain is unusually abundant and may be 

beneficial.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RiboMinus RNA-seq data Ji et al., 2019 https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA000751

RNA-seq data Ji et al., 2019 https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA000751

RNase R+ data Ji et al., 2019 https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA000751

Polymorphism data IGSR ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/
GRCh38_positions/

Genome assembly and 
annotation data

ENSEMBL http://may2017.archive.ensembl.org/index.html

Software and algorithms

R The R Foundation https://www.r-project.org/

Perl The Perl Foundation https://www.perl.org/

Python Python Software Foundation https://www.python.org/

LiftOver UCSC https://genome.ucsc.edu/util.html

BioMart ENSEMBL http://useast.ensembl.org/biomart/martview//
38de6b77bceb11d76acd2a1d1b231382

BWA Li and Durbin 2009 http://bio-bwa.sourceforge.net/

Tophat2 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/index.shtml

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

CircExplorer2 Zhang et al., 2016 https://circexplorer2.readthedocs.io/en/latest/

CIRI2 Gao et al., 2018 http://159.226.67.237:8080/new/download_file.php
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