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BACKGROUND: Timely diagnosis of structural heart disease improves patient outcomes, yet many remain underdiagnosed. 
While population screening with echocardiography is impractical, ECG-based prediction models can help target high-risk 
patients. We developed a novel ECG-based machine learning approach to predict multiple structural heart conditions, 
hypothesizing that a composite model would yield higher prevalence and positive predictive values to facilitate meaningful 
recommendations for echocardiography.

METHODS: Using 2 232 130 ECGs linked to electronic health records and echocardiography reports from 484 765 adults 
between 1984 to 2021, we trained machine learning models to predict the presence or absence of any of 7 echocardiography-
confirmed diseases within 1 year. This composite label included the following: moderate or severe valvular disease (aortic/
mitral stenosis or regurgitation, tricuspid regurgitation), reduced ejection fraction <50%, or interventricular septal thickness 
>15 mm. We tested various combinations of input features (demographics, laboratory values, structured ECG data, ECG 
traces) and evaluated model performance using 5-fold cross-validation, multisite validation trained on 1 site and tested on 
10 independent sites, and simulated retrospective deployment trained on pre-2010 data and deployed in 2010.

RESULTS: Our composite rECHOmmend model used age, sex, and ECG traces and had a 0.91 area under the receiver 
operating characteristic curve and a 42% positive predictive value at 90% sensitivity, with a composite label prevalence of 
17.9%. Individual disease models had area under the receiver operating characteristic curves from 0.86 to 0.93 and lower 
positive predictive values from 1% to 31%. Area under the receiver operating characteristic curves for models using different 
input features ranged from 0.80 to 0.93, increasing with additional features. Multisite validation showed similar results to 
cross-validation, with an aggregate area under the receiver operating characteristic curve of 0.91 across our independent 
test set of 10 clinical sites after training on a separate site. Our simulated retrospective deployment showed that for ECGs 
acquired in patients without preexisting structural heart disease in the year 2010, 11% were classified as high risk and 41% 
(4.5% of total patients) developed true echocardiography-confirmed disease within 1 year.

CONCLUSIONS: An ECG-based machine learning model using a composite end point can identify a high-risk population for 
having undiagnosed, clinically significant structural heart disease while outperforming single-disease models and improving 
practical utility with higher positive predictive values. This approach can facilitate targeted screening with echocardiography 
to improve underdiagnosis of structural heart disease.
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In patients with structural heart disease carrying a high 
burden of morbidity and mortality, echocardiography 
provides important evidence-based implications for 

diagnosis, prognosis, and management.1–5 Echocardiog-
raphy is the primary diagnostic test for many structural 
conditions, including valvular disease, left ventricular 
dysfunction, and various cardiomyopathies6–8; however, 
despite the growth of evidence-based therapies for 
patients with structural heart disease and the increas-
ing availability of echocardiography, these conditions 
continue to be underdiagnosed.6,9–12 Studies have shown 

that millions of patients have unrecognized disease, while 
many others are diagnosed only after the occurrence of 
adverse events or irreversible sequelae of undiagnosed 
disease.11–15

ECG-based machine learning models can help iden-
tify undiagnosed patients for targeted screening, yet limi-
tations to their practical adoption remain. ECGs are more 
common, inexpensive, and broadly indicated than echo-
cardiograms, and machine learning approaches using 
ECGs have been shown to identify patients at increased 
risk of individual diseases.16–18 However, despite other-
wise good performance, these models often suffer from 
low positive predictive values (PPVs) because of the low 
prevalence of individual target diseases.18,19 This limits 
the practical utility of real-world implementations, given 
that many patients identified as high risk would need to 
undergo screening to diagnose one true case.

We therefore aimed to combine multiple disease out-
comes into a single composite prediction to increase 
diagnostic yield. We developed a novel machine learning 
approach to identify patients at high risk for any of 7 
structural heart disease end points within a single ECG 
platform, including moderate or severe valvular disease 
(aortic stenosis [AS]; aortic regurgitation; mitral steno-
sis [MS]; mitral regurgitation; and tricuspid regurgitation 
[TR]), reduced left ventricular ejection fraction (EF), and 
increased interventricular septal (IVS) thickness. We 
hypothesized that our model would generate a composite 
prediction with higher yield/PPV to facilitate a practical 
clinical recommendation for diagnostic echocardiogra-
phy. Moreover, we simulated the utility of this model on 
a large retrospective dataset to assess expected real-
world performance if implemented into clinical care.

METHODS
The data that support the findings of this study are available 
from the corresponding author on reasonable request.

Data
The institutional review board approved this study with a waiver 
of consent. We retrieved and processed data from 3 clinical 
sources at Geisinger, a large regional US health system provid-
ing both inpatient and outpatient care, including 2 110 332 
patients from the Epic (Epic Systems, Madison, Wisconsin) 
electronic health record, 758 269 echocardiograms from 
Xcelera (Philips, Cambridge, Massachusetts), and 3 548 543 
ECGs from MUSE (GE Healthcare). We included all 12-lead 
ECGs after 1984 from patients ≥18 years old, sampled at 
either 250 Hz or 500 Hz, and a corresponding Epic medical 
record, resulting in 2 925 925 ECGs from 631 710 patients. 
All data were collected through July 2021.

We obtained vitals, laboratory results, and patient demo-
graphics as of the index ECG acquisition date and time (Table 
S1). We used the closest past measurement unless the mea-
surement was >1 year old, in which case we assigned a miss-
ing value. We extracted echocardiographic measurements and 

Clinical Perspective

What Is New?
•	 An ECG-based machine learning model can iden-

tify those at higher risk for previously undiagnosed 
structural heart disease with excellent performance.

•	 Using a composite end point of multiple structural 
heart disease end points aligned in the clinical 
response of diagnostic echocardiography mark-
edly increases positive predictive value of detect-
ing structural abnormality and improves clinical 
actionability.

What Are the Clinical Implications?
•	 This composite end point model overcomes the 

limitations of low prevalence and positive predictive 
value in previous single-disease machine learning 
models to improve performance and generate mean-
ingful recommendations for echocardiography.

•	 Such predictions can help close the large diag-
nostic gap of structural heart disease for millions 
of patients with undetected yet clinically significant 
disease.

•	 Reducing the number of undiagnosed patients 
may allow more patients to appropriately receive 
evidence-based care to improve patient outcomes 
and prevent adverse events.

Nonstandard Abbreviations and Acronyms

AR	 aortic regurgitation
AS	 aortic stenosis
AUPRC	 area under the precision-recall curve
AUROC	� area under the receiver operating char-

acteristic curve
CNN	 convolutional neural network
EF	 ejection fraction
IVS	 interventricular septum
MS	 mitral stenosis
PPV	 positive predictive value
TR	 tricuspid regurgitation
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diagnoses from Xcelera reports and ECG structured findings, 
measurements, and 12-lead traces from MUSE.16,20 Structured 
ECG findings were directly obtained from the final, official inter-
pretation by an attending cardiologist. We then labeled ECGs 
as detailed below. Overall, we included 2 232 130 ECGs with 
at least 1 label from 484 765 patients (Figure 1).

Echocardiography-Confirmed Disease 
Outcome Definitions
We defined 7 outcome labels using echocardiography reports: 
one for each disease outcome (AS, aortic regurgitation, mitral 
regurgitation, MS, TR, reduced EF, increased IVS thickness). 
We used regular expressions to extract key words and phrases 
identifying the diagnosis of valvular stenosis or regurgitation 
and its associated severity level, based on the final interpreta-
tion by an attending cardiologist (Table S2). We labeled each 
of the valvular conditions of interest as positive if moderate or 
severe and negative if normal or mild in severity. We assigned a 

missing label otherwise. Mild-to-moderate cases were labeled 
as moderate.

We defined positive labels for reduced EF as a reported 
EF of <50% on echocardiography. We defined increased IVS 
thickness as >15 mm. These criteria were chosen based on 
cardiologist and clinician consensus and in concordance with 
existing guidelines for potential diseases of interest, such as 
hypertrophic cardiomyopathy.21 Echocardiograms not meeting 
those criteria were labeled as negative. We assigned a missing 
label if the measurement was missing.

Outcome labels extracted from echocardiography reports 
for AS, aortic regurgitation, mitral regurgitation, MS, and TR 
were randomly sampled in sets of 100 to 200 and validated by 
manual chart review.

ECG Labeling
For each given disease outcome, an ECG was labeled as 
positive if it was acquired within one year before the patient’s 
first positive echocardiography report for that disease, or any 
time after the echocardiogram until a censoring event (Figure 
S1). Censoring events were defined as death, end of observa-
tion in the electronic health record, or any intervention that 
directly treated the disease and could modify the underlying 
physiology, such as valve replacement or repair. We also used 
a negative echocardiography report after a positive echocar-
diography report as a censoring event to conservatively elimi-
nate the possibility that such interventions may have been 
performed at outside institutions and therefore not repre-
sented in our data.

For each given disease outcome, an ECG could be labeled 
as negative using 2 sets of criteria, depending on whether the 
patient did or did not have a history of previous echocardiog-
raphy. For patients with history of echocardiography, ECGs 
acquired more than 1 year before the last negative echocar-
diogram with confirmed absence of that given disease were 
labeled as negative (Figure S1). In the absence of any patient 
history of echocardiography, an ECG was also labeled as nega-
tive if there was at least 1 year of subsequent follow-up without 
a censoring event and without any coded diagnoses for the 
relevant disease (Table S3).

For the composite end point, we labeled an ECG as positive 
if any of the 7 individual outcomes were positive and as nega-
tive if all 7 outcomes were negative.

Model Development
We developed 9 models using different combinations of input 
feature sets from structured data (demographics, vitals, labs, 
structured ECG findings and measurements) and ECG voltage 
traces. For ECG trace models, we developed a deep convo-
lutional neural network (CNN) consisting of 6 1-dimensional 
CNN-Batch Normalization-ReLU layer blocks, followed by a 
multilayer perceptron and a final logistic output layer (Table 
S4).22 The CNN used raw ECG trace data sampled at 500 Hz 
as input. ECGs sampled at 250 Hz were resampled to 500 Hz 
using linear interpolation. We used the same configuration to 
train 1 model per clinical outcome, resulting in 7 independently 
trained CNN models (Figure 2). We chose a minimalistic CNN 
architecture design as we sought to focus on the novel effect 
of the composite end point rather than the exploration or devel-
opment of novel machine learning architectures.

Figure 1. Flow diagram from source data to the study 
datasets.
We processed data from research repositories created using EHR 
data from Epic, ECG data from MUSE, and echocardiography data 
from Xcelera. The clinical MUSE database was processed to include 
12-lead ECGs sampled at either 250 Hz or 500 Hz, acquired after 
1984 from patients >18 years. ECG indicates electrocardiogram; 
EHR, electronic health record; and Echo, echocardiography.
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To form the final model and combine ECG trace–based 
models with structured data, we concatenated the risk scores 
from the individual CNNs with the structured data. We used 
the concatenated feature vector to train a classification pipeline 
consisting of a minutes-max scaler (min 0, max 1), mean impu-
tation, XGBoost classifier, and calibration (Figure 2).23,24

Model Evaluation
We evaluated the models using 3 approaches: (1) a traditional 
random cross-validation partition; (2) a multisite validation 
where the model was trained on data from Geisinger Medical 
Center and tested on 10 other independent clinical sites; and 
(3) a retrospective deployment scenario where, using 2010 
as the simulated deployment year, we used past data to train 
and future data to test. We measured area under the receiver 
operating characteristic curve (AUROC), area under the pre-
cision-recall curve (AUPRC), and other performance metrics 
(sensitivity, specificity, PPV and negative predictive value) at 
multiple operating points. For all experiments, data were split 
into training, internal validation, and test sets with no overlap of 
patients across these sets.

Cross Validation
We conducted a 5-fold cross validation by randomly sampling 
5 mutually exclusive sets of patients. We expanded each set 
to all ECGs from each patient to form the training and test 
sets. When training the CNN models for each individual end 

point, we discarded samples with missing labels. We applied the 
model to all test samples and evaluated performance only on 
samples with complete labels that also satisfied the rECHOm-
mend labeling criteria, described above. Performance statistics 
were reported as means and 95% CIs across 5 folds for a 
random ECG per patient.

Multisite Validation
To perform multisite validation, we created mutually exclusive 
sets of patients from 11 clinical sites in the Geisinger Health 
System. We assigned each patient to a particular site by select-
ing the most common ECG site of origin for that given patient. 
We removed any ECGs taken outside of the assigned site for 
each patient.

We trained our model on data from patients at a single site—
Geisinger Medical Center, a large quaternary teaching hospi-
tal in Danville, Pennsylvania. We then tested this model on 10 
other independent clinical sites, ranging from outpatient cen-
ters to small community hospitals to large teaching hospitals, at 
various locations across Pennsylvania.

Retrospective Deployment
We retrospectively simulated a deployment of our model using 
a cutoff date of January 1, 2010, relabeling all ECGs with infor-
mation available as of that date. We used this artificially con-
strained dataset to replicate the cross-validation experiments 
and train a deployment model using data prior to 2010. We then 

Figure 2. rECHOmmend model diagram showing the classification pipeline for ECG traces and other electronic health record data.
The output (gray triangle) of each CNN applied to ECG trace data are concatenated with labs, vitals, and demographics to form a feature 
vector. This vector is the input to the classification pipeline (min–max scaling, mean imputation, XGBoost classifier, and calibration), which 
outputs a composite prediction for the patient. AR indicates aortic regurgitation; AS, aortic stenosis; CNN, convolutional neural network; ECG, 
electrocardiogram; EF, ejection fraction; EHR, electronic health record; IVS, interventricular septum; MR, mitral regurgitation; MS, mitral stenosis; 
and TR, tricuspid regurgitation.
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applied the deployment model to the first ECG per patient for 
all patients seen from January 1, 2010 through December 31, 
2010. We calibrated the XGBoost model using earliest ECGs 
from the at-risk population in 2005 and measured performance 
statistics on all patients at risk in 2010. We determined the true 
outcomes of the at-risk population using information up to July 
23, 2021, adhering to the definitions for positive and negative 
outcome labels outlined previously in this article. We report the 
results for 2 thresholds for comparison: (1) a high sensitivity 
threshold (90%), which may be more ideal for a screening use 
case; and (2) a 50% sensitivity threshold, identifying half of 
the diseased population with higher PPVs, which may be more 
practical and actionable.

Sensitivity Analyses
To account for potential variation in what providers and patients 
may find to be clinically significant disease, we repeated the 
cross-validation experiment on a different set of labels rep-
resenting severe disease only. These label definitions include 
severe valvular disease only (moderate valvular disease now 
considered a negative label) and changed the definition for 
reduced EF to be <35%.

To account for the possibility of patients with persistently 
undiagnosed disease in our definition of negative ECGs, we 
also repeated our cross-validation experiment using only 
echocardiography-confirmed negatives. Patients who never 
received an echocardiogram were excluded. All ECGs labeled 
negative were followed by a negative echocardiogram confirm-
ing the absence of that given disease outcome.

Both analyses were performed using models trained on 
new label definitions and an independent set of cross-valida-
tion folds.

RESULTS
We identified 758 269 echocardiography reports from 
332 919 patients, of which 191 652 echocardiograms 
from 88 093 patients were positive for at least 1 disease 
outcome label. Disease prevalence ranged from 0.6% for 
MS to 17.2% for reduced EF (Table S5). We identified 2 
232 130 ECGs from 484 765 patients who met crite-
ria for ≥1 positive or negative individual disease label; of 
those, 1 651 952 ECGs from 434 220 patients quali-
fied for the composite label (Table S6). Baseline across 
2.23 million ECGs was as follows: median patient age, 
64 years old; 50.1% male; and 97.1% White (Table 1). 
Patients with positive labels—compared with negative 
labels—were generally older and comprised a greater 
proportion of males and smokers. Baseline characteris-
tics among patients with missing or undefined labels as 
compared to patients with ≥1 defined label were largely 
similar (Table S7).

Model Input Feature Evaluation
Table  2 shows the results of 5-fold cross-validation 
comparing model performance as a function of differ-
ent input features. AUROCs ranged from 0.80 for the 

model using only age and sex to 0.93 for the model 
with all available inputs, including structured ECG find-
ings and measurements, demographics, labs, vitals, and 
ECG traces (Figure 3). While the model with all avail-
able inputs provided the best performance, we focus the 
remainder of our results in this article on the models 
including only age, sex, and ECG traces since this in-
put set best balances portability, objectivity, and perfor-
mance with a 0.91 AUROC. These inputs are all directly 
available from MUSE or other ECG systems, without ad-
ditional integration with other data sources, and do not 
require waiting for the official cardiologist interpretation, 
which may be subject to interrater variability. Complete, 
detailed results including all other input sets for every 
disease label across all folds and various subgroups are 
available at: http://www.rechommend.com.

Cross-Validation Performance of rECHOmmend 
Model
The rECHOmmend model using age, sex, and ECG 
traces for prediction of the composite disease label 
yielded a 0.91 AUROC (95% CI, 0.90–0.91) and 42% 
PPV at 90% sensitivity with 18% disease prevalence 
(Table 3). As hypothesized, the composite model yield-
ed a higher PPV than any of the 7 models trained for an 
individual component end point, which ranged from 1% 
for MS to 31% for reduced EF (Table 3). We found the 
same trend for the AUPRC (0.71 [95% CI, 0.71–0.72]) 
for the rECHOmmend model, as compared with indi-
vidual model AUPRCs, which ranged from 0.04 to 0.65 
(Figure S2). Performance metrics for a wide range of 
alternate model operating points, including those with 
higher sensitivity or higher PPV, are presented in Table 
S8. Performance of the rECHOmmend model across 
various subgroups of age, sex, race, comorbidities, and 
ECG findings were largely comparable to the overall re-
sults in terms of AUROC except for slightly decreased 
AUROCs in patients with heart failure and patients with 
pacemakers (Table S9).

Multisite Validation Performance
The rECHOmmend model trained on Geisinger Medi-
cal Center and validated across 10 other clinical sites 
performed similarly well to our cross-validation experi-
ment, yielding an AUROC of 0.91 in aggregate across all 
other sites (Table S10). Individual site AUROCs ranged 
from 0.79 at the Viewmont Imaging Center to 0.93 at the 
Scranton Community Medical Center, with 8 out of 10 
sites having AUROCs >0.85 and 7 sites having AUROCs 
>0.90. The prevalence of the composite label for disease 
among sites varied from 1% at Viewmont to 39% at the 
Geisinger Commonwealth School of Medicine. Corre-
spondingly, PPV varied from 15% at Viewmont to 54% 
at the Geisinger Commonwealth School of Medicine.
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 � PR interval† 164±40 160 [144–182]

 � P axis 48±30 50 [33–64]

 � QRS duration 98±25 90 [82–104]

 � QT 400±51 398 [368–430]

 � QTC 445±4 440 [418–464]

 � T axis 52±53 46 [23–71]

 � Ventricular rate 77±20 74 [63–87]

 � Average RR interval 821±194 814 [688–946]

 � Normal* 43.8  

 � Previous infarct* 18.7  

 � Nonspecific T-wave changes* 16.0  

 � Sinus bradycardia* 14.1  

 � Nonspecific ST changes* 10.3  

 � Ischemia* 10.0  

 � Left axis deviation* 9.3  

 � Atrial fibrillation* 8.5  

 � Left ventricular hypertrophy* 8.0  

 � Tachycardia* 7.5  

 � Previous anterior myocardial 
infarction*

7.3  

 � Premature ventricular contractions* 6.8  

 � First-degree block* 6.3  

 � Right bundle-branch block* 6.0  

 � Prolonged QT* 5.0  

 � Poor tracing* 4.9  

 � Premature atrial contractions* 4.8  

 � Pacemaker* 4.6  

 � T-wave inversion* 4.6  

 � Low QRS voltage* 4.4  

 � Fascicular block* 3.2  

 � Incomplete right bundle-branch 
block*

3.1  

 � Left bundle-branch block* 2.8  

 � Intraventricular block* 2.3  

 � Right axis deviation* 2.2  

 � Atrial flutter* 1.3  

 � Acute myocardial infarction* 1.0  

 � Incomplete left bundle-branch block* 0.4  

 � Supraventricular tachycardia* 0.4  

 � Early repolarization* 0.3  

 � Complete heart block* 0.1  

 � Other bradycardia* 0.1  

 � Second-degree atrioventricular 
block*

0.1  

 � Ventricular tachycardia* 0.1  

Data reported as mean±SD and median [interquartile range] for continuous 
values, unless otherwise indicated. eGFR indicates  estimated glomerular filtra-
tion rate; and proBNP, pro B-type natriuretic peptide.

*Data reported as percentages (%) for categorical values.
†Thirty-one extreme outlier values were removed for PR interval >2000 ms.

Table 1.  Continued

Demographics and vitals Mean±SD
Median [interquar-
tile range]

Table 1.  Baseline Characteristics and Features at Time of 
Index ECG

Demographics and vitals Mean±SD
Median [interquar-
tile range]

Age, y 63±17 64 [52–76]

Body mass index, kg/m2 31±9 30 [25–35]

Systolic blood pressure, mm Hg 129±20 128 [116–140]

Diastolic blood pressure, mm Hg 73±12 72 [64–80]

Heart rate, beats/min 76±15 74 [66–84]

Height, cm 168±11 168 [160–178]

Weight, kg 88±24 85 [70–101]

White* 97.1  

Male sex* 50.1  

Ever smoked* 59.7  

Laboratory values

 � HbA1C, % 6.9±3 6.5 [5.8–7.5]

 � Bilirubin, mg/dL 0.57±0.60 0.5 [0.3–0.7]

 � BUN, mg/dL 20.5±12.8 17 [13–23]

 � Cholesterol, mg/dL 172±47 168 [140–200]

 � Creatine kinase-MB, ng/mL 8.9±32.2 2.9 [1.9–5]

 � Creatinine, mg/dL 1.2±1.4 0.9 [0.8–1.2]

 � C-reactive protein, mg/L 36.2±63.9 9 [2.6–38]

 � D-dimer, μg/mL 1.5±2.6 0.6 [0.3–1.5]

 � Glucose, mg/dL 119±48 104 [93–125]

 � High-density lipoprotein, mg/dL 48±16 45 [37–56]

 � Hemoglobin, g/dL 14±34 13 [11.7–14.3]

 � Lactate dehydrogenase, U/L 249±237 207 [171–264]

 � Low-density lipoprotein, mg/dL 95±38 91 [68,117]

 � Lymphocytes, % 23±11 22 [15–29]

 � Potassium, mmol/L 4.2±0.7 4.2 [3.9–4.5]

 � Pro-BNP, pg/mL 5002±10668 1369 [341–4377]

 � Sodium, mmol/L 139±3 140 [137–141]

 � Troponin I, ng/mL 1±13 0.03 [0.01–0.06]

 � Troponin T, ng/mL 0.16±0.84 0.01 [0.01–0.04]

 � Triglyceride, mg/dL 154±122 127 [90–183]

 � Uric acid, mg/dL 6.6±2.4 6.3 [4.9–7.9]

  Very-low-density lipoprotein, mg/dL 29±16 25 [18–36]

 � eGFR, mL/(min·1.73 m2) 54±12 60 [55–60]

Other comorbidities

 � Heart failure* 17.2  

 � Previous myocardial infarction* 18.8  

 � Diabetes * 23.1  

 � Chronic obstructive pulmonary 
disease*

14.0  

 � Renal failure* 8.3  

 � Previous echocardiogram* 28.4  

 � Coronary artery disease* 23.1  

 � Hypertension* 46.4  

ECG findings and measurements

 � R axis 22±50 21 [−10 to 54]

(Continued )
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Simulated Deployment Performance
We identified 692 273 ECGs with qualifying labels for 
any of the 7 clinical outcomes before 2010, of which 
485 469 ECGs qualified for the composite label to train 
the deployment model. A cross-validation experiment for 
this pre-2010 subset showed similar, yet slightly reduced 
performance as compared with the full dataset (AUROC, 
0.89; 31% PPV at 90% sensitivity; Table S11).

The 2010 deployment test set contained ECGs from 
69 544 patients (Figure 4A). After excluding patients 
with a known history of disease, we identified 63 459 
at-risk patients between January 1 and December 31, 
2010. Of these patients, outcome labels for 20 395 
were undefined because of inadequate follow-up or 
not meeting criteria for the composite label. As previ-
ously noted, the characteristics of patients with unde-
fined labels were similar to those with defined labels. 
The AUROC among patients with defined labels was 
0.86. Using a threshold estimated to yield 90% sensi-
tivity based on the pre-2010 training data, the deploy-
ment model labeled 43.3% of patients as high risk and 
obtained a PPV of 15.1% and a negative predictive 
value of 98.5%.

For a more practical comparison, using a threshold 
estimated to yield 50% sensitivity, the deployment model 
labeled 10.7% of patients as high risk for any of the 7 
disease outcomes. Among 2969 predicted high-risk 
patients with adequate follow-up who met our definition 
for the composite label, 1219 patients were diagnosed 
with ≥1 disease outcome within a year, with a PPV of 
41.1%. Of these 1219 patients, 137 (11%) received 
a diagnosis of AS, 86 (7%) were diagnosed with aor-
tic regurgitation, 387 (32%) with mitral regurgitation, 

17 (1%) with MS, 375 (31%) with TR, 785 (64%) with 
reduced EF, and 280 (23%) with IVS thickening. Among 
40 095 predicted low-risk patients with adequate follow-
up and defined labels, 38 552 patients did not develop 
any of the outcomes within a year, with a negative predic-
tive value of 96.2%.

Overall, at this model threshold, for every 100 at-risk 
patients who obtained an ECG, our model would identify 
11 as high risk, of which 5 would truly have echocardiog-
raphy-confirmed disease, and 89 as low risk, of which 86 
would truly not have disease within 1 year (Figure 4B).

Sensitivity Analyses
When using severe-only disease labels, AUROCs across 
input feature combinations for the composite end point 
were similar to the primary results (Table  2), ranging 
from 0.79 for age and sex only to 0.94 for all inputs 
(Table S12). AUPRC and PPV at 90% sensitivity were 
lower given the lower prevalence of severe-only disease. 
Across the individual diseases, AUROCs of the age, sex, 
and ECG traces model were again similar, ranging from 
0.84 to 0.96, and again with lower AUPRC and PPV 
attributable to the lower prevalence (Table S13). The 
overall rECHOmmend model using severe-only disease 
labels attained an AUROC of 0.92 with a PPV of 31.2% 
at 90% sensitivity with 10.6% disease prevalence.

When using echocardiography-confirmed labels only, 
AUROC was slightly lower than our primary results, while 
AUPRC and PPV at 90% sensitivity was higher (Tables 
S14–15). This was likely because of the artificially higher 
prevalence, as the number of negative patients decreased 
with this requirement for echocardiography-confirmed 
absence of disease. The overall rECHOmmend model 

Table 2.  Performance Comparison of Cross-Validated Models Across Various Input Features for Composite End Point 

Input features
Area under receiver 
operating curve

Area under preci-
sion-recall curve

Positive predictive 
value*

Negative predic-
tive value* Specificity*

Age + sex 0.799 (0.795–0.802) 0.468 (0.462–0.473) 27.5 (27.0–28.0) 95.7 (95.6–95.7) 48.2 (47.5–49.0)

Demographics, labs, and vitals (structured 
EHR)

0.862 (0.860–0.865) 0.651 (0.644–0.657) 32.3 (31.8–32.8) 96.4 (96.4–96.5 58.9 (58.3–59.5)

ECG structured findings and measurements 
(structured ECG)

0.879 (0.877–0.881) 0.677 (0.672–0.683) 34.0 (33.4–34.5) 96.6 (96.6–96.6) 61.8 (61.0–62.6)

ECG traces 0.904 (0.902–0.906) 0.719 (0.714–0.724) 41.1 (40.4–41.9) 97.1 (97.1–97.1) 71.9 (71.3–72.6)

Available from ECG system

 � Age + sex + ECG traces 0.907 (0.905–0.908) 0.714 (0.707–0.722) 42.0 (41.4–42.6) 97.1 (97.1–97.1) 72.9 (72.4–73.4)

 � Structured ECG + ECG traces 0.912 (0.910–0.913) 0.739 (0.733–0.744) 42.9 (42.0–43.8) 97.1 (97.1–97.1) 73.9 (73.2–74.6)

Available from ECG + EHR

 � Age + sex + structured EHR + structured 
ECG

0.917 (0.915–0.919) 0.762 (0.757–0.767) 44.2 (43.5–44.9) 97.2 (97.2–97.2) 75.2 (74.6–75.8)

 � Age + sex + structured EHR + ECG traces 0.925 (0.923–0.926) 0.780 (0.775–0.784) 46.7 (46.0–47.4) 97.3 (97.2–97.3) 77.6 (77.0–78.2)

 � Age + sex + structured EHR + structured 
ECG + ECG traces (all inputs)

0.928 (0.927–0.930) 0.787 (0.783–0.792) 47.8 (47.2–48.4) 97.3 (97.3–97.3) 78.6 (78.2–79.0)

All values are shown as percentage (95% CI). Each model was tested based on a random ECG per patient. End points include valvular disease, reduced ejection 
fraction, and increased interventricular septal thickness. ECG indicates electrocardiogram; and EHR, electronic health record. 

*All values are at 90% sensitivity.
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obtained an AUROC of 0.88 with a 74% PPV at 90% 
sensitivity with 53% disease prevalence.

Because of the potential for lead-induced TR in 
patients with pacemakers, we excluded TR from the 
composite end point and showed similar performance 
for our composite model (Table S19).

DISCUSSION
We developed a machine learning platform called “rE-
CHOmmend” that can predict clinically significant valvu-
lar disease, reduced left ventricular EF, or pathologically 
increased septal thickness with excellent performance 
(AUROC, 0.91) by using only ECG traces, age, and 
sex. Furthermore, we demonstrated that the combina-
tion of these distinct end points into a single platform 
tied to a recommendation for a singular, practical clini-
cal response—follow-up echocardiography—resulted in 
an overall PPV of 42% for clinically meaningful disease 
while maintaining high sensitivity (90%) and specificity 
(73%). This suggests that for the millions of patients who 
receive an ECG each year without preexisting structural 
heart disease, nearly half of those deemed high risk by 
this model would be found to have true disease within a 
year. We confirmed the validity of this approach through 
multisite validation on nonoverlapping data sets from mul-
tiple clinical sites across the Geisinger system. Moreover, 
we confirmed the clinical utility of this approach in our 
retrospective deployment, as our model trained on pre-
2010 data and deployed on all patients without preexist-
ing disease who obtained an ECG in 2010 maintained 
similarly high performance as compared to the main 

cross-validation results based only on passive observa-
tion and standard clinical care. With an active deployment 
of the rECHOmmend platform, even higher yields/PPV 
are anticipated once clinicians can pursue active inter-
vention in the form of follow-up echocardiogram or more 
detailed history-taking and physical examination.

Clinically, this model enables targeted echocardio-
graphic screening to help detect unrecognized and 
underdiagnosed diseases. Currently echocardiography is 
not used for population screening because of the low 
prevalence of disease in the general population—previ-
ous attempts were shown to be largely ineffective.25,26 
Therefore, indicated use of echocardiography is typically 
triggered by a symptom, adverse event, physical exami-
nation, or incidental finding leading to suspicion of heart 
disease, raising the pretest probability and likelihood of 
a clinically impactful or actionable finding.6,7,27 However, a 
significant gap remains: in meeting the triggered indica-
tion for suspected disease, a large number of patients 
will have already suffered an adverse event, a symptom 
affecting their quality of life, or an irreversible patho-
physiologic change from their undiagnosed disease. For 
example, in severe AS, the initial presenting symptom is 
reduced EF for 8% of patients, angina for 35 to 41%, 
and syncope for 10 to 11% of patients, which may lead 
to falls, hip fractures, or reduced functional status.13–15 
Previous studies have also shown that up to one-half 
of elderly patients have undiagnosed valvular disease, 
including 11.3% with moderate or severe disease, while 
the majority of patients with hypertrophic cardiomyopa-
thy may be undiagnosed and nearly 50% of patients with 
EF <40% are asymptomatic.11,12,28 The rECHOmmend 

Figure 3. Performance of the rECHOmmend model in cross-validation experiments across various inputs.
The plot on the left shows the AUROC while the plot on the right shows the AUPRC. AUPRC indicates area under the precision-recall curve; and 
AUROC, area under the receiver operating curve.
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model, with both high sensitivity and precision, can enable 
targeted screening and guide the decision to obtain an 
echocardiogram even for asymptomatic patients. This 
may be particularly relevant given the increasing avail-
ability and growing indications for interventions showing 
benefit in targeting earlier disease, such as recent evi-
dence for earlier intervention in asymptomatic severe AS 
or novel therapeutics for hypertrophic cardiomyopathy 
and amyloid.29 Depending on the use case for a practical, 
real-world deployment of this model, different thresholds 
may be used to optimize certain metrics, such as higher 
sensitivity with the tradeoff of lower specificity and PPV 
if prioritizing a screening scenario to capture as much 
of the diseased population as possible, or a threshold 
prioritizing higher PPV if seeking to optimize a limited 
amount of resources such as the practical limitations 
of the total volume of echocardiograms which can be 
obtained. Together, this machine learning approach can 
help shift the balance to a scenario where echocardiog-
raphy can be an effective, targeted screening tool to help 
clinicians diagnose patients at the right time to prevent 
downstream adverse events, optimize the timing of inter-
ventions, and better implement evidence-based monitor-
ing or management.

Our findings also suggest a path toward overcoming 
some of the existing challenges with clinical implemen-
tation of ECG prediction models. This novel approach 
of combining multiple end points that align under the 
same recommended clinical action enables the model 
to leverage the increased prevalence and probability 
of any one disease state occurring to improve predic-
tive performance for potential clinical implementation. 
Previous studies have shown that CNN-based ECG 
prediction models can predict a variety of cardiovas-
cular outcomes including atrial fibrillation, AS, and left 
ventricular dysfunction with good performance, with 
AUROCs from 0.80 to 0.93.16–19,30 However, concerns 
often exist around real-world implementation of such 

models because of limitations in precision and recall, 
concerns regarding the negative effect of false posi-
tives, and limited actionability or portability.31 Our model 
compares favorably to those in the literature, with a simi-
lar or higher AUROC, comparable performance at simi-
lar thresholds, and consistently higher precision or PPV 
(Tables S16–S17), but also results in a clearly actionable 
recommendation while remaining highly portable. Our 
featured model results of 0.91 AUROC, 42% PPV, and 
90% sensitivity on cross-validation is based on age, sex, 
and ECG traces alone as inputs, which we believe rep-
resents the optimal balance between performance and 
portability. While the addition of electronic health record 
data did slightly improve performance, there would be 
a major tradeoff in decreased portability with the need 
for electronic health record or clinical data warehouse 
integration. This model uses data readily available from 
any ECG system, such as MUSE, and could be easily 
deployed across most health care systems.

We also found that simulated deployment on large 
retrospective datasets can shed light on important 
questions and estimate true clinical impact before the 
costly implementation of prediction models in practice 
or clinical trials, where performance may differ from 
strictly cross-validation performance of the same mod-
els.16,32 In our simulated deployment on ECGs from 
2010, 11% of at-risk patients without history of disease 
were predicted to be high risk; 41% of patients with 
adequate follow-up were truly diagnosed with disease 
within the next year, through only standard clinical care 
and without any clinician-directed behavior change or 
active intervention that true deployment may elicit. This 
suggests that this 41% PPV is likely a lower bound for 
the expected real-world performance of the rECHOm-
mend model. Our simulated real-world deployment sce-
nario compares favorably with a recent pragmatic trial 
for predicting reduced EF which identified a real-world 
PPV of 39% using an EF cutoff of ≤50%, of which 

Table 3.  Age + Sex + ECG Traces Model Results for Cross-Validation Experiments for Each Individual Disease Outcome and 
Composite rECHOmmend Model

Disease Prevalence
Area under receiver 
operating curve

Area under precision-
recall curve

Positive predic-
tive value*

Negative predic-
tive value* Specificity*

Aortic stenosis 2.4 (2.3–2.5) 0.908 (0.900–0.915) 0.221 (0.204– 0.239) 8.4 (7.7–9.1) 99.7 (99.7–99.7) 75.7 (73.6–77.7)

Aortic regurgitation 1.8 (1.8–1.9) 0.849 (0.844–0.855) 0.120 (0.114– 0.127) 3.9 (3.6–4.2) 99.7 (99.7–99.7) 58.9 (57.2–60.7)

Mitral regurgitation 4.5 (4.4–4.6) 0.911 (0.908–0.914) 0.367 (0.347– 0.388) 15.2 (14.7–15.7) 99.4 (99.4–99.4) 76.4 (75.8–77.0)

Mitral stenosis 0.3 (0.2–0.3) 0.918 (0.905–0.930) 0.039 (0.036– 0.044) 1.1 (1.0–1.3) 100 (100–100) 79.4 (75.3–82.9)

Tricuspid regurgitation 4.7 (4.6–4.9) 0.915 (0.909–0.920) 0.415 (0.393– 0.438) 16.1 (14.7–17.7) 99.4 (99.3–99.4) 76.9 (74.7–78.9)

Ejection fraction <50% 9.2 (9.1–9.2) 0.929 (0.926–0.931) 0.647 (0.633– 0.662) 31.4 (30.2–32.7) 98.8 (98.7–98.8) 80.2 (79.1–81.2)

Interventricular septum 
>15 mm

4.0 (3.9–4.1) 0.862 (0.856–0.868) 0.223 (0.213– 0.234) 9.4 (8.8–10.1) 99.4 (99.3–99.4) 64.2 (61.7–66.6)

rECHOmmend (com-
posite)

17.9 (17.8–18.0) 0.907 (0.905–0.908) 0.714 (0.707–0.722) 42.0 (41.4–42.6) 97.1 (97.1–97.1) 72.9 (72.4–73.4)

Results are shown based on a random ECG per patient and averaged across 5 folds. All values are shown as percentages (95% CI). ECG indicates electrocar-
diogram.

*All values are at 90% sensitivity.
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Figure 4. Results of retrospective deployment scenario from 2010.
A, Results for all patients. B, Relative results per 100 at-risk patients. These results are based on a threshold yielding 50% sensitivity from the 
pre-2010 cross-validation experiment, resulting in 41.1% positive predictive value, 96.2% negative predictive value, 95.7% specificity, 44.1% 
sensitivity, and 6.4% prevalence in 2010. For 100 patients without known history of disease obtaining an ECG, the rECHOmmend model will 
identify 11 patients at high risk of disease, of which 5 are expected to have true disease within 1 year. The model will identify 89 patients not at 
high risk of disease, of which 86 are not expected to have true disease within 1 year. ECG indicates electrocardiogram; FN, false negative; FP, 
false positive; TN, true negative; and TP, true positive.
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24% of patients meeting this definition qualified with an 
EF of exactly 50%.32 Deployment scenarios also dem-
onstrate that cross-validation metrics that depend on 
prevalence likely overestimate real-world performance 
as seen in recent studies, including for the aforemen-
tioned reduced EF trial which lagged behind the origi-
nal cross-validation results (reported PPV of 63%).18,32 
Simulated deployment showed lower prevalence and 
PPV as compared with cross-validation experiments 
because of the inclusion of only at-risk patients, those 
with no previous history of any of the 7 disease labels, 
as well as the more limited 1-year time window, resulting 
in essentially a 1-year incidence rate versus a decades-
long incidence rate. Cross-validation experiments that 
restrict the analysis to at-risk patients (ie, with no previ-
ous positive diagnosis) may resemble a closer estimate 
to a real-world deployment. We propose that simulated 
retrospective deployment be carried out for future pre-
diction models to better gauge feasibility and real-world 
performance before clinical implementation.

Limitations
Our study has several limitations. Training and evalua-
tion were limited to a regional health system where most 
patients are White, so results may not be generalizable 
to hospitals or regions with more diversity. We are not 
aware of any physiologic differences across race/ethnic-
ity that would lead these ECG-based models to perform 
differently across groups, as corroborated by previous 
studies,33 and subgroup analyses across racial groups in 
our data showed similar performance (Table S9). In ad-
dition, we used echocardiography-confirmed diagnoses 
to generate our positive labels, which were confirmed 
on chart review to have a high PPV; however, there may 
be additional patients with disease (ie, false negatives) 
who were not captured using this method. Given the low 
prevalence of each disease in the general population and 
that echocardiography is the diagnostic standard, the 
negatives are likely true negatives, as seen in the retro-
spective deployment where we leveraged up to a decade 
of follow-up to determine negative outcomes. There may 
also be potential for misclassification because we are 
unable to ascertain the exact time at which a patient de-
velops a disease or no longer qualifies for a disease label 
attributable to physiologic changes such as spontaneous 
recovery or newly reduced EF. We sought to mitigate 
this through our methods for labeling positive ECGs, as 
well as no longer including ECGs after a censoring event 
such as normal repeat echocardiography or treatment 
which may alter the physiology of the heart or improve 
function. Fortunately, despite any potential misclassifica-
tion, our performance on echocardiography-confirmed 
disease was excellent. In addition, this machine learning 
approach has limited interpretability in identifying feature 
importance. Our model may not perform as well in pa-

tients with pacemakers or preexisting diagnoses of heart 
failure (Table S9); however, these patients are likely to 
undergo echocardiography as part of standard clinical 
care and may therefore represent a population for whom 
this predictive model is neither beneficial nor actionable 
in a prospective deployment. Last, increased IVS thick-
ness may represent infiltrative diseases or hypertrophic 
cardiomyopathy, or may largely represent concentric re-
modeling related to longstanding, poorly controlled hy-
pertension; however, these conditions are all clinically 
actionable.

This study demonstrates that a machine learning 
model using only ECG-based inputs can predict multiple 
important cardiac end points within a single platform with 
both good performance and high PPV, thereby represent-
ing a practical tool with which to better target echocar-
diography for the detection of undiagnosed disease. We 
confirmed these results through retrospective real-world 
deployment scenarios to show the large effect that such 
a model can have on patients when deployed across a 
health system. In future work, we plan to execute a pro-
spective study deploying this model across multiple health 
care systems to better understand the performance, fea-
sibility, and optimal implementation of this approach in the 
real world. These approaches to both clinical predictions 
and simulated deployment represent practical solutions 
for existing limitations in the implementation of machine 
learning in health care, hopefully bringing this technology 
one step closer to standard clinical practice.
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