
����������
�������

Citation: Desgranges, C.;

Delhommelle, J. Machine-Learned

Free Energy Surfaces for Capillary

Condensation and Evaporation in

Mesopores. Entropy 2022, 24, 97.

https://doi.org/10.3390/e24010097

Academic Editor: Donald J. Jacobs

Received: 15 November 2021

Accepted: 5 January 2022

Published: 7 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Machine-Learned Free Energy Surfaces for Capillary
Condensation and Evaporation in Mesopores

Caroline Desgranges 1 and Jerome Delhommelle 1,2,3,4,*

1 MetaSimulation of Nonequilibrium Processes (MSNEP) Group, Tech Accelerator, University of North Dakota,
Grand Forks, ND 58202, USA; cdesgr@gmail.com

2 Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
3 Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
4 School of Electrical Engineering and Computer Science, University of North Dakota,

Grand Forks, ND 58202, USA
* Correspondence: jerome.delhommelle@und.edu

Abstract: Using molecular simulations, we study the processes of capillary condensation and cap-
illary evaporation in model mesopores. To determine the phase transition pathway, as well as the
corresponding free energy profile, we carry out enhanced sampling molecular simulations using
entropy as a reaction coordinate to map the onset of order during the condensation process and of
disorder during the evaporation process. The structural analysis shows the role played by intermedi-
ate states, characterized by the onset of capillary liquid bridges and bubbles. We also analyze the
dependence of the free energy barrier on the pore width. Furthermore, we propose a method to build
a machine learning model for the prediction of the free energy surfaces underlying capillary phase
transition processes in mesopores.

Keywords: capillary; phase transition; free energy; activated process; liquid bridges; bubbles; ma-
chine learning

1. Introduction

The formation of liquid bridges and vapor bubbles between solid surfaces has drawn
considerable interest. This is due to their significance in interface science and adhesion [1–7]
and, in the case of nanoscopic capillaries, for their applications in nanotribology and nano-
lithography [8–17]. Density functional theory calculations [18–21] and molecular simulation
studies [22–45] were instrumental in furthering our understanding of the formation of liquid-like
junctions and of cavitation in nanopores. They also showed that the mechanism proposed for
macroscopic capillaries proposed by Everett and Haynes [46] could be applicable to nanoscopic
pores, and that, e.g., capillary condensation proceeds through a series of structural changes
involving the formation of a liquid bridge across the pore section [37,39,45]. Here, we focus
on combining machine learning (ML) with enhanced sampling simulations to provide a com-
plete characterization of the capillary condensation and evaporation processes in cylindrical
nanopores.

In recent years, ML emerged as an extremely useful tool to explore and predict com-
plex phenomena [47–50]. Data-driven methods showed excellent results when applied to
the identification of new force fields and coarse-grained models [51–56], the reconstruction
of complex high-dimensional potential energy surfaces [57,58], and the prediction of ther-
modynamic and kinetic properties [59,60]. This considerably accelerates the determination
of the key properties for these systems, since their computation via conventional molecular
simulation methods often requires an extensive sampling of the phase space, i.e., perform-
ing simulations over very large time- and length-scales that quickly become extremely
computationally intensive. Machine learning can also lead to new insights into assembly
processes [61] and yield predictive models for heterogeneous catalysis [62]. Artificial neural
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networks were shown to provide a new way to obtain free energy landscapes that are diffi-
cult to compute. This is especially the case for processes that involve transitions from one
state to another, a task for which rare event sampling and enhanced sampling simulations
are required [63–67]. In the field of adsorption, ML techniques are also used to predict
adsorption isotherms [68] and free energies of adsorption [69], catalytic activity [70], and to
screen materials for gas storage and separation [68,71,72]. For instance, ML predictions on
gas adsorption capabilities based on crystal designs such as MOFs and COFs at operating
conditions [73–76] give excellent results when compared to that of conventional Monte
Carlo and Molecular Dynamics simulations. They also provide unique routes to tailor new
materials to enhance adsorption capabilities [77–79].

Here, we focus on the phenomena of capillary condensation and evaporation in
nanopores. Such processes rely on the transition from a vapor phase to a liquid phase
(condensation), or alternatively, the transition from a liquid phase to a vapor phase (evap-
oration). As a result, the system needs to overcome a free energy barrier to undergo a
phase transition in these confined geometries [80]. Indeed, capillary condensation and
evaporation originate from a metastable state and occur through an activated process, i.e.,
through a heterogeneous nucleation event [18,33–35,43–45]. To study these transitions and
the formation of liquid bridges and bubbles during condensation and evaporation they en-
tail, different molecular simulations techniques, such as Monte Carlo Gauge-cell methods,
Expanded Wang–Landau algorithms or NPT-S approaches, were employed [35,45,81–83]
on nanotubes of different natures, e.g., hydrophobic or hydrophilic [84]. These studies
demonstrated that the capillary condensation process starts with the nucleation of a liquid
bridge across the pore, which gradually extends through the length of the nanopore until
the entire pore is filled with a liquid-like phase [39]. Similarly, the capillary evaporation
process begins with the nucleation of a vapor bubble across the pore, which gradually
extends through the length of the nanopore until the pore is completely filled with a
vapor-like phase [39]. While recent progress shed light on the mechanisms underlying
capillary phase transitions [35,45,81], the dependence of the process on the pore features
is yet to be fully understood [85–87]. Most notably, the characteristics of the free energy
barrier that controls the nucleation events, and thus, the capillary phase transition processes
and its dependence upon pore width, are yet to be determined. We recently proposed a
new simulation technique, termed as the µVT-S simulation method, based on an entropic
reaction coordinate to elucidate the nucleation pathway [45,88,89] and apply it here to the
case of capillary phase transitions in pores of increasing diameters. After identifying the
free energy profile for the capillary phase transition processes through simulations for a
few sets of conditions, we develop an ML model that generalizes the prediction of the free
energy profile to a broad range of conditions.

In this paper, we focus on generating data using the µVT-S simulation technique
to obtain free energy surfaces for the condensation and evaporation in nanopores of
various geometries. Then, we use machine learning and, more particularly Artificial
Neural Networks (ANNs), to predict free energies for a wide range of nanopore width and
length. The paper is organized as follows. In the next section, we present the force fields
used to model the adsorbed gas and the cylindrical nanocapillaries. We also give a brief
account of the simulation method and technical details employed in this work. We provide
the main conclusions from this work in the last section.

2. Simulation Method and Models
2.1. Force Fields

We use a Lennard–Jones potential to model the interactions between Argon atoms through

φ(rij) = 4εij

(σij

rij

)12

−
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σij

rij

)6
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with the following parameters: m = 39.95 g/mol, σ = 3.4 Å and ε = 119.8 K. This force
field was shown to model very well the fluid properties for the liquid and vapor phases,
as well as the vapor-liquid equilibria. It was also used to study adsorption in different
materials, including nanotubes, MOFs, and COFs, leading to a very good agreement
between simulation results and experimental data [39]. We use the conventional system of
reduced units [90], in which σ is the unit length, ε is the unit energy and m the unit mass.

The pores we model are MCM-41 silica mesoporous molecular sieves. As shown in
prior work by Neimark et al. [39], this model provides an excellent agreement for Argon
adsorption isotherms between simulations and experiments. In this work, we consider
cylindrical nanopores with 4 different pore widths (R = 10σ, R = 12σ, 16σ and 20σ) and a
length of H = 30σ (the axis of the cylindrical pore is along the z direction). The interactions
between Argon atoms and the nanopore are modeled with a functional form Us f (ri, R),
commonly used to model MCM-41 silica mesoporous molecular sieves [39,45,91], and
given by

Us f (ri, R) =π2ρsεs f ,iσ
2
s f ,i×63
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in which ri is the radial coordinate of an argon atom i in the pore, R is the pore radius, ρs is
the surface density of adsorption centers and F(α, β; γ; δ) is the hypergeometric series. The
parameters for the fluid-solid interactions are σs f ,i = 3.17 Å and ρsεs f ,i 2253 K/nm2 [39,45].
We add that both the fluid model and the pore-fluid model were parametrized to provide an
accurate account of the experimental data. The force field for the fluid was parametrized to
model the experimental data for the phase transitions and boiling point for Argon, and the
pore-fluid interaction was parametrized to model the experimental data for the adsorption
of Argon in MCM-41 [91].

2.2. µVT-S Simulations

The formation of a liquid bridge during capillary condensation (or of a vapor bubble
during the evaporation) are rare events since they are associated with configurations with
a very low probability, and thus very rarely visited, when using conventional sampling
methods. To capture the mechanism underlying the transition phenomenon, i.e., the transi-
tion from a metastable vapor to a stable liquid phase (condensation) or from a metastable
liquid to a vapor phase (evaporation), one needs to enable the system to overcome the
large free energy barrier related to the formation of either a bridge or a bubble. Several
methods were developed to simulate nucleation processes. One of them, known as the
umbrella sampling, relies on the use of a bias potential to overcome the free energy barrier
and then to simulate the entire nucleation process [45,66,92–101]. The bias potential is
a harmonic function of a reaction coordinate, which drives the nucleation process. For
vapor→ liquid and liquid→ vapor transitions, it was suggested that entropy could be
an efficient reaction coordinate [102], since it gives a thermodynamic measure of order
and disorder and clearly distinguishes between the two phases. It is thus possible for the
vapor→ liquid nucleation process to induce order within the system, by decreasing the
target value of the entropy in the umbrella sampling potential. By the same token, it is
also possible to study the liquid→ vapor transition by increasing entropy. Here, we carry
out grand-canonical Monte Carlo (MC) simulations combined with the umbrella sampling
technique using entropy as a reaction coordinate. As discussed in previous work [34,45,84],
the umbrella sampling potential is of the form VUS = 1

2 k(S− S0)
2, in which k is a spring

constant, S = U+kBT ln Q(N,V,T)
T the value taken by the entropic reaction coordinate for

the configuration of the system, and S0 the target value for the entropy imposed to the
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system. Here, since the system is confined in a nanopore, the product PV is very small
compared to µN and thus can be neglected in the determination of S [45,102]. This leads
to the following expression for the entropic reaction coordinate S = U−µN

T . We add that
we use the total entropy S∗ as the reaction coordinate rather than, for instance, the number
of atoms in the pore Np because Np does not characterize the onset of organization in the
system, i.e., the nucleation of the liquid bridge in the case of capillary condensation. For
instance, for the same Np, the confined fluid can take the form of either a uniform fluid of
intermediate density, or a fluid with a region of high density (liquid bridge) and a region
of low density (surrounding vapor-like fluid), or a fluid with multiple small liquid-like
clusters surrounded by a vapor-like fluid as a result of “entropic breaks” [103]. For this
reason, and in line with recent work in the field of nucleation by, among others, Parrinello
and co-worker [104,105] and by our group [45,66,88,89], we employ an entropic reaction
coordinate. As shown later in Figures 3 and 4, using S∗ allows for a steady growth in
the width of the liquid bridge that nucleates and extends across the pore and, as a result,
in the number of atoms in the pore. We add that, in prior simulation work, Neimark
and coworkers [38,39,106] investigated the capillary phase transitions in nanopores, and
the formation of liquid bridges during capillary condensation, using grand-canonical,
gauge-cell and NVT Monte Carlo simulations. We tested in previous work [45] the µVT-S
simulation method against the results obtained by Vishnyakov and Neimark [39]. This
allowed us to show that the µVT-S simulation method provides the same mechanism,
involving the nucleation of a liquid capillary bridge as an intermediate state along the
capillary condensation pathway, as that identified Vishnyakov and Neimark under the
same thermodynamic conditions (chemical potential and temperature). Technical details
on the implementation of this method can be found in previous papers [45,84,88,89]. Each
µVT-S simulation provides an histogram for the probability distribution of how often a
given value for the entropy is visited during the simulation. From a practical standpoint,
we first carry out an equilibration run of 50× 106 MC steps, followed by a production
run of 100× 106 MC steps during which the entropy histogram is collected. Using 40
overlapping windows, and following Torrie and Valleau’s work [92], we can reconstruct the
free energy barrier associated with the nucleation process. Let us add that the MC moves
used in the simulations are as follows: (i) translation of a randomly chosen argon atom
(50% of the attempted MC moves), (ii) insertion of an atom (25% of the attempted moves)
and (iii) deletion of a randomly chosen atom (25% of the attempted moves). Simulations
are performed for a temperature of 0.73 (87.454 K), which corresponds to the boiling point
for Argon. Under these conditions, and as shown by Neimark et al. [38,91], capillary
condensation and evaporation of Argon was observed in MCM-41. We add that, for bulk
Argon, the vapor-liquid phase transition occurs for µ = −10.53 in reduced units. In line
with prior work, we use a cutoff of 15 Å and periodic boundary conditions along the lateral
direction z.

2.3. Machine-Learned Free Energy Surfaces

Simulations require generating billions of configurations to sample the entire phase
transition pathway for a single value of the chemical potential. To identify accurately the
conditions of coexistence, simulations need to be repeated systematically for many chemical
potentials, with a small chemical potential interval between successive runs. Given the
cost of each simulation, we choose here to run simulations that have only a few values of
the chemical potential and use the simulation results to generate a training dataset for an
ML model. Once trained, the ML model has the advantage of being able to provide very
rapidly the free energy profile for any value of the chemical potential. In other words, the
ML model has the ability to interpolate between simulated conditions and to extrapolate
beyond these conditions. Here, to generate machine-learned free energy surfaces for a
given pore width, we use an artificial neural network (ANN) with a feed-forward structure.
The ANN weights are optimized with a back-propagation algorithm [107]. We build on our
previous work on the bulk thermodynamic properties of single-component systems and
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binary mixtures [108,109] to design an ML model that predicts the free energy surface of
adsorption for a given pore width as follows. We optimize an ANN with 4 layers: (i) 1 input
layers with 2 neurons for µ (chemical potential) and S (entropy), (ii) 2 hidden layers with
h1 = 8 and h2 = 8 neurons, and (iii) 1 output layer with 1 neuron for F (Free energy). We
then have the following analytic expression for the ML prediction for FML

FML = f4[b3 +
h2

∑
l=1

W(3, 4, l, 1) f3(b2 +
h1

∑
j=1

W(2, 3, j, l) f2[(b1 +
3

∑
i=1

W(1, 2, i, j)Gi)])] (3)

with W the weight matrix, f1, f2, f3 and f4 representing activation functions (tanh for the
first three, and the linear function for the forth one), bi the bias nodes and Gi the input
neurons. The network architecture is summarized in Figure 1. The weight matrix W is
initially filled with random numbers and optimized by minimizing the squared error
function using a back-propagation algorithm and a learning rate of 0.04. µVT-S simulation
results are split between training and testing data sets to optimize the ANN weights, with
a training dataset size of about 10,000 data points for each pore width.

b
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Figure 1. Artificial Neural Network (ANN) for prediction of free energy surfaces for capillary
condensation and capillary evaporation.

3. Results and Discussion

We start by analyzing the results obtained from the MC µVT-S simulations on the
example of a pore width of 12σ. We show in Figure 2 the free energy profiles reconstructed
from the simulation results for two different values of chemical potential, µ∗ = −10.2 and
µ∗ = −10.3. The free energy profile is plotted as a function of the reduced entropy of the
adsorbed fluid S∗, which stands for the total entropy. In other words, this is an extensive
quantity, a function of the number of Argon atoms adsorbed in the pore, and low values for
the total entropy S∗ are associated with a low-density, vapor-like phase, while high values
for the total entropy S∗ correspond to a high-density, liquid-like adsorbed phase. The
plots exhibit two free energy minima, as well as a free energy barrier that connects the two
minima. For each plot, the shallower minimum corresponds to the metastable phase that is
the starting point for the phase transition process, and the deeper free energy minimum
corresponds to the equilibrium state, i.e., the endpoint for the phase transition process. In
between, and as expected for any nucleation process, the system has to overcome a free
energy barrier to complete the phase transition process [93,96,100]. This feature, common
to all nucleation processes, corresponds to an interplay between two contributions to the
free energy of opposite signs. The first contribution has a positive sign and stems from
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the onset of a nucleus of the new phase, and thus from the creation of an interface that
results in a free energy cost. The second contribution has a negative sign and results from
the stabilization of the system, as the metastable phase of higher free energy undergoes the
transition to the stable phase of lower free energy. As shown in previous work [34,39,45]
and in Figures 3 and 4, the free energy barrier is associated with the formation of a liquid
bridge across the nanopore during capillary condensation and a vapor bubble across the
nanopore during capillary evaporation.

Figure 2. Capillary phase transitions in a nanopore with a pore width of 12σ: free energy against
entropy for µ∗ = −10.2 (capillary condensation in black) and for µ∗ = −10.3 (capillary evaporation
in red).

The correspondence between the total entropy S∗ and the nature of the two phases can
best be understood by examining snapshots of the system for the two minima exhibited
by the free energy profile. Figure 3a shows a snapshot for a configuration of the system
observed for S∗ = 1100, i.e., for the shallower minima in the free energy profile. The
configuration shows that the pore is coated with two layers of the adsorbed Argon fluid,
with a very low fluid density on the inside of the pore. Since the low-density, vapor-like
phase is associated with the shallower free energy minimum for µ∗ = −10.2, this means
that this phase is metastable and that the low-density phase, akin to a supersatured vapor,
is the metastable phase for this set of conditions. On the other hand, Figure 3b shows a
snapshot for a configuration of the system observed for the deeper free energy minimum,
reached for a total entropy of S∗ = 2250. This snapshot shows that a completely filled up
pore, corresponding to a high density liquid-like phase for the adsorbed fluid. Since this
high density phase is associated with the deeper free energy minimum, this means that
the liquid-like phase is the stable phase under those conditions. For a chemical potential
µ∗ = 10.2, we thus have a low-density, vapor-like, metastable phase and a high-density,
liquid-like, stable phase, which implies that the free energy profile shown in Figure 2 for
µ∗ = −10.2 corresponds to a capillary condensation process. Conversely, for µ∗ = −10.3,
the deeper free energy minimum is obtained for a total entropy of about 1000, corresponding
to the stable low-density, vapor-like phase, and the shallower free energy minimum is
reached for a total entropy of about 2300, which is associated with a metastable high-density,
liquid-like, adsorbed phase. This implies that, for µ∗ = −10.3, the system undergoes a
capillary evaporation process as the total entropy decreases.
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(a) (b)

(c)

Figure 3. Snapshot of representative configurations for µ∗ = −10.2 for S∗ = 1100 (a) and S∗ =

2250 (b). (c) Shows variation of entropy as a function of number of atoms in pore.

To identify the microscopic mechanisms underlying the phase transition process, we
carry out a series of structural analyses for the adsorbed fluid. For this purpose, we focus
on the capillary condensation process and analyze the structure of the adsorbed fluid for a
chemical potential of µ∗ = −10.2 and a pore width of 12σ. We show in Figure 4a the radial
density profile obtained for conditions close to the two “breaks” observed in the free energy
profile. For the first “break”, i.e., for S∗ = 1600 and close to the free energy maximum
during the phase transition process, we observe the formation of a third peak in the radial
density profile at a distance of about 3.1 Å from the central axis of the pore, and the onset
of a couple of more peaks as the distance from the central axis decreases. This first “break”
therefore indicates some structural change is induced by a partial filling of the pore. For the
second “break”, i.e., for S∗ = 2050 and close to the free energy valley attached to the stable
high-density, liquid-like phase, we can see 5 peaks in the radial density profile, in addition
to a developing peak in the center of the pore. The second “break” thus corresponds to an
almost complete filling of the pore. We also provide in Figure 3c a plot of the entropy as a
function of the number of atoms in the pore. We recall that S∗ is an extensive property and,
as such, the increase we observe in Figure 3c for S∗ is in line with the expectations. We add
that S∗ does not vary strictly linearly with N, since S∗ provides a quantitative measure of
the amount of organization within the confined fluid as its density increases.
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To provide further insight into the filling mechanism, we carry out a higher-resolution
analysis and compute a spatially resolved density distribution function n(r, z) along the
radius of the pore r as well as along the lateral dimension of the pore z. This enables
the spatial resolution of the developing peaks in the radial density profile of Figure 4a.
This yields the plots shown in Figure 4b,c for S∗ = 1600 and S∗ = 2050, respectively. At
S∗ = 1600, the plot in Figure 4b shows that the density distribution is far from uniform
along the lateral dimension z. Instead, the plot shows that, for 10σ < z < 25σ, the density
of the adsorbed fluid remains fairly high for all r values, which means that for these z
values, a liquid region reaches across the width of the pore. For other z values, i.e., z < 10σ
or z > 25σ, the fluid density remains low for all r values below 3.5σ. This means that
the liquid region is surrounded by a vapor-like fluid. Therefore, the spatially resolved
density distribution provide supporting evidence for the formation of a liquid bridge
that extends across the capillary. At S∗ = 2050, the Figure 4c also shows a nonuniform
density distribution along the lateral dimension z. Indeed, the liquid region now extends
between 0σ < z < 25σ, with a fluid density remaining high for all r values. On the other
hand, the low density is restricted to a much smaller range of z values (z > 25σ). This
means that the liquid bridge now occupies the major part of the pore. These profiles
thus provide an explanation for the two “breaks” in the free energy profile, with the first
“break” corresponding to the onset of a capillary liquid bridge and the second “break” to
the capillary liquid bridge taking over the entire pore. The simulation results show that the
mechanism for capillary condensation starts with the nucleation of a liquid bridge, which
subsequently grows and takes over the entire nanopore. This is in line with the mechanism
proposed by Everett and Haynes for capillary condensation in micropores [46], and withe
the machanism proposed by Neimark et al. for capillary condensation in nanopores [39].

We present in Figure 5 the free energy profiles obtained for the two largest pore widths
of 16σ and 20σ. While similar filling mechanisms are observed for the different pore widths
studied in this work, there are, however, three features of the free energy profiles that are
impacted by the change in pore width. First, the path that joins the metastable and stable
phases is much longer as the pore width increases. This translates into the much larger
range of values for S∗ spanned as the width increases from 16σ, with S∗ ranging from 1500
to 4500 (see Figure 5a) to 20σ , with S∗ varying from 2500 to 7500 (see Figure 5b). This
can be attributed to the fact that, for the same lateral length of the pore, many more fluid
particles can be accommodated by the fluid, which in turn results in much larger values for
the extensive property S∗. Second, the free energy barrier increases with the pore width.
Since the filling mechanism involves the formation of a liquid bridge across the pore, as
discussed earlier for the pore width of 12σ, this step will require overcoming a greater free
energy for larger pores. Third, the chemical potential at coexistence is also impacted by
the pore width. Coexistence is achieved for a chemical potential between −9.9 and −10 for
a pore width of 16σ and of about −9.8 for a pore width of 20σ. This can be accounted for
by the change in balance between the relative contribution of wall-fluid interactions and
fluid-fluid interactions in the overall energy of the adsorbed phases. Indeed, coexistence
here corresponds to two phases, one of low density and the other of high density, having
the same chemical potential. As shown in Figure 3a for a pore width of 12σ, the low-
density phase consists of two fluid layers adsorbed on the inner surface of the pore, which
means that its chemical potential strongly depends on wall-fluid interactions. On the other
hand, as shown in Figure 3b, the high-density phase is a completely filled pore, for which
fluid-fluid interactions far outweigh wall-fluid interactions.
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(a)

(b) (c)

Figure 4. Radial density profile P(r) in a pore with a diameter of 12σ for µ∗ = −10.2 (a) and spatially
resolved density distribution function n(r, Z) for S∗ = 1600 (b) and S∗ = 2050 (c).

We now turn to the prediction by ML models of the free energy profiles for a pore
with a width of 12σ. In the next two figures, we present two different types of results.
First, we show in Figure 6a comparison between simulation and ML results to validation
the model plotted in Figure 6, i.e., that the ML model can model accurately the simulation
results. Second, we use the ML model to extrapolate beyond the data and predict the entire
free energy surface shown in Figure 7. As shown as the plot comparing the simulated
free energy and the ML predicted free energy in Figure 6a, the ANN architecture provides
an excellent model for the free energy of the adsorbed fluid during the capillary phase
transition process. Furthermore, Figure 6b shows a direct comparison between the free
energy profiles computed from the µVT-S simulations and the free energy profiles predicted
by ML. This plot further established the reliability of the ML model to accurately account
for the dependence of the free energy along the transition pathway, both for evaporation
and condensation processes.
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(a)

(b)

Figure 5. Comparison between free energy profile obtained for a pore width of 16σ (a) and 20σ

(b). Results are shown for chemical potentials of µ∗ = −9.9 (black), µ∗ = −10 (blue), µ∗ = −10.15
(red) and µ∗ = −10.48 (green) in (a). Results are shown for µ∗ = −9.7 (black), µ∗ = −9.8 (red) and
µ∗ = −9.9 (green) in (b).
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(a)

(b)

Figure 6. Comparison between free energy obtained with Machine Learning (ML) model (dashed
line with circles) and from simulation results (squares) in a nanopore with a 12σ diameter. Results are
shown for chemical potentials µ = −10.15 (black), µ = −10.2 (red), µ = −10.25 (green), µ = −10.3
(blue) and µ = −10.35 (pink). (Inset) performance of ML model against simulation results.

The ML predicted free energy surface is shown in Figure 7 over the (S∗, µ∗) parameter
space. As in the 2D free energy plots, and as a result of the training process, the origin
for the free energy is set to that of the low-density, vapor-like phase. As expected, the ML
free energy surface exhibits two troughs, corresponding to the two regions for which a
free energy minimum can be reached. The two valleys are observed for varying values of
µ∗ and either for S∗ around 1000 for the low density, vapor-like adsorbed fluid, or for S∗

around 2500 for the high density, liquid-like, adsorbed fluid. The free energy minimum
attached to the liquid-like fluid is found to steadily increase from a very low, and negative,
free energy at high µ∗ values (e.g., at −10.15) to a very high, positive, free energy at low µ∗

values (e.g., at −10.35). In addition to yielding the free energy value for any set of (S∗, µ∗),
the ML predicted free energy surface provides a way to estimate rapidly the conditions
of coexistence of the two phases for the adsorbed fluid, leading to an estimated chemical
potential at coexistence of µ∗ = −10.24, consistently with the simulation results shown in
Figure 2.
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Figure 7. Free energy surface predicted by ML model for a pore width of 12σ.

We also test the transferability of the approach to other pore widths and show that
an ML model with the same architecture, i.e., with 8 neurons per hidden layer, can also be
optimized for a larger pore width such as 20σ. Indeed, Figure 8 shows that the simulated
free energy profiles can be accurately modeled by ML, as evidenced by the very good agree-
ment obtained between the simulations and the ML model for both capillary evaporation
and capillary condensation processes.

Figure 8. Capillary phase transitions in a pore with a width of 20σ: comparison between free energy
obtained with ML model (dashed line with circles) and from the simulation results (squares). Results
are shown for chemical potentials µ = −9.7 (black), µ = −9.8 (red) and µ = −9.9 (green).

4. Conclusions

In this work, we use molecular simulations and Machine Learning to study the cap-
illary phase transitions that occur in a series of model mesopores, akin to MCM-41 as a
function of pore width. To this end, we employ a recently developed molecular simulation
technique that leverages entropy as a reaction coordinate for the transition process to shed
light on the phase transition process. This allows to obtain the free energy profile corre-
sponding to either the capillary evaporation process, from a pore containing a metastable
high-density adsorbed fluid to a stable low-density adsorbed phase, or the capillary conden-
sation process, that spans the pathway connecting a metastable, supersaturated, vapor-like,
adsorbed phase to a stable liquid-like adsorbed phase. The results allow us to characterize
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the role played by intermediate states, which involve the formation of capillary liquid
bridges and bubbles, and to analyze the dependence of the free energy barrier, as well as of
the chemical potential that controls the coexistence of the two types of adsorbed phases.
Furthermore, we propose a method to build Machine Learning models by optimizing
Artificial Neural Network for the prediction of the free energy surfaces underlying capillary
phase transition process in mesopores.
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