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1  |  INTRODUC TION

The thymus is an organ in which T cells develop and their antigen 
recognition repertoire is established.1 In the three- dimensional mi-
croenvironment composed of thymic stromal cells, immature T cells 
(called thymocytes) undergo stepwise developmental processes, in-
cluding differentiation, proliferation, and cell fate determination in 
order to give rise to mature T cells expressing a diverse T cell recep-
tor (TCR) repertoire.2

The thymus parenchyma is subdivided into two regions, the cor-
tex and medulla, wherein distinct subsets of thymic epithelial cells 
(TECs) form a reticular meshwork that houses developing thymo-
cytes.3,4 The cortex is the outer region with cortical TECs (cTECs) 

and thymocytes of immature stages, while the medulla is the inner 
region and is characterized by medullary TECs (mTECs) and ma-
ture thymocytes (Figure 1A). TECs play an essential role in T cell 
development, providing various signals in support of the survival, 
proliferation, migration, differentiation, and repertoire selection of 
thymocytes.

Early T- cell progenitors (ETPs) from the fetal liver or adult bone 
marrow differentiate into CD4−CD8− (double negative, DN) thymo-
cytes in the thymic cortex. Guided by cTECs, DN thymocytes are 
committed to the T- cell lineage and undergo rearrangements of the 
genes encoding the TCR.3- 5 In the adult thymus, ETPs arrive at the 
cortico- medullary junction (CMJ) where blood vessels are enriched, 
and developing DN thymocytes migrate through the cortex toward 
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Abstract
Fibroblasts have recently attracted attention as a key stromal component that con-
trols the immune responses in lymphoid tissues. The thymus has a unique microen-
vironment comprised of a variety of stromal cells, including fibroblasts and thymic 
epithelial cells (TECs), the latter of which is known to be important for T cell develop-
ment because of their ability to express self- antigens. Thymic fibroblasts contribute 
to thymus organogenesis during embryogenesis and form the capsule and medullary 
reticular network in the adult thymus. However, the immunological significance of 
thymic fibroblasts has thus far only been poorly elucidated. In this review, we will 
summarize the current views on the development and functions of thymic fibroblasts 
as revealed by new technologies such as multicolor flow cytometry and single cell– 
based transcriptome profiling. Furthermore, the recently discovered role of medullary 
fibroblasts in the establishment of T cell tolerance by producing a unique set of self- 
antigens will be highlighted.
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the subcapsular region and differentiate into CD4+CD8+ (double 
positive, DP) thymocytes in the outer cortex. DP thymocytes that 
have completed gene rearrangement express the rearranged TCR 
on the cell surface. Upon interaction between the TCR and self- 
peptide/MHC complexes, the cells with functional TCR are induced 
to differentiate into CD4+CD8− (CD4 single positive, CD4SP) or 
CD4−CD8+ (CD8SP) thymocytes (positive selection), while cells 
expressing self- reactive TCR are deleted (negative selection).6 The 
positive selection of such a diverse TCR repertoire depends on the 

ability of cTECs to produce and present a unique set of self- peptides 
via MHC molecules.7- 12

Positively selected SP thymocytes migrate from the cortex to 
the medulla, attracted by chemokines produced by mTECs.13- 16 In 
the medulla, mTECs express a large number of highly diverse anti-
gens called tissue- restricted antigens (TRAs) that represent almost 
all of the tissues in the entire body.17,18 The coordination of the 
mTEC expression of TRAs and relocation of SP thymocytes ensures 
the negative selection and/or regulatory T cell (Treg) conversion of 

F I G U R E  1  Thymic architecture and stromal cell localization. (A) Schematic depicting the thymic structure and the localization of stromal 
cells and thymocytes. (B and C) Thymus sections from 5- week- old C57BL/6 mice were stained for the indicated markers; Pdpn (fibroblasts), 
CD205 (cTECs), keratin 14 (K14) (mTECs), and DPP4 (capFbs). The scale bars indicate 100 µm. (B) Thymic fibroblasts expressing Pdpn are 
localized in the medulla as well as the capsule of the thymus. (C) DPP4 expression segregates the Pdpn+ thymic fibroblasts into capFbs and 
mFbs [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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SP thymocytes that recognize such TRAs, thus establishing self- 
tolerance in T cells.15,16,19- 24

In addition to TECs, which control T cell differentiation and se-
lection, a variety of non- TEC stromal cells support the thymic mi-
croenvironment. The blood vasculature is an important parenchymal 
component of the thymus that supplies oxygen and nutrients and 
provides entry and exit points for T cells as well as other immune 
cells. The cortex contains a network of capillaries, while the CMJ and 
medulla are enriched with arterioles and postcapillary venules.25,26 
These are made up of functionally distinct endothelial cells that con-
trol the influx of bloodborne molecules as well as ETP ingress and 
mature T cell egress.27- 29

The thymus also contains mesenchymal cells that originate 
from neural crest (NC) cells. These NC- derived mesenchymal cells 
are important for the differentiation and expansion of TECs during 
embryogenesis. In the postnatal thymus, the mesenchymal cells 
are predominantly found as fibroblasts in the capsule and medulla, 
and also as vascular mural cells (Figure 1A). However, despite their 
abundance in the thymus, the immunological significance of thymic 
fibroblasts in the postnatal thymus has been both less explored and 
understood than that of TECs.

Fibroblasts have been generally considered to be ordinary cells 
without specific features, distributed in tissues throughout the body. 
However, recent studies have revealed the functional heterogeneity 
of fibroblasts under various physiological and pathological condi-
tions,30- 32 including immune responses in secondary lymphoid or-
gans33,34 or upon viral infection.35 This review will provide a current 
state- of- the- art overview of thymic fibroblasts, focusing on histori-
cal studies and recently reported findings on their nature and immu-
nological functions.

2  |  FIBROBL A STS IN THE THYMUS

2.1  |  Overview of thymic mesenchymal cells

In the adult thymus, NC- derived mesenchymal cells are predomi-
nantly found in the capsule and medulla.36,37 The capsule of the 
mouse thymus comprises a monolayer of fibroblasts (capsular fi-
broblasts, capFbs) that covers the surface of the thymic paren-
chyma.25 The human thymus is covered by a capsule from which 
interlobular septa arise and divide the parenchyma into lobes.38,39 
There are some sparsely distributed fibroblasts in the cortex, but 
their structural features are not presently known. In the medulla, 
NC- derived cells are found as medullary fibroblasts (mFbs) and 
vascular mural cells. mFbs form the reticular network40 as well 
as the blood vessel adventitial layer.41 Mural cells are subdivided 
into pericytes and vascular smooth muscle cells (VSMCs), both of 
which are embedded in the basement membrane and ensheath the 
endothelial tubes. Pericytes and VSMCs are distinguished by the 
absence or the presence of contractility.42,43 Although the defi-
nition of these cells has been different or even deemed contro-
versial in different studies, in this review we define pericytes as 

non- contractile cells and VSMCs as contractile cells expressing 
α- smooth muscle actin (α- SMA).

Traditionally, monoclonal antibodies such as ER- TR7 and MTS- 15 
have been used for the detection of thymic fibroblasts. ER- TR7 re-
acts with an unidentified intracellular epitope of fibroblasts,44 while 
MTS- 15 binds glycosphingolipid on the fibroblast surface.45- 47 It was 
shown that in flow cytometry approximately one- half of PDGFRα+ 
thymic fibroblasts are MTS- 15+.47 Although these antibodies recog-
nize not only fibroblasts but also endothelial cells and mural cells, 
studies using these antibodies have led to the discovery of more spe-
cific molecular markers of thymic fibroblasts.

As summarized in Table 1, several proteins have been reported 
as thymic stromal cell subset markers, including fibroblasts. PDGFRα 
and PDGFRβ are markers widely used for detecting thymic fibro-
blasts.48- 50 PDGFRα is highly expressed in capFbs and mFbs, while 
PDGFRβ is prominent in pericytes and VSMCs. capFbs and mFbs 
also express podoplanin (Pdpn, also called gp38) and CD34 at high 
levels.40,41 Pericytes and VSMCs can be distinguished from fibro-
blasts by their high expression of Mcam (CD146) and integrin α7 
(Itga7).41,51 These markers allow the detection of thymic fibroblast 
subsets by immunohistochemistry (Figure 1B,C) and flow cytometry 
(Figure 2), as described below (Section 2.3).

Most of our understanding of thymic fibroblasts has come from 
studies using the thymus of animals such as mice and rats. Even 
though human thymus samples can be obtained from aborted fe-
tuses or neonatal cardiac surgery, these specimens are generally 
not readily available in many countries. Therefore, previous studies 
on human thymic fibroblasts have been limited mainly to histologi-
cal observations using fixed thymus specimens. Recently, however, 
some have attempted to clarify the functional classification and age- 
related changes of human thymic fibroblasts using new technologies 
such as single- cell transcriptomics. These studies will be discussed in 
detail later (Section 2.5).

In order to understand how these thymic fibroblasts develop and 
are localized within the thymus, it is necessary to have a close look at 
the organogenesis of the thymus.

2.2  |  Mesenchymal cells 
in organogenesis of the thymus

The thymus originates from the 3rd pharyngeal pouch, a temporary 
embryonic structure composed of evaginated endodermal epithe-
lial cells.52 The epithelial cells are surrounded by NC- derived mes-
enchymal cells, which support pouch patterning, organogenesis of 
the thymus as well as parathyroid grand, and differentiation of the 
epithelial cells into TECs. Along with the proliferation of TECs and 
organization of epithelial parenchyma, the surrounding mesenchy-
mal cells form the capsule that covers the surface, while a fraction of 
these cells invaginate into the thymus across the epithelial layers to 
establish an intrathymic network of fibroblasts.49,53 Along with this 
migration, mesoderm- derived progenitor cells enter into the thymus 
and differentiate into blood vessel endothelial cells in order to form 



    |  71NITTA eT Al.

a vascular network.54 Thus, the thymic epithelial, mesenchymal, and 
endothelial cells spatially and functionally interact in a coordinated 
manner in order to organize the thymic microenvironment.

NC- derived mesenchymal cells are required for the differenti-
ation and proliferation of TECs, thus maximizing the thymic capac-
ity for T cell production.48,49,53,55,56 The production of extracellular 
matrixes secreted by mesenchymal cells may be important for in-
corporating immature TECs into a three- dimensional microenvi-
ronment and presenting cytokines to developing thymocytes.57,58 
Mesenchymal cell- derived signaling proteins that control fetal 
TEC differentiation and expansion have been reported, including 
insulin- like growth factor- 1 (IGF1), IGF2, fibroblast growth factor- 7 
(FGF7), FGF10, bone morphogenic protein- 4 (BMP4), and the Wnt 
ligands.48,56,59- 64 Mesenchymal cells produce the vitamin A metabo-
lite retinoic acid, which inhibits TEC proliferation in embryonic thy-
mus.65 Thus, thymic mesenchymal cells may also exert a negative 
regulatory function on TECs.

Kernfeld et al performed single- cell RNA sequencing (RNA- seq) 
of whole cell types from embryonic thymus, including mesenchymal 
cells and TECs.66 Figure 3 shows the uniform manifold approximation 
and projection (UMAP) clustering of their data (GSE107910). Igf1, 
Fgf7, Fgf10, and Aldh1a2 (a gene encoding an enzyme for retinoic acid 
biosynthesis) were specifically expressed in mesenchymal cells (clus-
ter 2), suggesting the non- redundant role of mesenchymal cells as a 
source of these key factors. Bmp4 is expressed in both mesenchymal 
cells and TECs (cluster 1), consistent with a previous report that the 
deletion of Bmp4 in both NC- derived cells and endoderm- derived 

cells (but not either one alone) resulted in defects in thymus organo-
genesis.62 The Wnt ligand Wnt4 is reported to induce the expression 
of FoxN1 in TECs63 and is highly expressed in TECs, but only slightly 
in mesenchymal cells, suggesting a role for the Wnt pathway in fetal 
TEC differentiation, mainly in an autocrine manner. This single- cell 
study also revealed that the thymic mesenchyme strongly expresses 
Delta- like non- canonical Notch ligand 1 (Dlk1, also called Pref1), which 
is reported to support thymocyte cellularity in organ culture.67

Fetal thymic mesenchymal cells are thought to be a heteroge-
neous mixture of cells with different characteristics rather than a 
homogeneous population, and are remotely located in the outer and 
inner sites of the thymus. However, the mechanism underlying their 
heterogeneity has yet to be elucidated.

In the following Sections 2.3 to 2.5, recent advances in the iden-
tification and characterization of fibroblast subsets as well as other 
mesenchymal cells in the adult thymus by flow cytometry and tran-
scriptome analyses will be reviewed.

2.3  |  Flow cytometry of the thymic 
fibroblast subsets

Since several different markers are co- expressed in different cell 
types (Table 1), thymic stromal cell subsets have been difficult 
to evaluate by histological studies alone. An early study by Izon 
et al applied flow cytometry analysis to characterize thymic stro-
mal cells.68 Later studies improved on this method, establishing 

TA B L E  1  Molecular markers of mouse thymic stromal cells

Protein Gene

Expression pattern

ReferencescapFb mFb PC VSMC EC cTEC mTEC

PDGFRα (CD140a) Pdgfra ++ ++ + + +/− − − 36,48- 50,71,73

PDGFRβ (CD140b) Pdgfrb + + ++ ++ +/− − − 36,49,50,73

Podoplanin (gp38) Pdpn ++ ++ − − − +/− +/− 40,41,72,73,133

FSP1 (S100A4) S100a4 + + ++ ++ + − + 132

CD34 Cd34 ++ ++ - − ++ - − 41,73

DPP4 (CD26) Dpp4 ++ − − − − − − 72

Endosialin (CD248) Cd248 ++ + + + − − − 97

PECAM- 1 (CD31) Pecam1 − − − − ++ − − 37,45,69,71

Mcam (CD146) Mcam − +/− ++ ++ + − − 72,73

Integrin α7 Itga7 − − ++ ++ − − − 41

α- SMA Acta2 − − − ++ − − − 36,37,41,50

Ly51 (CD249) Enpep − − + + − ++ − 45,46,71

EpCAM (CD326) Epcam − − − − − ++ ++ 45,46,71

MHC- II H2- Aa,H2- Ab1 − − − − − ++ ++ 45,70,71

H2- Ea,H2- Eb1

CD80 Cd80 − − − − − − ++ 71

Note: Abbreviations: capFb, capsular fibroblast; cTEC, cortical thymic epithelial cell; EC, endothelial cell; mFb, medullary fibroblast; mTEC, medullary 
thymic epithelial cell; PC, pericyte; VSMC, vascular smooth muscle cell.
−, negative; +, positive; ++, strongly positive; +/−, partially positive.
FSP1 and α- SMA are intracellular proteins, and the others are cell surface proteins.
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protocols to efficiently dissociate cells from thymus tissue and 
to distinguish different stromal cell populations using multicolor 
cytometry.45,46,69,70 To date, the collagenase extracted from 
Clostridium histolyticum has been widely used for dissociating 
thymic stromal cells. Liberase research grade enzymes, a blend 
of purified collagenase and other proteases, are able to dissociate 

thymic epithelial cells in higher yield than using crude collagenase 
products,71 and are now most widely used as the standard proto-
col. Although they cleave certain cell surface epitopes and thereby 
weaken the staining intensity, Liberase enzymes are also useful for 
preparing non- epithelial thymic stromal cells including fibroblasts, 
endothelial cells, and vascular mural cells in high yield and quality. 

F I G U R E  2  Flow cytometry detection of thymic fibroblast subsets. Thymic stromal cells were prepared using 0.01% Liberase TM (Roche) 
(A) or 0.125% collagenase D (Roche) (B) from 5- week- old C57BL/6 mice, as described previously.71,72 Representative flow cytometry profiles 
of gated stromal cell populations are shown. (A) In the Liberase TM- dissociated, CD45− EpCAM− CD31− PDGFRαβ+ cell population, Pdpn+ 
DPP4+ cells (capFbs) and Pdpn+ DPP4− cells (mFbs) were detected. The Pdpn− CD146+ cells contain α- SMA− pericytes and α- SMA+ VSMCs. 
(B) In the collagenase D- dissociated cell suspension, the Pdpn− CD146+ α- SMA− pericytes and Pdpn− CD146+ α- SMA+ VSMCs were found 
at a very low frequency or were almost undetectable, while capFbs and mFbs were readily detectable [Colour figure can be viewed at 
wileyonlinelibrary.com]

(A)

(B)

F I G U R E  3  Single- cell transcriptome of fetal thymic cells. (A) Two- dimensional representation of E14 fetal thymic cells. Data from the 
Gene Expression Omnibus (GEO) database under accession no. GSE107910 were used for UMAP clustering.66 Each dot represents a single 
cell. The full source code for analysis is available in GitHub (https://github.com/nitta takes hi/Immun olRev_Fig3). (B) Expression profiles of the 
genes which are known to control fetal TEC differentiation and expansion. Col3a1 was used as a marker of mesenchymal cells [Colour figure 
can be viewed at wileyonlinelibrary.com]

E14 Fetal thymus

TEC

Mesenchymal cell

Thymocyte

(A) (B)

www.wileyonlinelibrary.com
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Figure 2A shows the flow cytometry profiles of thymic mesen-
chymal stromal cells (Ter119− CD45− EpCAM− CD31− PDGFRαβ+) 
dissociated from the mouse thymus with Liberase TM. Among the 
thymic mesenchymal cells, a dominant population is the Pdpn+ 
CD146− fibroblasts, which are characterized by a high expression 
of PDGFRα and CD34.41 A minor population, Pdpn− CD146+ cells 
co- expressing PDGFRβ, Ly51, and integrin α7,41 contains α- SMA− 
pericytes and α- SMA+ VSMCs.

Recently, we developed a gradual method of digestion using the 
Liberase enzyme that allows for the fractionation of thymic cells 
based on their location within the thymus.72 This location- based 
fractionation method allows the physical separation of remotely 
localized thymic fibroblast subsets, capFbs, and mFbs. We identi-
fied a cell- surface protein, dipeptidyl peptidase- 4 (DPP4, also called 
CD26), which is highly expressed in capFbs but not in mFbs, and con-
sequently established a method to separate capFbs (DPP4+ Pdpn+) 
and mFbs (DPP4− Pdpn+) by flow cytometry (Figure 2A) as well as 
histological staining (Figure 1C).

Among the thymic stromal cells, mural cells are relatively difficult 
to dissociate. When dissociated with collagenase D, a crude collage-
nase preparation, the yield of Pdpn− CD146+ mural cells, including 
pericytes and VSMCs is very low or even undetectable compared to 
the yield when Liberase TM is used (Figure 2B). This might be due to 
the excessive cellular damage caused by contaminating components 
such as endotoxin in the crude enzyme preparations, and possibly 
explains the reason why these cells have not been readily detected 
in previous studies (see Section 2.5). Even with Liberase, it is still 
possible that some unnoticed stromal cell types are lost during en-
zymatic digestion.

Collectively, however, by using cell dissociation with Liberase 
and multicolor flow cytometry, it has now been made possible to 
determine and isolate almost all of the types of stromal cells that 
compose thymic microenvironment.

2.4  |  Population- based transcriptome profiling of 
thymic fibroblasts

In order to characterize the nature and function of thymic fibro-
blasts, many studies have sought to reveal their gene expression 
profiles. However, it has been difficult to delineate a unified gene 
expression pattern for thymic fibroblasts, because the markers used 
to isolate the cell subsets vary from study to study.

Patenaude and Perreault performed whole transcriptome 
analysis by RNA- seq of thymic mesenchymal cells (Lineage− 
EpCAM− CD31− Sca1+).73 Their results revealed that Sca1+ thymic 
mesenchymal cells exhibit a higher expression of genes involved in 
epithelial interaction, apoptotic cell clearance, and T- cell progenitor 
expansion, compared to their bone or skin counterparts, suggest-
ing a pivotal role for these cells in the thymic microenvironment. 
However, since the Sca1+ mesenchymal cell population is a mixture 
of the fibroblasts, pericytes, and VSMCs, the cell subsets which ex-
press each of the key genes remain to be determined.

In a study by Sitnik et al, thymic mesenchymal cells (Lineage− 
EpCAM− CD31− PDGFRβ+) were divided into two subsets, Pdpn+ 
Ly51− fibroblasts and Pdpn− Ly51+ mural cells, and then, their en-
tire transcriptome was analyzed by microarray.41 The Pdpn+ Ly51− 
cells expressed genes regulating vascular and epithelial cell growth 
(Vegfc, Vegfd, Igf1, Igf2, Fgf2, Fgf7, and Fgf10), suggesting that thymic 
fibroblasts play a role in maintaining vascular and epithelial niches. It 
is likely that the Pdpn− Ly51+ cells contained VSMCs, as indicated by 
the high expression of the Acta2 gene (α- SMA).

Our recent results have determined the whole transcriptome of 
the isolated thymic fibroblast subsets by RNA- seq.72 Both capFbs 
and mFbs highly express certain fibroblast- associated genes such as 
collagens (Col1a1, Col1a2, Col3a1, and Col6a1), extracellular matrix 
proteins (Dcn, Lum, Mgp, and Sparc), extracellular proteases (Htra1, 
Htra3, Mmp2, Mmp3, and Mmp14), and protease inhibitors (Serping1 
and Serpinh1). These gene expression signatures are similar to those 
of fibroblastic cells in secondary lymphoid organs reported in pre-
vious studies.41,73 A set of genes was found to be differentially ex-
pressed in capFbs and mFbs (see Sections 3 and 4).

We also analyzed the transcriptome of Pdpn− CD146+ mural 
cells. These cells displayed a gene expression pattern reminiscent 
of a certain type of fibroblast (Col3a1, Col4a1, and Col6a1) and a 
potent expression of genes associated with pericytes (Cspg4) or 
muscle cells (Acta2, Myl9, and Myh11), indicating that the Pdpn− 
CD146+ cell population is a mixture of pericytes and VSMCs. 
This is consistent with the results of flow cytometry that indi-
cate Pdpn− CD146+ cells comprise α- SMA− pericytes and α- SMA+ 
VSMCs (Figure 2A).

These population- based transcriptome datasets of thymic fibro-
blast subsets should provide a powerful tool for understanding the 
development and function of the thymic microenvironment, espe-
cially in combination with the recently advanced single cell– based 
transcriptome datasets described below.

2.5  |  Single cell– based transcriptome profiling of 
thymic fibroblasts

Bornstein et al reported single- cell RNA- seq analysis of mouse thymic 
stromal cells.74 Figure 4 shows the UMAP clustering of their data of 
whole thymic stromal cells (GSE103967). The TEC subpopulations, 
endothelial cells, and contaminating lymphocytes and myeloid cells 
were clustered according to the gene expression signatures specific 
for each cell types (Figure 4A,B). Clusters 2, 4, 7, and 8 exhibited 
a high level of expression of Col3a1, Pdgfra, and Pdgfrb, indicating 
that these clusters comprise thymic fibroblasts. Cluster 7 expressed 
Dpp4, Pi16, and Mfap5, corresponding to capFb (Figure 4C,D) based 
on the results of the population- based transcriptome.72 Both clus-
ters 2 and 4 exhibited a high expression of Serpine2 and Apod and 
no expression of Dpp4, corresponding to mFb. Pericytes and VSMCs 
were not clearly clustered at this resolution, most likely because 
most of these cells were lost during the collagenase D digestion per-
formed for cell isolation.74
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Cluster 8 is a relatively minor cell population that expresses the 
Dpp4 and Pdpn that are similar to cluster 7 (capFb), but also exhibits a 
high expression of Msln and Upk3b with only negligible expression of 
Pi16 and Mfap5, which is markedly different from cluster 7. It is likely 
that cluster 8 comprises mesothelial cells that can be defined by a 

high expression of mesothelin (Msln).75,76 These mesothelial cells are 
specifically detectable in the outermost fractions of the thymus (un-
published data), suggesting that these cells compose the thymic cap-
sule together with capFbs, or that they are derived from the visceral 
pleura in contact with the thymus. Thus, the DPP4+ Pdpn+ cells that 

F I G U R E  4  Single- cell transcriptome of adult thymic stromal cells. Single- cell RNA- seq data of mouse thymic stromal cells (GEO accession 
no. GSE103967, Experiment ID thymus_stroma_WT) were used for UMAP clustering.74 The full source code for analysis is available in 
GitHub (https://github.com/nitta takes hi/Immun olRev_Fig4). (A) Two- dimensional representation of cells by UMAP. Each dot represents one 
cell. (B) Projection of representative genes. Clusters 0, 1, and 6 are TEC subsets defined by the expression of Epcam as well as key genes 
such as Aire or Ccl21a. Cluster 3 represents endothelial cells (ECs) expressing Pecam1. Clusters 2, 4, 7, and 8 represent thymic fibroblasts 
characterized by the expression of Col3a1, Pdgfra, and Pdgfrb. Contaminating lymphocytes (cluster 5) and myeloid cells (cluster 9) are also 
included. (C) Thymic fibroblast subsets (clusters 2, 4, 7, and 8) are highlighted. (D) Cluster 7 represents capFbs expressing Dpp4, Pi16, and 
Mfap5. Cluster 8 represents mesothelial cells defined by a high expression of Msln. mFbs (clusters 2 and 4) can be subdivided into immature 
and mature mFbs, and the latter express Mmp9, Ltbp1, and Col6a5 [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (C)

(B) (D)

https://github.com/nittatakeshi/ImmunolRev_Fig4
www.wileyonlinelibrary.com
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we called capFbs (Section 2.2 and Figure 2A) contain two subpop-
ulations, a major population expressing Pi16 and a minor population 
corresponding to mesothelial cells. In this review, we refer to the 
former as capFb.

In a recent study, Park et al performed single- cell RNA- seq to 
create a comprehensive atlas of human thymic cells including stro-
mal cells.77 In their dataset, thymic mesenchymal cells were clas-
sified into fibroblast type 1 (Fb1), fibroblast type 2 (Fb2), cycling 
fibroblasts, and VSMCs.78 Fb1 and Fb2, respectively, correspond 
to mesothelial cells and capFbs in the mouse (Figure 4C,D). These 
clustering results did not contain clusters that correspond to mouse 
mFbs, probably due to the large variability in human data, which in-
cludes a variety of samples in a range from the fetus to the adult.

The same group also published a single- cell RNA- seq dataset of 
the mouse thymus78 generated with previously reported data from 
the fetal and postnatal thymus,66,74 in which thymic mesenchymal 
cells were classified into four groups, Fb_Aldh1a2 (corresponding to 
mesothelial cells), Fb_Pi16 (corresponding to capFb), Fb_Postn (cor-
responding to mFb), and VSMCs (containing pericytes and VSMCs). 
These clusters are all consistent with the cell populations revealed 
by flow cytometry and the population- based transcriptome.

In the following sections, we will focus on the thymic fibroblast 
subsets capFb and mFb, summarizing how they develop and regulate 
T cell development, referring to the studies with transcriptome data 
as well as genetically modified mouse models.

3  |  THE C APSUL AR FIBROBL A ST (C APFB)

3.1  |  Development of capFbs

The surface of the thymus is covered by a monolayer of fibroblasts 
that contacts the epithelial parenchyma across the basement mem-
brane. capFbs are derived from the NC- derived mesenchymal cells 
that surround the embryonic thymus primordium and remain out-
side. In the mouse, at around E13, thymic mesenchymal cells diverge 
into two populations, a perithymic cell population remaining outside 
the organ that forms the thymic capsule, and another population that 
migrates into the thymus across the epithelial layers to give rise to 
mFbs, pericytes, and VSMCs. At E15, DPP4 begins to be expressed 
in the capsular populations, which allows the two populations capFb 
and mFb to be distinguished by flow cytometry analysis.72 It was 
also shown that in human thymus the fibroblasts expressing DPP4 
and PI16 (likely capFbs) increase during fetal development.77 The 
mechanisms that induce the expression of capFb- associated genes, 
including Dpp4, are still unclear.

DPP4 is a useful marker for the detection and isolation of cap-
Fbs. DPP4 is reportedly expressed by activated fibroblasts in fibrotic 
tissues such as the skin of patients with systemic sclerosis as well as 
in cases of liver fibrosis79- 82 or the breast implant capsule in patients 
with capsular contraction.83,84 Genetic ablation or pharmacological 
inhibition of DPP4 ameliorates fibrosis in mice, indicating that DPP4 
activity is important for fibroblast activation and tissue fibrosis.82,85 

Whether DPP4 is involved in the function of the thymic capsule re-
mains to be elucidated.

3.2  |  Control of TEC development by capFbs

Figure 5A shows the KEGG pathway enrichment analysis of the tran-
scriptome data of the thymic fibroblast subsets.72 The Wnt signaling 
pathway was found to be significantly enriched in capFbs compared 
with mFbs. Indeed, capFbs express many Wnt family ligands and 
regulators (Wnt2, Wnt5a, Wnt9a, Wnt11, Sfrp2, and Sfrp4) at higher 
levels than mFbs as well as other thymic stromal cells (Figure 5B). 
Wnt signals reportedly critically control the differentiation of TECs 
and thymocytes,63,86- 89 suggesting a role for capFb- derived Wnt sig-
nals in the thymus. Although a previous study demonstrated that 
TECs themselves act as a source of Wnt ligands for maintaining TEC 
cellularity and thymus size,90 the contribution of capFb- derived Wnt 
signals to the regulation of TEC and T cell development remains to 
be determined in future study.

Thymic mesenchymal cells (Pdpn+ Ly51−) are a major thymic 
source of retinoic acid, which exerts an inhibitory effect on TEC pro-
liferation.65 The transcriptome data show that the genes encoding 
retinoic acid- producing enzymes Aldh1a1, Aldh1a2, and Aldh1a3 are 
strongly expressed in capFbs and/or mesothelial cells: Aldh1a1 in 
both, Aldh1a2 in mesothelial cells, and Aldh1a3 in capFbs (Figure 4D 
and data not shown). Mice with TECs unable to respond to retinoic 
acid display an aberrant cTEC phenotype, including increased pro-
liferation and the accumulation of an immature population, with a 
subsequent reduction in thymic cellularity.91 Thus, the retinoic acid 
produced in the outermost layer of the thymus acts as a regulator of 
TECs and is important for normal T cell development.

3.3  |  Control of T cell development by capFbs

The genes uniquely expressed in capFbs in the thymus include the 
extracellular protease DPP4 (Dpp4), peptidase inhibitor- 16 (Pi16), 
Wnt ligands, and semaphorin ligands (Sema3c and Sema3d). The 
semaphorin ligands expressed in capFbs may control the migration 
of developing thymocytes, since it is reported that the semaphorin 
receptor Plexin D1 is strongly expressed by DP thymocytes and the 
absence of Plexin D1 disturbs the medulla localization of newly gen-
erated SP thymocytes.92

CD248 (Endosialin) is known to be a marker of mesenchymal 
cells.93- 95 Immunohistochemical analysis indicated that CD248 ex-
pression is prominently detected in the perithymic mesenchyme in 
the mouse embryo, then downregulated postnatally.96,97 From tran-
scriptome analysis of human and mouse thymus, Cd248 mRNA is 
expressed at the highest level in capFbs and mesothelial cells,72,77,78 
suggesting that CD248 may exert effects in the outermost niches of 
the thymus. CD248- deficient mice display age- dependent decline of 
thymus size and thymocyte cellularity, and, in particular, a marked re-
duction of DN3 thymocytes.97 The proliferation of DN3 thymocytes 
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that occurs in the subcapsular zone may be regulated by the CD248 
expressed in capFbs. It was also shown that CD248- deficient mice 
exhibit delayed recovery of thymus size and vascularization follow-
ing infection- induced atrophy. Although the mechanism remains un-
clear, CD248 may promote re- vascularization and thymocyte growth 
during postinfection regeneration.

How capFbs and mesothelial cells control the outermost barrier 
of the thymus and thymus integrity needs to be clarified in future. 
The interplay between capFbs and subcapsular cTECs may also be 
important for supporting T cell development in the subcapsular zone 
and outer cortex, but determining its physiological significance and 
molecular basis still remains a challenge.

4  |  THE MEDULL ARY FIBROBL A ST (MFB)

4.1  |  Development of mFbs

On histological analysis, mFbs are detected as a reticular structure 
interwoven with but also clearly separated from the network of 
mTECs.40,72 A population of mFbs expressing CD34 forms adventi-
tial layers that surround mural cells and endothelial cells, and thus re-
ferred to as adventitial cells.41 In flow cytometry analysis combined 
with the location- based fractionation method, mFbs are found to be 

enriched in the medullary fraction together with mTECs, consistent 
with the histological findings.72

Studies using a fate- mapping strategy with various Cre lines spe-
cific to NC (Wnt1a- Cre, Sox10- Cre, or Twist2- Cre) or thymic epithe-
lium (Foxn1- Cre) have demonstrated that mFbs are derived from the 
NC- derived mesenchymal cells that surround the embryonic thymus 
primordium, not from TECs36,37,72 (this is also discussed in Section 5). 
mFbs in the fetal thymus express low levels of marker proteins such 
as Pdpn and ICAM1, and their expression increases in the course of 
postnatal development,41 indicating that the maturation of mFbs is 
developmentally regulated during ontogeny (see Section 4.3). It has 
also been shown that Pdpnhi ICAM1hi mFbs are capable of generat-
ing Pdpn− Esam1+ mural cells or lymph node stroma- like cells when 
reaggregated under appropriate conditions.41 Hence, the mFbs at 
the population level contain progenitor cells for multiple lymphoid 
tissue stromal cells, and their differentiation capacity is dependent 
on the particular environmental context.

4.2  |  Gene expression in mFbs

As a result of KEGG pathway analysis, the genes for TNF signaling 
and NF- κB signaling as well as antigen processing and presentation 
were found to be significantly enriched in mFbs compared with 

F I G U R E  5  Gene expression profiling of capFbs and mFbs by whole transcriptome analysis. (A) KEGG pathway analysis of genes 
differentially expressed in capFbs and mFbs. Genes highly expressed in capFbs (capFbs/mFbs > 2, mean RPKM of capFbs > 10, P <.05) or 
in mFbs (mFb/capFb > 2, mean RPKM of mFb > 10, P <.05) were collected from bulk RNA- seq data (GEO accession no. GSE147357)72 and 
subjected to KEGG pathway enrichment analysis using DAVID 6.8. (B) Heat map showing the relative expression of genes categorized as 
being in the Wnt signaling pathway, TNF signaling pathway, and NF- κB signaling pathway, as well as antigen processing and presentation 
[Colour figure can be viewed at wileyonlinelibrary.com]
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capFbs (Figure 5A). These findings suggest that TNF signaling and 
NF- κB activation pathways play important roles in development 
and/or function of mFbs and that mFbs are differentiated such that 
they have a higher antigen presentation capacity than capFbs. Also, 
a set of genes, including certain collagens (Col6a5, Col6a6), matrix 
metalloprotease- 9 (Mmp9), metabolic enzymes (Hmgcs2, Ltc4s, and 
Qprt), and TGFβ- binding proteins (Ltbp1 and Ltbp2) are predomi-
nantly expressed in mFbs among all of the thymic stromal cell types.

mFbs form a conduit- like structure that resembles the one 
formed by fibroblastic reticular cells (FRCs) in the lymph nodes.40,98 
To determine the functional cue for mFbs, the transcriptome was 
compared between mFbs and lymph node FRCs.72 Gene ontology 
(GO) term analysis revealed that mFbs are significantly enriched 
for genes associated with extracellular matrix organization and cell 
adhesion but have a lower association with genes for angiogenesis, 
the inflammatory response, and the immune response, suggesting 
functional differences between these two morphologically similar 
cell types (Figure 6A,B).

Lymph node FRCs can be divided into several subtypes express-
ing different sets of key cytokines and chemokines, such as T- cell 
zone reticular cells (TRCs) expressing Ccl19, Ccl21a and Il7, follicu-
lar dendritic cells (FDCs) expressing Cxcl13, marginal reticular cells 
(MRCs) expressing Tnfsf11, and medullary reticular cells (medRCs) 
expressing Cxcl12, Il6, Tnfsf13, and Tnfsf13b.33,34,99 Most of these 
FRC- associated cytokines and chemokines are not or only just barely 
expressed in mFbs (Figure 6C),72 but are predominantly expressed in 
TECs or thymocytes,100- 102 suggesting that the roles played by FRCs 
in the lymph nodes are replaced by TECs and thymocytes in the 

thymus. mFbs highly express other sets of chemokine genes, such 
as Cx3cl1 and Cxcl14, that are barely expressed in lymph node FRCs, 
possibly contributing to the regulation of cell migration in the thymic 
medulla.72 Thus, mFbs comprise a thymic- specific subset of fibro-
blasts that is functionally distinct from lymph node FRCs.

It has been reported that patients with autoimmune diseases 
such as myasthenia gravis or autoimmune- prone mice exhibit an ab-
normal accumulation of B cells in the thymus.103- 105 In lupus- prone 
BWF1 mice, thymic B cells proliferate within the perivascular space 
and cluster in structures that resemble ectopic germinal centers, 
where B cells differentiate to secrete autoantibodies.106 Other early 
studies also reported that the thymus from lupus- prone NZB mice 
or diabetes- prone NOD mice contained giant perivascular spaces, 
which are filled with mature T cells, B cells, and fibroblast- associated 
extracellular matrix proteins.107- 110 Whether these autoimmune- 
associated, “germinal center- like” structures involve any subset(s) of 
thymic fibroblasts, like as the formation of the canonical germinal 
centers in the lymph nodes requires FDCs, remains an open and in-
teresting question.

4.3  |  LTβR- dependent maturation of mFbs

Single- cell RNA- seq analysis of mouse thymic stromal cells demon-
strated that the genes highly expressed in mFbs, such as Serpine2 
and Apod, are prominently detected in clusters 2 and 4 (Figure 4C,D). 
Certain mFb- associated genes, including Mmp9, Ltbp1, and Col6a5, 
are detectable in cluster 4 but not cluster 2. These cluster 4- specific 

F I G U R E  6  Comparison of the whole transcriptome between thymic mFbs and lymph node FRCs. RNA- seq data of mFbs, mesenteric 
lymph node (mLN) FRCs, and skin- draining lymph node (sLN) FRCs (GEO accession no. GSE147357) were used.72 (A, B) GO term enrichment 
analysis of genes preferentially expressed in lymph node (LN) FRCs or mFbs. Genes preferentially expressed in LN FRCs compared to mFbs 
(mLN FRCs: mLN FRCs/mFbs > 5, sLN FRCs: sLN FRCs/mFbs > 5) (A) or in mFbs compared to LN FRCs (mLN.FRCs: mFbs /mLN FRCs > 5, 
sLN.FRCs: sLN FRCs/mFbs > 5) (RPKM > 10 in any of the groups) were subjected to GO term enrichment analysis using DAVID 6.8. (C) 
Scatter plot of the gene expression ratio between mLN FRCs/mFbs and sLN FRCs/mFbs. The genes associated with the immune response 
and the chemokine- mediated signaling pathway in (A) are highlighted in red. The genes associated with extracellular matrix organization in 
(B) are highlighted in blue [Colour figure can be viewed at wileyonlinelibrary.com]
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genes are expressed in mFbs from adult but not neonatal mice,72 sug-
gesting that clusters 4 and 2 represent mature and immature mFbs, 
respectively. In addition, most of these mature mFb- associated 
genes are expressed under the control of the lymphotoxin signal.

The TNF superfamily ligand lymphotoxin (LTα1β2) is predomi-
nantly expressed by developing SP thymocytes in the thymus and 
binds to the lymphotoxin β receptor (LTβR) expressed in thymic 
stromal cells to induce intracellular signal transduction. The LTβR is 
expressed at the highest level in mFbs among the thymic stromal 
cells.72 In mFbs from LTβR- deficient mice, the expression of a large 
fraction of mFb- associated genes was diminished. Indeed, LTβR- 
deficient mFbs displayed a reduced expression of mFb- associated 
proteins such as Pdpn, ICAM- 1, and VCAM- 1.41,111 Thus, the LTβR 
signal critically controls the functional maturation of mFbs. It is 
known that the LTβR signal is required for the maturation of lymph 
node FRCs,112 offering an analogy that shows that these distinct fi-
broblast subsets share common signaling pathways for maturation.

4.4  |  Self- antigen expression by mFbs for the 
induction of immune tolerance

Early studies showed that fibroblasts are capable of presenting self- 
antigens to induce the positive selection of thymocytes, suggesting 
that the ability to mediate positive selection is not limited to the 
thymic epithelium.113,114 However, a subsequent series of studies 
revealed that positive selection requires proteasomes and lysoso-
mal proteases that are uniquely expressed in cTECs.7- 11,115- 117 Also, 
the major stromal cells that interact with preselected DP thymo-
cytes are cTECs,118 and fibroblasts are scarce in the thymic cortex. 
Therefore, it has been thought that fibroblasts are not important 
for positive selection. On the other hand, mFbs are localized in the 
medulla, where the negative selection of TRA- reactive thymocytes 
occurs. Transcriptome analysis indicates that mFbs are highly associ-
ated with genes for antigen presentation, suggesting a contribution 
to negative selection (Figure 5A).

Insights into the roles of thymic fibroblasts in T cell selection 
have come from studies of the LTβR. Pioneering studies by Boehm 
and colleagues reported that the LTβR expressed in thymic stroma 
is important for the induction of T cell tolerance,119,120 and later 
studies demonstrated the requirement of LTβR in optimum mTEC 
differentiation and gene expression.121- 124 However, mice lacking 
LTβR specifically in TECs do not exhibit signs of autoimmunity, while 
mice systemically lacking LTβR do, indicating that the key target of 
lymphotoxin signaling in the context of tolerance induction must 
be non- TEC stromal cells.123,124 Recently, we found that fibroblast- 
specific LTβR- deficient mice displayed signs of autoimmunity against 
peripheral tissues, similar to systemic LTβR- deficient mice.72 TCR 
repertoire analysis revealed that certain TCR clones escape nega-
tive selection in fibroblast- specific LTβR- deficient mice. The LTβR in 
mFbs controls the expression of a set of mFb- specific genes. Such 
LTβR- dependent genes expressed in mFbs include certain TRAs that 
have been defined based on mathematical methods for evaluating 

tissue- specific gene expression (Figure 7). Mice specifically lacking 
the LTβR in fibroblasts exhibit a marked production of autoantibod-
ies against these TRAs. Collectively, these findings indicate that 
mFbs act as a primary source of certain self- antigens for the induc-
tion of T cell tolerance, and the lymphotoxin signal is a key mediator 
of this process (Figure 8).

The expression of TRAs in mFbs is induced by the non- canonical 
NF- κB pathway downstream of the LTβR.72 This is apparently differ-
ent from the regulatory mechanisms for TRA expression in mTECs, 
where hundreds to thousands TRAs are expressed by virtue of chro-
matin modification and transcription regulators such as Aire and 
Fezf2.18,19,125 Considering the large number of self- antigens encoded 
by genomes, the induction of central tolerance likely does not rely 
only on the mTEC expression of TRAs, but instead is achieved by ex-
pression in the thymic medulla of genes representing cell types that 
exist across multiple tissues and organs. The number of TRAs ex-
pressed in mFbs may be less than that of mTEC- expressed TRAs, but 
mFbs express a set of fibroblast- specific antigens for developing T 
cells to delete self- reactive clones and thereby induce self- tolerance. 
It is likely that the thymic medulla needs to be populated with var-
ious cell lineages to ensure T cell tolerance to self- antigens, as in-
deed mTECs also express antigens specific for various cell lineages 
by differentiating themselves into peripheral epithelial cells such as 
keratinocyte- like cells or tuft cells.74,126 These findings have led us 
to propose that the thymic medulla needs to contain different cell 
types, each of which express cell type- restricted antigens (CRAs) to 
maximize the variety of self- antigens available for T cell selection.72

The expression and presentation of self- antigens have also been 
observed in fibroblastic stromal cells in the lymph nodes.127 Lymph 
node stromal cells present antigens to T cells directly, or indirectly 
through interaction with dendritic cells (DCs).128,129 Similarly, in the 
thymus, mFb- specific antigens might also be transferred to and 
presented by thymic DCs so as to induce T cell tolerance, since a 
substantial portion (about half) of mTEC- derived self- antigens are 
indirectly presented by thymic DCs.130,131 Indeed, it was demon-
strated that the cytoplasmic proteins produced in thymic fibroblasts 
can be transferred to thymic DCs.72 This mechanism explains how 
LTβR deficiency in fibroblasts results in the production of autoanti-
bodies against mFb- specific antigens.

4.5  |  Regulation of mTEC development by mFbs

It is also possible that mFbs indirectly promote T cell tolerance by 
controlling mTECs, since the fibroblast- specific deletion of the LTβR 
causes a reduction in the number of mTECs.72 Consistent with this, 
it was shown that the LTβR signal influences the localization of mFbs 
and their interaction with mTECs.50 In contrast, the loss of mTECs 
has no influence on mFb cellularity, indicating that mFbs lie up-
stream of mTECs in the hierarchy of stromal interactions within the 
medullary microenvironment.72 LTβR- dependent genes such as cell 
adhesion molecules (ICAM- 1 and VCAM- 1), extracellular proteases 
(MMP9), and extracellular matrix proteins (collagens and related 
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proteins) might play key roles in controlling the development and/or 
maintenance of mTECs.

LTβR- independent mechanisms in fibroblasts also reportedly in-
duce TEC differentiation. IGF1 is predominantly produced by capFbs 
and mFbs in the thymus, and the administration of IGF1 by contin-
uous infusion induces an expansion of both cTECs and mTECs,60 al-
though the physiological significance of this induction has not been 
clarified by loss- of- function studies. FGF7 and FGF10, both reported 
to be involved in TEC proliferation during embryogenesis, are also 
expressed in adult thymic fibroblasts. FGF7 is expressed in capFbs, 

while FGF10 is expressed in mFbs, suggesting different roles for 
these factors in the regulation of postnatal TECs.

Sun et al reported the role played by fibroblast- specific protein 
1 (FSP1, also called S100a4).132 FSP1 is a cytoplasmic and secreted 
protein expressed in mFbs at higher levels than in capFbs. FSP1 
promoter- driven, inducible cell ablation in mice resulted in a marked 
reduction of mTECs. Furthermore, FSP1 itself may function as a di-
rect regulator of mTECs, as FSP1- deficient mice exhibited a smaller 
sized thymus and reduced number of mTECs, and the addition of 
purified FSP1 protein increased the mTEC number in organ culture. 

F I G U R E  7  LTβR- dependent genes in mFbs include TRAs. To define the TRAs, the Shannon entropy score was calculated using the gene 
expression profiles (GEO accession no. GSE10246).147 The full source code for analysis is available in GitHub (https://github.com/nitta takes 
hi/Immun olRev_Fig7). Genes with an entropy score of less than 3.5 are defined as TRA genes. Although these TRA genes were extracted 
from comprehensive transcriptome data by unbiased mathematical calculation, they may also contain genes that encode functional proteins 
in mFbs and fibroblast lineage- specific proteins. (A) The gene expression data on the mFbs from LtbrΔFb mice (Twist2- Cre Ltbrflox/flox 
(n = 4)) compared to those from control mice (C57BL/6 (n = 2) and Ltbrflox/flox (n = 4)) are from an RNA- seq dataset (GEO accession no. 
GSE147357).72 TRA genes with a mean RPKM >10 in the control mFbs and the ratio of RPKM (LtbrΔFb /control) > 0.5 and significant 
(P <.05) are shown. (B) LTβR- dependent TRA genes expressed in mFbs, representative TRA genes expressed in mTECs, and representative 
housekeeping genes are listed. Expression specificity was determined by computationally extracting the tissues or cell types that showed 
the highest mRNA expression values [Colour figure can be viewed at wileyonlinelibrary.com]
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Collectively, this study demonstrates the pivotal role of FSP1- 
expressing fibroblasts in controlling the mTEC number. However, as 
FSP1 expression (at least at the mRNA level) is not limited to fibro-
blasts but is also detectable in other thymic stromal cells, including 
mural cells and mTECs themselves,72 so whether FSP1 is a molecule 
representative of the function of thymic fibroblasts is in need of 
further clarification. More specific markers or reporters as well as 
cell ablation systems need to be developed to better investigate the 
physiological functions of the thymic fibroblast subsets.

4.6  |  Regulation of T cell migration by mFbs

The LTβR signal induces the expression of Pdpn in mFbs. Pdpn is a 
mucin type glycoprotein expressed in various types of stromal cells 
and in particular is highly expressed in FRCs in the lymph nodes. 
In the thymus, Pdpn is expressed in capFbs and mFbs as well as a 
fraction of TECs (Table 1).133- 135 The extracellular domain of Pdpn 
binds to various proteins that are secreted by or displayed on other 
cells.136 Pdpn+ mFbs form conduit- like structures in the medulla and 
bind the chemokine CCL21 produced by mTECs.40 In the absence 
of Pdpn, CCL21 fails to efficiently localize in the medulla, a failure 
which is accompanied by both inefficient migration and generation 
of Tregs in the medulla. A similar phenotype is observed in mice lack-
ing CCL21 or CCR7, the receptor for CCL21, suggesting a role for 
Pdpn- immobilized CCL21 on mFbs in thymic Treg generation.

Two very recent reports demonstrated that CCL21 is displayed 
on the surface of mFbs and pericytes around blood vessels.137,138 
Cell- surface binding of CCL21 is mediated by the heparan sulfate 
strongly expressed by these cells, and consistent with this, the EXT 
family genes, Ext1 and Ext2, that encode the glycosyl transferases 
for heparan sulfate biosynthesis are highly expressed in mFbs and 
pericytes.138 James et al reported that CCL21 captured by the blood- 
vessel surrounding fibroblasts and pericytes promotes T cell emigra-
tion from the neonatal mouse thymus, suggesting a synergy between 

TEC- dependent production and mesenchymal cell- dependent immo-
bilization of chemokines for controlling T cell migration.137 A study 
by Hsu et al demonstrated that elimination of heparan sulfate in the 
thymus by genetic deletion of Ext1 resulted in a marked decrease in 
the number of thymic fibroblasts and TECs as well as thymocytes.138 
Thus, heparan sulfate produced by mesenchymal cells may also be 
important for thymic stromal cell homeostasis via the immobilization 
of secreted proteins including chemokines, although the mechanism 
has not yet been elucidated.

As shown by transcriptome analyses, mFbs themselves express 
certain chemokine genes, such as Cxcl14 and Cx3cl1, but not Ccl21.72 
Whether and how these mFb- specific chemokines contribute to cell 
migration in the thymus and exert immunological functions are still 
presently unknown.

5  |  FIBROBL A STS IN AGE-  REL ATED 
THYMIC INVOLUTION AND ADIPOSIS

The thymus undergoes an age- related progressive atrophy called in-
volution that is characterized by qualitative and quantitative changes 
in stromal cells as well as their replacement with adipocytes.3,139,140 
In particular, mTECs exhibit a marked decrease in cellularity and an 
alteration in gene expression patterns with aging.46,141 In contrast, 
the frequency of thymic fibroblasts increases with aging, so the ratio 
of fibroblasts to TECs is markedly increased in aged mice.46 It was 
shown that TECs in aged mice can give rise to fibroblasts and fur-
ther into adipocytes, by a process called epithelial- to- mesenchymal 
transition (EMT).142,143 This suggests the possibility that a fraction 
of thymic fibroblasts may be of TEC origin. However, fate- mapping 
studies using TEC- specific Cre lines (Psmb11- Cre or FoxN1- Cre) 
demonstrated that only a small percentage of fibroblasts (up to 
approximately 10%) may be derived from the TEC lineage, and 
these cells do not increase with age.5,72 Therefore, the majority of 
thymic fibroblasts in the adult thymus is indeed NC- derived, so the 

F I G U R E  8  Induction of T cell tolerance by mFbs and mTECs. The immature mFbs give rise to mature mFbs upon interaction with SP 
thymocytes expressing lymphotoxin (LTα1β2). The mature mFbs promote mTEC development. Both mTECs and mFbs express and present 
self- antigens, thus contributing to the deletion of self- reactive SP thymocytes and the establishment of central tolerance [Colour figure can 
be viewed at wileyonlinelibrary.com]
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contribution of EMT to the development of thymic fibroblasts, if 
there is any, is limited.

Ucar et al reported that the thymic stroma in adult mice contains 
cells that under low- attachment culture conditions form spheres 
(termed thymospheres),144 and Sheridan et al subsequently demon-
strated that those cells do not belong to the TEC lineage but rather, 
contain mesenchymal stem cells.145 These thymosphere- forming 
cells were shown to be capable of giving rise to fibroblasts and ad-
ipocytes under appropriate culture conditions. It was also shown 
in an early study that mesenchymal stromal cells isolated from 
human thymus are able to differentiate in vitro into adipocytes.146 
Nevertheless, at present, there is no conclusive evidence as to which 
TECs or thymic fibroblasts are responsible for the age- related adi-
posis of the thymus. This is an important issue for understanding the 
contribution of the entire repertoire of thymic stromal cells, includ-
ing fibroblasts, to age- related thymic atrophy, as well as for explor-
ing the possible technologies that would allow thymic regeneration.

6  |  CONCLUDING REMARKS

With the recent advance of large- scale datasets of stromal cells across 
multiple organs, we now stand at a new beginning for a comprehensive 
understanding of cellular characteristics and interactions in the im-
mune system. Such bioinformatics approaches, along with certain long- 
sought results in histology and embryology, have unveiled the versatile 
range of functions of thymic fibroblasts in supporting thymus organo-
genesis and T cell development. Efforts to understand thymic fibro-
blast function are now being applied to the studies of human thymus, 
which may shed light on the role of thymic fibroblasts in human health 
and disease. In particular, medullary fibroblasts are an emerging sub-
set of thymic stromal cells that is essential for the self- antigen expres-
sion to induce immune tolerance. This finding also suggests an intrinsic 
need for the thymic medulla to embrace a variety of cell types, each 
of which expresses cell type- restricted antigens in order to produce 
the diverse array of self- antigens required to accomplish T cell selec-
tion. A major issue that remains to be addressed in future is the cellular 
and molecular basis for fibroblast cooperation with other stromal cells 
in age- related thymic atrophy as well as autoimmunity. Elucidating the 
lineage relationships and cell- cell interactions of stromal cells as well 
as their significance in TCR repertoire formation in the degenerating 
thymus will open up possibilities to better understand and control the 
thymic microenvironment in future therapeutic applications.
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