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Abstract

Tsetse flies use antennal expressed genes to navigate their environment. While most

canonical genes associated with chemoreception are annotated, potential gaps with impor-

tant antennal genes are uncharacterized in Glossina morsitans morsitans. We generated

antennae-specific transcriptomes from adult male G. m. morsitans flies fed/unfed on blood-

meal and/or exposed to an attractant (ε-nonalactone), a repellant (δ-nonalactone) or paraffin

diluent. Using bioinformatics approach, we mapped raw reads onto G. m. morsitans gene-

set from VectorBase and collected un-mapped reads (constituting the gaps in annotation).

We de novo assembled these reads (un-mapped) into transcript and identified correspond-

ing genes of the transcripts in G. m. morsitans gene-set and protein homologs in UniProt

protein database to further annotate the gaps. We predicted potential protein-coding gene

regions associated with these transcripts in G. m. morsitans genome, annotated/curated

these genes and identified their putative annotated orthologs/homologs in Drosophila mela-

nogaster, Musca domestica or Anopheles gambiae genomes. We finally evaluated differen-

tial expression of the novel genes in relation to odor exposures relative to no-odor control

(unfed flies). About 45.21% of the sequenced reads had no corresponding transcripts within

G. m. morsitans gene-set, corresponding to the gap in existing annotation of the tsetse fly

genome. The total reads assembled into 72,428 unique transcripts, most (74.43%) of which

had no corresponding genes in the UniProt database. We annotated/curated 592 genes

from these transcripts, among which 202 were novel while 390 were improvements of exist-

ing genes in the G. m. morsitans genome. Among the novel genes, 94 had orthologs in D.

melanogaster, M. domestica or An. gambiae while 88 had homologs in UniProt. These

orthologs were putatively associated with oxidative regulation, protein synthesis, transcrip-

tional and/or translational regulation, detoxification and metal ion binding, thus providing

insight into their specific roles in antennal physiological processes in male G. m. morsitans.

A novel gene (GMOY014237.R1396) was differentially expressed in response to the
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attractant. We thus established significant gaps in G. m. morsitans genome annotation and

identified novel male antennae-expressed genes in the genome, among which > 53% (108)

are potentially G. m. morsitans specific.

Introduction

Management of Human African Trypanosomiasis (HAT) and Animal African Trypanosomia-

sis (AAT) initiative is a longstanding development preoccupation in sub-Saharan Africa, with

control of different species of tsetse fly vectors considered a potentially effective means of dis-

ease control and suppression. All tsetse fly species are susceptible to different trypanosome

infections and can transmit HAT and/or AAT to humans and livestock respectively. The criti-

cal determinant of differential transmission of trypanosomiasis among tsetse fly species is

hinged on their host preferences mediated mainly by antennae resident olfactory processes in

the different species. Tsetse flies typically navigate their environment by detecting and

responding to volatile and non-volatile cues and display polymorphic responses between spe-

cies, sexes, and allopatric populations [1–7]. Different tsetse flies transmit different trypano-

some species depending on the hosts they prefer to feed on. For example, riverine tsetse

species, such as Glossina fuscipes fuscipes, Glossina palpalis and Glossina tachinoides, prefer

feeding on reptilian hosts, unlike the savannah species, such as Glossina morsitans morsitans
and Glossina pallidipes, that feed largely on ungulates and other large mammals, a differential

behavioural choice that is very likely associated with differences in their olfactory architectures.

These olfactory attributes have been exploited in the characterization of tsetse fly species-spe-

cific attractant or repellent constituents and blends, which can be exploited for protection of

humans and their livestock [8–10]. Further studies on structure-activity and blending of odor

constituents have facilitated development of blends with enhanced attractance (‘pull’) [11] or

repellence (‘push’) of savannah tsetse flies [12]. The findings of these studies have laid down

useful groundwork for potential integration of repellent and attractant blends into ‘push-pull’

tsetse fly control strategies and provided opportunities for further studies on identification of

more potent analogues and blends with enhanced ‘pull’ or ‘push’ effects.

Search for novel tsetse fly responsive compounds and blends (repellent or attractant) can be

facilitated by characterizing molecular processes mediating species and/or sex specific differen-

tial responses. These can then be incorporated into existing optimized blends for possible

enhancement of repellence or attraction to target tsetse fly species. Impetus to explore this novel

approach is supported by availability of genomes of a suite of tsetse fly species (G. m. morsitans,
G. f. fuscipes, G. pallidipes, Glossina brevipalpis, Glossina austeni and Glossina palpalis gambien-
sis) [13]. Initial efforts were focused on annotations of canonical chemosensory-active genes

(coding odorant binding proteins, gustatory receptors, odorant receptors and ionotropic recep-

tors) [14–17] and their expansions among these tsetse fly species [18]. Most of these chemosen-

sory-active genes are expressed in the tsetse fly antennae, the principal olfactory system with

diverse sensilla [19–20]. The antennae not only mediate chemoreception (detection of smell

and taste), but also participate in mechanoreception, such as sensation of air-flow, vibration/

sound, pressure changes, moisture and temperature [21–25], all of which mediate the overall

responses of tsetse flies to external stimuli, including odors. Specifically, better understanding of

genes putatively involved in these molecular events and/or their modulations, at molecular lev-

els, could provide further insights on the processes directly or indirectly affecting responses of

tsetse flies to odor cues, since chemoreception and mechanoreception integrate in their activity

to regulate and co-ordinate tsetse fly responses to the stimuli.
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Currently, six genomes of tsetse fly species have been annotated and published by the Vec-

torBase community [13, 14]. Among these are active genes associated with chemoreception

[14, 17]. These annotations, especially of G. m. morsitans genome, were however based in part

on transcript evidence that were not antennae specific [13]. This suggests that the genes that

are specifically expressed in the antennae, especially those with low expressions, were probably

missed in the initial annotations because of their failure to meet the transcript expression

threshold for inclusion in genome annotations and curations pipelines, such as MAKER [26]

and Apollo software [27]. We hypothesized that antennae enriched transcriptome from adult

male G. m. morsitans tsetse would be enriched with novel antennae expressed genes absent in

the current annotations of G. m. morsitans genome in VectorBase [28]. Thus, in this study we

sought to initially focus on male G. m. morsitans because males are available in larger propor-

tions, compared to females that were limited by need for their deployment in the sustenance of

our tsetse fly colony. Secondly, the males equally sufficed as females or mixed gender to estab-

lish proof-of-concept in the application RNA-Seq approach, and our associated data analyses

pipeline in the identification and filling of gaps in genome annotations. Once established, the

concept can be adopted to improve annotation of female specific antennae expressed genes.

We thus initiated this study specifically to (1) establish gaps in annotation of antennae

expressed genes in male G. m. morsitans, 2) annotate and curate genes associated with these

gaps and 3) establish transcriptional responses of the novel genes associated with the gaps to

feeding, an attractant (ε-nonalactone) or a repellent (δ-nonalactone) [29] to the flies. We

selected to use unfed (hungry) tsetse flies of varying phenotypic/physiological states associated

with attraction to hosts or avoidance of non-hosts, typically mediated by antennal responses.

Tsetse flies in these phenotypic/physiological states potentially provide transcriptomes

enriched with transcribed genes in response to these stimuli (attractant, repellent, hunger/

feeding), which in turn can be targeted for development of potential novel tsetse responsive

molecules. Odors and hunger typically elicit stimuli-specific antennal transcriptional

responses in insect vector, as evidenced by transcriptional antennal responses among members

of the Anopheles gambiae species complex and Anopheles sinensis mosquitoes to blood feeding

[30, 31], and similar responses to odor in Drosophila melanogaster [32] and G. m. morsitans
[33]. Herein we report our findings.

Materials and methods

Study insects and reagents

We obtained antennae from male G. m. morsitans tsetse fly colony maintained at Yale Univer-

sity, New Haven, CT, USA, insectary. The flies originated from a small population originally

collected from Zimbabwe. The flies were maintained at 24˚C and 50–60% relative humidity

(RH) and received defibrinated bovine blood (commercially supplied by Hemostat Laborato-

ries, Dixon, CA, USA), via an artificial feeding system every 48h [34, 35]. Samples of the flies

comprised of 1–3 days old teneral male flies fed on defibrinated bovine blood- (the first blood

meal post-eclosion), to putatively prime their chemosensory apparatus. We sourced for δ-non-

alactone repellent (98–99% pure) as racemic mixture from Sigma-Aldrich (Taufkirchen, Ger-

many) and synthesized racemic blend of ε-nonalactone attractant (not commercially

available) in the laboratory as previously described [6]. We confirmed the structure of ε-nona-

lactone by High Resolution Mass Spectrometry (HR-MS), carbon 13 Nuclear Magnetic reso-

nance (13C NMR), Hydrogen Nuclear Magnetic Resonance (1H-NMR), and Fourier

Transform Infrared (FTIR) spectrophotometry as detailed and reported in Wachira et al. [29].

We tested all odorants at 10−3 dilutions in paraffin oil (1% vol/vol), as previously used in the

assessment of laboratory responses of G. m. morsitans to odors [33].
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Collection of male G. m. morsitans tsetse fly antennae samples

We collected the blood fed teneral male G. m. morsitans (1–3 days old) and starved some for

72hrs to ‘induce’ hunger and potentially prime them into ‘host seeking’ physiological state. We

kept the other normally fed tsetse to assess the effect of feeding on antennal transcriptional

changes. We hypothesized that the unfed flies would be conditioned to distinguish host

(attractant) or non-host (repellent) odor compounds compared to paraffin oil as control.

Briefly, we separately placed three independent replicates each consisting of 50 flies in 1L

transparent glass jars, with 100 μl of the paraffin oil diluted attractant or repellent via What-

man filter paper (1 cm in diameter) [33]. We similarly exposed the unfed tsetse fly control

groups to the paraffin oil diluent. In all cases, we enclosed the glass jar for five hours for opti-

mal exposures of the flies (unfed, attractant or repellent exposed treatments) under insectary

conditions. We assumed that the head space concentration of the attractant or repellent corre-

sponded to 10−3 dilution in paraffin oil within each jar. We did not assess empirical preva-

lence/concentration of the odors in headspace. We similarly handled the fed flies, but in two

independent replicates due to limitations in biological samples/materials. It has previously

been demonstrated that five hours exposure is optimal for desensitization of receptors and

subsequent transcriptional change in response to odors in Dm [32]. Since G. m. morsitans
show marked diel changes in their biting activity in the field, with their peak activity in the

mornings and afternoons [20], we performed the exposures from 7:00 am to 12:00 pm to

encompass the morning sessions of their peak activities and extracted a pair of antennae from

each fly and in each treatment (attractant/repellent exposed, fed or unfed (control)) as

described by Kabaka et al. [18]. Briefly, we snap-froze the flies at the end of the exposure dura-

tion by placing the jars containing the flies in -80˚C freezers. In each treatment, we carefully

hand-dissected, pooled pairs of antennae from the head of each fly and placed them in 1.5 ml

microfuge tubes (separated by replicate) kept in ultra-cold liquid nitrogen by methods of

Menuz et al., [36]. We then isolated RNA by mechanically crushing the antennae with dispos-

able RNAseq-free plastic pestles in TRIzol reagent (Invitrogen, Carlsbad, USA) following the

manufacturer’s protocol. We removed traces of potential carry over DNA (that could poten-

tially confound our RNA-Seq analysis) by digesting possible contaminating genomic DNAs

(gDNA) in the total RNA using TURBO DNase (Ambion life technologies, TX, USA) follow-

ing manufacturer’s instructions. We confirmed removal of the gDNA from total RNA by qual-

itative assessment of PCR amplicons from final RNA samples using tsetse specific beta-tubulin
gene primers as documented in Bateta et al. [37]. We verified quality and integrity of RNA

samples using Agilent Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA) following manufactur-

er’s instructions. cDNA was then generated from the RNA using Illumina TruSeq RNA Sample
Preparation Kit (Illumina, Hayward, CA, USA) and the cDNA (101 bp paired end read)

sequenced on Illumina HiSeq 2500 at Yale University Center of Genome Analysis (YCGA),

New Haven, CT, USA. We selected paired rather than unpaired-end read sequencing platform

to facilitate subsequent more accurate alignment of the reads on our reference transcripts [38].

We thus sequenced eleven libraries consisting of three replicates each of antennae from attrac-

tant, repellent or control exposed flies, and two from antennae of fed flies. We deposited all

these raw read sequences at the Sequence Read Archive (SRA) under study accession number

PRJNA344035.

Assessment of gaps in annotation of antennae expressed genes in male G.

m. morsitans tsetse flies

We established quality of the reads in each individual transcriptome library using FastQC ver-

sion 11.0 (Babraham Bioinformatics) software package (http://www.bioinformatics.babraham.
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ac.uk/projects/fastqc/). We then used the FastQC results to clean (trim) and remove low qual-

ity reads from respective transcriptomes using Trimmomatic software version 3.8 [39] that

implemented 1) -phred33 scale of quality scores commensurate with our RNA-Seq data quality

and format and 2) settings that permitted sequential cleaning of leading or trailing three nucle-

otides within 4:15 sliding window with at least 36 nucleotides. This cleaning process generated

1) paired reads of forward and their counterpart reverse reads surviving, 2) unpaired

(orphaned) reads where the forward or reverse reads did not survive or 3) none, where neither

forward nor reverse reads survived the cleaning process. We concatenated the forward or

reverse components of the clean paired reads category from different treatments and replicates

and mapped them (reads) onto G. m. morsitans transcripts gene-set version 1.9 or genome ver-

sion 1.0 from Vectorbase [28] using Bowtie 2 ultrafast short sequence reads aligning software

version 2.3.5 [40] with settings that also isolated unmapped reads from each mapping proce-

dure. We hypothesized that differences in mapping statistics between the transcript and the

genome would lend insight into the gap in annotation of the genome, with the genome map-

ping statistics providing additional insight on possible contamination of the original RNA (evi-

denced by poor mapping statistics) as an additional quality control procedure. We collected

the unmapped paired reads from the transcript mapping procedure (associated with the poten-

tial gap in annotation), de novo assembled them (unmapped reads) into transcripts and

assessed quality of the assembled transcripts using the short reads Trinity de novo assembly

software 2.10.0 [41].

We mapped back our unmapped reads onto our de novo assembled transcripts using Bow-

tie 2 ultrafast short sequence reads aligning software version 2.3.5 [40] to establish the propor-

tion of reads that were incorporated/employed in the de novo assembly, as a measure of

efficiency of the assembly process. We isolated the longest transcripts with open reading

frames (most representative of the respective genes) that could putatively yield peptides with at

least 100 amino acids long using TransDecoder software [42]. We queried these transcripts for

their putative functions/homologs in protein database UniProt release-2020-04 [43] or corre-

sponding transcript in G. m. morsitans transcripts gene-set version 1.9 from VectorBase [28]

using Basic Alignment Search Tool (BLAST) analysis for protein (tBlastx) or nucleotide

(BLASTn) sequences [44] respectively. We considered our de novo transcript 1) a homolog of

a Uniport database gene if it had an e-value < 0.001, a query coverage and length at least 95%

and 100 amino acids respectively, and 2) corresponding transcript of G. m. morsitans tran-

script if it had an e-value < 0.001, query coverage and identity of at least 95% and length of

300 nucleotides. We considered transcripts with neither homologs nor corresponding tran-

scripts in either database as novel transcripts. Those transcripts lent further insight into the

gap in genome annotation. We separately used the longest transcripts with open reading

frames to predict novel protein-coding genes in the G. m. morsitans genome version 1.0 from

Vectorbase [28] using MAKER computational pipeline [26]. This pipeline employed ab initio
gene predictions, transcript evidence and homologous protein evidence [26]. Our transcripts

and Uniprot/Swiss-Prot protein database [43] publicly available at https://www.uniprot.org/

(accessed on 10 June 2020) served as transcript and protein evidence respectively within the

pipeline. We finally assessed for proportion of our longest transcripts with open reading

frames that MAKER used in the prediction of protein-coding genes by searching for the corre-

sponding genes for our transcripts using BLASTn [44]. We considered de novo transcript cor-

respondent with the predicted genes if the e-value was < 0.001, and the query coverage and

identity were at least 95% each.
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Annotation of the novel expressed genes in male G. m. morsitans tsetse fly

We manually curated the final gene models generated by the MAKER software by inspecting

and refining the precise gene structure and putative function in graphical browser-based cura-

tion Apollo software [27] platform in community VectorBase [28]. Our major steps in the

manual curation included 1) investigating exon/intron structure integrity and setting start

and/or stop coordinates based on our concatenated RNA-seq evidence track as well as existing

tracks in VectorBase, 2) verifying consistency and accuracy of the curated gene models by que-

rying them against known homologs in D. melanogaster within VectorBase [28] and 3), inter-

nal validation and provision of stable sequence identities/adopted by VectorBase [28]. We

then assessed the improvement of our coverage in annotation of the genome by mapping the

(original) concatenated reads onto combined transcript dataset consisting of G. m. morsitans
gene-set (Var 1.9) [28] and the new annotated gene transcripts, using Bowtie 2 software ver-

sion 2.3.5 [40]. We assessed the proportion of our de novo assembled transcripts utilized/

accepted by MAKER computational pipeline in processing of the gene predictions by perform-

ing a nucleotide search using Basic Alignment Search Tool (BLASTn) [44] of the de novo
assembled transcripts as query against the newly curated genes as subject. We isolated novel

genes (predicted protein-coding genes) from among our newly annotated genes by performing

a nucleotide search using BLASTn [44] of the annotated genes against G. m. morsitans gene-

set (Var 1.9). We then identified putative functions of these novel genes (without correspond-

ing gene in the G. m. morsitans gene-set (Var 1.9) by identifying their 1) homologs in Uniport/

Swiss-prot protein database [43] using BLASTp [44] search against uniport protein database

[43] (accessed on 10 June 2020), accepting hits with e-value< 0.001 as significantly homolo-

gous, 2) protein domains and GO terms associated with the predicted protein-coding genes

using standalone InterproScan software version 5.52–86.0 [45] and 3) orthologs in M. domes-
tica or An. gambiae mosquito genomes obtained from VectorBase release 53 [28] or D. mela-
nogaster genome from FlyBase [46] using default settings in OrthoFinder software version

2.5.4 [47].

Assessment of differential responses of the novel expressed genes to G. m.

morsitans tsetse fly attractant or repellent odor cue

We assessed any differential expressions of the novel genes in response to the attractant (ε-

nonalactone) or the repellent (δ-nonalactone) structural analogues, and compared these with

the effect of feeding, using RSEM (RNA-Seq by Expectation Maximization) EBSeq pipeline

[48]. Responses to the G. m. morsitans transcripts gene-set version 1.9 from VectorBase [28] to

these odor molecules (ε-nonalactone/δ-nonalactone) have been previously evaluated and

reported elsewhere [49]. In the present study, we built RSEM transcript references for our

novel gene transcripts and separately mapped our clean paired reads and replicates from each

of our treatment libraries (fed, unfed, exposed to the repellent or the attractant) individually

onto our novel transcripts using Bowtie 2 version 2.3.5 [40]. We extracted the estimated read

counts for respective transcripts or their isoforms from each library and replicate, and subse-

quently generated a count matrix from comparisons of the reads from attractant, repellent or

fed treatment libraries to the unfed library (control) using RSEM–EBSeq pipeline [48]. This

analysis thus generated a list of relative expression levels of each transcripts/isoform in the

treatments relative to the control. We considered the transcripts/isoform significantly different

if there was a post-fold change of at least 2X and false discovery rate (FDR) corrected p< 0.05

between other treatments/libraries relative to the unfed control. We established the GO term

associated with differentially expressed gene(s) from VectorBase [28]. We have summarized

how we generated and processed our data in a flowchart presentation in Fig 1.
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Results

New antennae-specific transcripts establish annotation gaps in the G. m.

morsitans tsetse fly genome

We obtained 587 million reads from sequencing all the total RNA libraries from the antennae

of adult male G. m. morsitans. More than 99% of these libraries passed the quality control test

as clean paired (94.94%) or unpaired (4.43%) reads (Fig 2). More than 96% of the clean paired

reads mapped onto the genome, of which 93.42% mapped as pairs and 2.68% mapped singly

(unpaired). However, only 54.79% of the clean paired reads mapped onto the G. m. morsitans
gene set sequences, of which 50.35% mapped as pairs and 4.44% singly (unpaired) (Fig 2). Of

the clean paired reads (described here as divergent), 45.21% mapped onto the genome but not

onto the G. m. morsitans gene set. This was indicative of their G. m. morsitans origin (not con-

taminants or of parasitic nature), while potentially revealing the gap in the annotations of

active genes in the genome. The less than 4% of the clean paired reads that did not map onto

the genome potentially represent gaps in assembly of the genome and/or presence of symbi-

onts or pathogens in the fly population.

Divergent (unmapped) reads are associated with antennae-expressed novel

genes in the male G. m. morsitans tsetse fly

Our de novo assembly of the unmapped paired reads yielded to 311,970 transcript contigs,

grouped into 213,184 putative genes. The assembly had a GC quality content of 34.18% and

contig N50 quality statistic of 1,445 for all genes, and 903 (N50) for the longest isoforms. The

median contig base length was 478 and 367 bases, with average base length of 857.16 and

626.51 bases for genes or longest isoforms respectively (Table 1). Mapping back our reads onto

our de novo assembled transcripts revealed that at least 96.15% of our unmapped reads were

used in construction of de novo transcripts, among which 87.97% of the reads mapped in pairs

and 8.18% of the reads mapped singly (unpaired) (Fig 3). We isolated 72,428 non-redundant

longest transcripts with open reading frames, and with an open reading frame at least 300

nucleotides (100 amino acids) long. Our search for the homologs of these transcripts in Uni-

prot database genes [43] revealed that only 25.57% (18,522) of these transcripts had corre-

sponding homologs comprising of 5,252 unique (non-redundant) Uniprot database genes [43]

(S1 Table). Similarly, only 22.68% (16,427) of the transcripts had corresponding transcripts in

G. m. morsitans transcripts gene-set version 1.9 [28] comprising of 4,887 unique (non-redun-

dant) genes, among which 48.58% (2,374) were annotated (S2 Table). Overall, these searches

revealed that some of the de novo assembled transcripts associated with the unmapped reads

(gaps in genome annotation) were potentially linked to functionally annotated genes, while

others were novel without corresponding transcripts/genes in the databases. The functionally

annotated genes homologous to assembled transcripts in both databases were putatively asso-

ciated with chemoreception, regulation of gene expression and translation, detoxification of

xenobiotics and responses to stress among other attributes (S1 and S2 Tables).

Our prediction of protein-coding genes associated with the de novo assembled transcript in

G. m. morsitans genome in Vectorbase [28] identified 1,333 gene models potentially associated

with the divergent/unmapped reads. Assessment of the proportion of our de novo assembled

transcripts used in the prediction of protein-coding genes of the transcripts revealed that

68.86% (214,835) of these were deployed in the predictions, and about 30% were not, likely

due to insufficient evidence. Our interrogation of these predicted genes in a VectorBase com-

munity platform [28] established 73.74% (983) of the predicted genes as valid structural and

putative functional genes, among which 592 models showed sufficient supportive evidence
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and were curated in the database. Among these, 202 models comprised of novel genes with the

rest (390) constituting isoforms/variants of existing genes in Vectorbase [28]. Our search for

the orthologs of the novel genes in M. domestica, D. melanogaster or An. gambiae genome

revealed that 46.53% (94) of the novel genes had orthologs in at least one of the target genomes

(S3 Table), with some orthologs shared among the genomes (Fig 4). The rest without orthologs

were potentially novel in relation to the three genomes. These orthologs are putatively associ-

ated with cellular processes such as oxidative phosphorylation, protein synthesis, transcription

and translation regulation, detoxification, lipid and carbohydrates metabolism, embryogene-

sis, male courtship regulation, neural cell adhesion, protein folding, metal ion binding, G pro-

tein coupled receptor signaling, learning and memory development, immunity induction,

protein degradation and protein hydrolysis, among others (S3 Table). Similarly, analysis of the

novel genes within the Uniprot database [43] established that 43.56% (88) had potential homo-

logs in the database (S4 Table). These homologs were putatively associated with amino acid

biosynthesis, transcriptional regulation, memory formation, oxidative regulation, lipid metab-

olism, ribonucleic acids processing, stress response, signal transduction, metal ion binding,

embryo development and protein folding, modification, hydrolysis and degradation functions,

among others. Both analyses thus revealed that most of the novel genes (> 53%) were poten-

tially G. m. morsitans specific and appeared to be in sync with our initial analyses with the de
novo assembled transcript above. Our search for protein domains and GO terms associated

with these novel genes category revealed protein kinase domain, autophagy-related protein C

terminal, nitrogen permease regulator 2, beta-acetyl like hexosaminidase, RNA recognition

motif, ubiquitin family, ribosomal protein S15, cyclophilin type peptidyl-prolyl cis-trans isom-

erase and calcium-binding domains among these genes (S4 Table), suggesting again that the

novel genes are associated with coding genes of potential importance in modulating molecular

functions in the antennae.

We have summarized the variants/isoforms of the existing genes in S5 Table. Among our

390 variants, 42.82% (167) were isoforms of G. m. morsitans existing gene transcripts version

1.9 with stable community established structural and functional annotations and identity (ID)

in VectorBase [28]. These variants are putatively associated with cellular or molecular func-

tions that include protein transport, metal ion binding, neural signaling, oxidative regulation,

development, cell degradation, gene expression regulation, response to environmental changes

and olfactory roles such as odorant reception, gustatory responses and protein degradation.

Putative functions of the rest of these variants (223) have not been annotated/assigned in the

VectorBase [28].

Novel gene differentially expressed in the antennae of male G. m. morsitans
in response to attractant odor

Our assessment of differentially expressed transcripts revealed significant induction (3.5-fold

change and FDR of<0.05) of GMOY014237.R1396 novel gene transcript in response to attrac-

tant exposure relative to the no-odor control (unfed). This (GMOY014237.R1396) is among

the novel putative G. m. morsitans specific transcripts without any ortholog in any of the three

(M. domestica, D. melanogaster or An. gambiae) genomes or homologues among Uniprot data-

base genes [43] (S3 Table). Other attractant associated moderately induced (by at least

1.2-folds) novel transcripts included 1) GMOY014112.R1263 and GMOY014071.R1219,

which were potentially associated with protein degradation and ribosomal RNA processing,

Fig 1. Schematic flowchart diagram of processing of samples and bioinformatics analysis of RNA-Seq transcriptome data from male G. m.

morsitans tsetse fly antennae.

https://doi.org/10.1371/journal.pone.0273543.g001
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and 2) GMOY014158.R1315 by the repellent associated putative organ development functions

(S3 Table). However, these inductions were not statistically significant. Our GMOY014237.

R1396 differentially expressed gene was functionally associated structural molecule activity as

revealed by GO Term GO:0005198 associated with it in VectorBase [28]. We could not inde-

pendently validate expression levels of the single differentially expressed genes using RT-qPCR

[37, 50], due to limited biological resources/materials.

Discussion

In this study, we annotated G. m. morsitans tsetse fly antennae-expressed genes in genomic

loci supported by unmapped reads (without corresponding transcripts among existing gene

models/annotation). These reads are typically discarded from further downstream analyses.

We consequently identified 983 antennae-expressed genes in male G. m. morsitans as valid

structural and putatively functional genes in the antennae. Among these, 592 gene models

showed sufficient evidence for curation, validation and adoption for community use in Vec-

torBase [28], and of these, 202 of the gene models were novel. We retained the rest of the mod-

els (391) in the database for subsequent curation due to lack of supportive evidence. Our

current RNA-Seq libraries evidence had not been integrated into VectorBase database [28] at

the point of annotation and thus some of the gene models exclusively supported by our librar-

ies lacked sufficient in-house evidence for curation. Additionally, about 30% of our de novo
assembled transcripts were not integrated in the predicted gene models/coding genes by

MAKER computational pipeline [26], probably due to lack of supportive evidence from the

Uniprot protein database [43], which we provided as protein evidence within the pipeline, due

to our limited in-house computational capacity to process Metazoa subset of the non-redun-

dant (nr) protein database in the National Center for Biotechnology Information (NCBI), pre-

viously used in the initial annotation of the G. m. morsitans genome using the same pipeline

[13]. These de novo assembled transcripts might also have been components of noncoding

RNA (ncRNA) genes in the genome. The Encyclopedia of DNA Elements (ENCODE) Pro-

gram established significant transcription of DNA as RNA, vast majority of which are ncRNA

[51]. We nevertheless improved the annotation of the G. m. morsitans genome by at least

Fig 2. Quality and mapping statistics of concatenated RNA-Seq library from male G. m. morsitans tsetse fly

antennae. Panel A. Quality assessment statistics of the libraries. We extracted total RNA from blood fed/unfed teneral

male G. m. morsitans exposed/unexposed to attractant (ε-nonalactone) or repellent (δ-nonalactone) in two/three

independent replicates. We sequenced the RNA on Illumina HiSeq 2500, concatenated the resultant reads into a single

library and established quality of the library using FastQC v11.0 software package. We used the FastQC results to clean

(trim) and remove low quality reads from respective transcriptomes using Trimmomatic software version 3.8 [39].

Panel B. Mapping statistics of the libraries. We mapped clean paired (concatenated) reads onto G. m. morsitans
transcripts gene-set version 1.9 or genome version 1.0 from Vectorbase [28] using Bowtie 2 ultrafast short sequence

reads aligning software version 2.3.5 [40] with settings that also isolated unmapped reads.

https://doi.org/10.1371/journal.pone.0273543.g002

Table 1. Trinity transcriptome assembly quality assessment.

Statistics

Attribute All Transcripts Longest Isoform�

Genes 213184 -

Transcripts 311970 -

GC % 34.18 -

Contig N50 1445 903

Median contig length 478 367

Average contig length 857.16 626.51

https://doi.org/10.1371/journal.pone.0273543.t001
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4.55%, potentially adding to the 13,018 number of genes in the G. m. morsitans transcripts

gene-set version 1.9 [28], and established that we can uncover new genomic/biological infor-

mation from unmapped reads from the antennae-expressed G. m. morsitans transcripts. The

significant (> 96%) mapping of the antennae expressed reads onto the genome indicate suffi-

cient (quality) assembly of the reference genome. However, mapping statistics of the reads

onto the transcripts points to 1) a major gap (incompleteness) in annotations of G. m. morsi-
tans genome, 2) potential under representation of composition of genes present in G. m. morsi-
tans genome, and 3) deficiency in annotation of some tissues specific/expressed genes in G. m.

morsitans. Total number of annotated coding genes in G. m. morsitans is considerably smaller

(by more than 50%) than for D. melanogaster [13], which may be due to genes that have not

Fig 3. Quality assessment of read representation in de novo assembled antennal transcripts from male G. m. morsitans RNA-Seq antennal libraries. We

de novo assembled the unmapped reads into transcripts and assessed quality of the assembled transcripts using short reads Trinity de novo assembly software

2.10.0 [41] that mapped the reads onto their respective assembled transcripts to account for individual reads (incorporation).

https://doi.org/10.1371/journal.pone.0273543.g003
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been identified and annotated in G. m. morsitans genome. Similar relationship has previously

been observed between coding genes in avian and tetrapod genomes [52–54] and attributed to

incomplete annotation of the avian reference genomes [55]. Our approach in annotation of

the unmapped reads can be applied to improve annotations of draft genomes by annotation of

tissue-specific genes that can in turn lend additional insight into molecular processes that

underpin the physiological responses and related phenotype of the organism. While our find-

ings revealed potential gap in G. m. morsitans genome annotation, the extent of this gap (genes

misassembled or not annotated) and identification of the genes that miss in G. m. morsitans
compared with D. melanogaster and related taxa/species remain to be established. However,

this can be addressed by application of our approach in annotations of unmapped reads associ-

ated with tissue specific RNA-seq libraries as has recently been implemented in improving

annotation of 9,206 genes and identification of 2,000 novel genes in the genome of Rhodnius
prolixus Triatominae insect species [56].

At a functional level, this study provides us with new insights into the novel genes that

potentially mediate molecular functions in the antennae of male G. m. morsitans. None of the

orthologs or homologs of the novel genes in selected genomes (M. domestica, D. melanogaster
or An. gambiae) and Uniprot database genes, respectively, were putative canonical chemosen-

sory genes. The antennae are principal olfactory organs in insect with diverse sensilla [19, 57]

expressing a myriad chemosensory genes. The absence of chemosensory genes among our

novel genes could be tied to previous efforts that specifically focused on annotation of chemo-

sensory genes [14–18], that potentially annotated most or all the existing chemosensory genes.

Fig 4. Orthologs of novel annotated male G. m. morsitans antennae genes in D. melanogaster, M. domestica and An. gambiae genomes.

https://doi.org/10.1371/journal.pone.0273543.g004
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Our finding therefore suggests likelihood of successful annotation of vast majority, if not all, of

antennae associated chemosensory genes. Alternatively, our failure to annotate novel chemo-

sensory genes could be due to limitations in our 1) annotations of some of the coding gene pre-

dicted by MAKER computational pipeline [26], and 2) G. m. morsitans tissues and

physiological states (RNA-Seq library from only male of specific age from laboratory colony

reared flies). Tsetse specific novel chemosensory genes might also be part of the 108 novel

genes without orthologs in the selected genomes or homolog in the Uniprot database. This is

supported in part by the apparent significant differential transcriptional responses in

GMOY014237.R1396 novel gene in that category to attractant exposure relative to the no-odor

control in the current study. However more insight into biological role of this gene

(GMOY014237.R1396), can be better facilitated by validation of its expression using RT-qPCR

[37, 50] and function using "empty neuron" heterologous expression system [33] that were not

performed. Nevertheless, annotations of novel non-canonical chemosensory genes attest to

enrichment of the antennae with genes that facilitate specific responses to other olfactory

active compounds associated with active attraction to preferred hots, active avoidance of

refractory animals, and other important roles of the antennae, including mechanoreception

[21,23–25] and other regulatory processes that co-ordinate responses of tsetse fly to external

stimuli. Thus, the novel genes identified included those associated with metabolic process,

intracellular responses to extracellular signals, stress, regulation of cell cycle/growth, water

homeostasis and diuresis and nervous system development that point to complex molecular

processes in the male G. m. morsitans antennae. How these processes relate to phenotypic/

behavioral and olfactory responses of the tsetse flies to odor is not clear but play a critical regu-

latory role in modulating such behavior. Further annotations of the missing genes in this tis-

sue, including the novel putative G. m. morsitans specific genes, might provide further insight

on the additional genes involved with mechanoreception and chemoreception typically associ-

ated with antennal functions in insects, including tsetse flies. However, such annotations

would provide better resolution of the missing genes if RNA-Seq library originated from both

gender and wild population of G. m. morsitans of various physiological states.

In conclusion, we have shown missing genes with biologically significant information can

be annotated, from reads that do not align to existing gene transcript (unmapped reads), but

specific to the G. m. morsitans genome. These genes can provide further insights on those that

potentially mediate molecular functions in the antennae of male G. m. morsitans.
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