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Abstract

The occurrence and genetic relatedness of AmpC beta-lactamase producing Enterobacter-

iaceae isolated from clinical environments, groundwater, beef, human and cattle faeces

were investigated. One hundred seventy-seven (177) samples were collected and cultured

on MacConkey agar. A total of 203 non-repetitive isolates were characterised using genus/

species-specific PCRs and the identified isolates were subjected to antibiotic susceptibility

testing. The production of AmpC beta-lactamases was evaluated using cefoxitin disc, con-

firmed by the D96C detection test and their encoding genes detected by PCR. The D64C

extended-spectrum beta-lactamases (ESBL) test was also performed to appraise ESBLs/

AmpC co-production. The genetic fingerprints of AmpC beta-lactamase producers were

determined by ERIC-PCR. A total of 116 isolates were identified as E. coli (n = 65), Shigella

spp. (n = 36) and Klebsiella pneumoniae (n = 15). Ciprofloxacin resistance (44.4–55.4%)

was the most frequent and resistance against the Cephem antibiotics ranged from 15–

43.1% for E. coli, 25–36.1% for Shigella spp., and 20–40% for K. pneumoniae. On the other

hand, these bacteria strains were most sensitive to Amikacin (0%), Meropenem (2.8%) and

Piperacillin-Tazobactam (6.7%) respectively. Nineteen (16.4%) isolates comprising 16 E.

coli and 3 Shigella spp. were confirmed as AmpC beta-lactamase producers. However, only

E. coli isolates possessed the corresponding resistance determinants: blaACC (73.7%, n =

14), blaCIT (26%, n = 5), blaDHA (11%, n = 2) and blaFOX (16%, n = 3). Thirty-four (27.3%)

Enterobacteriaceae strains were confirmed as ESBL producers and a large proportion

(79.4%, n = 27) harboured the blaTEM gene, however, only two were ESBLs/AmpC co-pro-

ducers. Genetic fingerprinting of the AmpC beta-lactamase-producing E. coli isolates

revealed low similarity between isolates. In conclusion, the findings indicate the presence

of AmpC beta-lactamase-producing Enterobacteriaceae from cattle, beef products and
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hospital environments that commonly harbour the associated resistance determinants

especially the blaACC gene, nonetheless, there is limited possible cross-contamination

between these environments.

1. Introduction

The family Enterobacteriaceae consists of bacterial species frequently isolated from clinical

specimens and most often incriminated in a variety of infections [1, 2]. The natural hosts of

these organisms are ruminants and therefore, may be found in food, water and the environ-

ment from where transmission to humans may occur especially when proper hygienic proce-

dures are compromised. Most Enterbacteriaceae were known to be non-pathogenic, however,

over the years some members including strains/serotypes of E. coli, Shigella spp. and Klebsiella
pneumoniae have become virulent accounting for diarrheal cases (which is a major burden in

low and middle-income countries), other intra-abdominal, urinary tract, and bloodstream

infections, as well as hospital and healthcare-associated pneumonia [3]. Pathogenic E. coli
strains classified based on their virulence properties including enterotoxigenic E. coli, ETEC;

enterohemorrhagic E. coli, EHEC; enteroinvasive E. coli, EIEC; enteropathogenic E. coli,
EPEC; enteroaggregative E. coli; EAEC and diffusely adherent E. coli (DAEC), neonatal menin-

gitis E. coli (NMEC), uropathogenic E. coli (UPEC), and avian pathogenic E. coli (APEC) cause

mild to severe food poisoning in their hosts as well as may lead to extra-intestinal illnesses [4,

5]. A serotype such as the Shiga toxin-producing E. coli 0157:H7 has been associated with life-

threatening diseases such as haemolytic uremic syndrome (HUS), haemorrhagic colitis, and

thrombotic thrombocytopenic purpura which may be fatal. Four Shigella spp., S. flexneri; S.

dysenteriae; S. boydii and S. sonnie have been described and are thought to have evolved from

ancestral non-pathogenic E. coli by the acquisition of a large virulence plasmid [6], that

encodes many virulence factors on its ipa-mxi-spa region of which the invasion plasmid anti-

gen (antigens (IpaA, IpaB, IpaC and IpaD proteins) is one of the most essential. These proteins

are important for bacterial invasion of epithelial cells as well as immune cell escape [7]. Infec-

tion caused by Shigella spp., Shigellosis is more common among children and travellers and

approximately 60% of cases are accounted for by S. flexneri, although infection with S. dysen-
teriae causes greater toxicity. S. dysentariae serotype 1 produces the Shiga toxin which can lead

to HUS and eventually cause hemolytic anaemia, uremia and thrombocytopenia with up to

20% mortality. Shigella infection can also activate reactive arthritis [8]. K. pneumoniae on the

other hand occurs as an opportunistic pathogen especially in persons with weakened immune

systems and cause soft tissue (e.g. cellulitis and necrotizing fasciitis), to life-threatening infec-

tions such as pneumonia, septicemia, meningitis, and endophthalmitis as well as are impli-

cated in a significant number of cases of hospital-acquired urinary tract infections [9].

There is an increased report of multidrug resistance globally that is considered a public

health threat. Several previous studies revealed the emergence of multidrug-resistant bacterial

pathogens from different origins including animals, fish, birds, drinking water and other

environmental water sources that may be sources of transmission through the food chain to

human consumers resulting in severe illness [10–17]. Enterobacteriaceae have exhibited varied

antibiotic resistance mechanisms such as the intrinsic production of beta-lactamases that inac-

tivates beta-lactam antibiotics in predominance thus proving to be a public health threat [18].

Of these, the production of Extended Spectrum Beta Lactamases (ESBL) and AmpC beta-lacta-

mases have been the most prominent [19]. AmpC beta-lactamases are group 1 or class C
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cephalosporinases mostly encoded on chromosomal sequences of many Enterobacteriaceae
and mediate resistance to cephalothin, cefazolin, cefoxitin and most penicillins, as well as

enhance the production of β-lactamase inhibitor-β-lactam combinations [20]. Chromosomally

encoded AmpC genes are constitutive and typically expressed at low levels, however, in most

Enterobacteriaceae these genes are inducible and overexpressed in response to β-lactam or

other stimuli conferring resistance to broad-spectrum Cephalosporins including Ceftriaxone,

Ceftazidime, and Cefotaxime [21, 22]. Enterobacteriaceae belonging to the CESP group or

group II Enterobacteriaceae (Citrobacter, Enterobacter, Serratia and Providencia) alongside

Hafnia and Morganella included more recently, are typical examples with chromosomally-

encoded AmpC beta-lactamases [11, 22]. However, in other Enterobacteriaceae, such as E. coli
and Shigella spp., AmpC β-lactamases are chromosomally encoded and constitutively low or

poorly expressed but non-inducible. In these bacterial species, expression of AmpC beta-lacta-

mases is due to hyperproduction as a result of chromosomal ampC gene mutation or expres-

sion of plasmid-encoded AmpCs [21]. There is an increasing interest in transmissible

(plasmid)-mediated cephalosporinases due to their mobility and potential spread. Species har-

bouring ampC positive plasmids confer resistance to beta-lactams comparable to their chro-

mosomal equivalents and include E. coli, Salmonella spp., Klebsiella pneumoniae, Citrobacter
freundii, Proteus mirabilis, and Enterobacter aerogenes [23, 24]. Currently, resistance amongst

these members of Enterobacteriaceae, particularly E. coli to cephalosporins, beta-lactamase

inhibitors and cephamycins is concerning and presents a huge challenge to public health.

Although AmpC β-lactamases usually hydrolyse a wide variety of β-lactam antibiotics

except for the carbapenems and cefepime, unfortunately, overproduction of AmpC coupled

with the outer membrane porin mutations can reduce susceptibility to carbapenems, particu-

larly in plasmid-mediated AmpC producers [22]. This is a cause for concern, as carbapenems

are first-line drugs in cases of antibiotic resistance [25], leaving limited available therapeutic

options against MDR pathogens. It is therefore imperative to determine the frequency of

occurrence of AmpC beta-lactamase-producing bacteria and the possible transmission of their

resistance traits between environments.

Various phenotypic tests including the AmpC disk test, modified three-dimension test

(M3DT), boric acid detection test, double disc synergy test (CC-DDS) and the D69C AmpC

detection set have been reliably used in the detection of AmpC-producing traits in bacterial

strains [26–30]. These tests have been supplemented with genotypic tests especially for the

detection of plasmid-mediated AmpC genes which pose a significant threat to public health.

Genotypic tests have been described for six ampC gene families (MOX, CIT, EBC, FOX, DHA

and ACC-1) for which discriminative phenotypic tests are yet to be developed [31]. Despite

the reported evidence on the increasing detection of AmpC beta-lactamases among Enterobac-
teriaceae worldwide [22, 32, 33], little or no data has been generated for South African strains

and this highlights the importance of the present study. In the current study area, strains

belonging to the family Enterobacteriaceae have previously been isolated from various sources

and their antimicrobial susceptibility profiles determined [34–38]. Moreover, previous studies

have indicated that besides humans and livestock, food products can also harbour AmpC beta-

lactamases-producing Gram-negative bacteria [2, 22, 30, 39–42]. However, besides the study

undertaken by Coertze and Bezuidenhout [43], there is no documented data of AmpC beta-

lactamases-producing Enterobacteriaceae in the North-West Province of South Africa. This

also raises the need to screen community-derived samples for the resistance traits in the area.

The study was therefore aimed to isolate, identify and characterise AmpC beta-lactamase-pro-

ducing Enterobacteriaceae isolated from cattle/beef products, hospital environments, ground-

water and humans and to determine their genetic relatedness.
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2. Materials and methods

2.1 Sampling

A variety of samples totalling 177 were randomly collected in Kareefontein, Lichtenburg, Mafi-

keng, Rustenburg and Zeerust in the North-West Province, of South Africa. Ethical approval

for the study was obtained from the North-West University Health Science Ethics Committee

(NWU-00728-18-A9) and permission obtained from the North West Provincial Health

Department, South Africa. A verbal informed consent was obtained from parents/guardians of

minors, from which feacal samples were collected, however documented in the laboratory

note book. Fifty-four (54) faecal samples were collected directly from the rectum of cattle

using sterile arm-length gloves. Twelve (12) beef samples that comprised wors, mincemeat,

beef polony and beef fillet steaks were randomly collected from different butcheries and retail

stores. Fifty-four (54) water samples were collected from boreholes in villages following the

recommendations for groundwater sampling [44]. Seven (7) human stool samples were col-

lected from patients aged between 4 months and 4 years at the Mafikeng Provincial hospital,

North West Province of South Africa. In addition, sixty-four (64) swab samples were collected

from clinics around the North-West Province of South Africa. Swab samples were obtained

from consultation rooms, reception area, staff kitchen and patient toilets at noon after person-

nel and patients had been in contact with the surfaces. All samples were collected into appro-

priate containers and transport media where possible and transported on ice to the laboratory

for analysis within six hours of collection. Table 1 shows the numbers of the samples collected

from various sources.

2.2 Isolation and identification of members of Enterobacteriaceae
2.2.1 Sample processing. Beef products, human and cattle faeces were processed as previ-

ously described [45, 46]. Briefly, 25 g of cattle and human faeces were homogenized in 225 ml

of 0.1% (w/v) buffered peptone water (BPW) while 1 g of beef sample was washed in 10 ml of

2.0% (w/v) BPW (Lab M Limited, UK). The cotton wool swabs were washed in 10 ml of 2%

(w/v) peptone water and vortexed. For groundwater samples, aliquots of 100 ml of each sample

Table 1. Types and numbers of the samples collected during the study.

Sample type Sampling area No. of samples Total

Groundwater Mafikeng 24 40

Rustenburg 8

Zeerust 7

Kareefontein 1

Beef Lichtenburg 6 12

Zeerust 5

Kareespruit 1

Hospital surface swabs Bophelong 9 64

Danville 10

Lonely park 7

Motlhabeng 18

Ramatlabama 600 8

Unit 9 12

Cattle faeces Zeerust 54 54

Human faeces Mafikeng 7 7

https://doi.org/10.1371/journal.pone.0253647.t001
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were aseptically filtered through 0.45 μm pore-size filters (Whatman Laboratory Division,

Maidstone, England) as recommended [47].

2.2.2 Isolation of members of Enterbacteriaceae. One hundred microliters of each sus-

pension was spread-plated on MacConkey agar with crystal violet (Biolab, SA) for the isolation

of Enterbacteriaceae [48]. Membrane filters were also aseptically inoculated on the agar. Plates

were incubated aerobically at 37 ˚C for 24 hours. One to three colonies per positive plate

depending on differing but typical morphological characteristics of Enterobacteriaceae were

sub-cultured on fresh agar for purity. A 25% glycerol stock was prepared from a fresh over-

night pure culture in tryptic soy broth and preserved at −80˚C for future analysis.

2.2.3 Molecular identification of members of Enterbacteriaceae. Bacterial chromosomal

DNA was extracted from presumptive Enterobacteriaceae isolates using the CTAB method

[49]. As an internal control, bacterial 16S rRNA gene of all presumptive isolates was amplified

by PCR. using the universal oligonucleotide primer sequences 27F 5’-AGA GTT TGA TCM
TGG CTC AG-3’ and 1492R 5’-TAC GGY TAC CTT GTT ACG ACT T-3’ Polymerase

reaction assays were also used for genus/species-specific identification of Enterobacteriaceae of

interest: E. coli, Klebsiella pneumoniae, and Shigella spp. (Table 2 consist of all oligonucleotide

primers used in the study). PCR assays were performed in a C1000 Touch Thermal Cycler

(Bio-Rad, California, USA) and for each reaction, a total volume of 25 μl containing 12.5 μl

DreamTaq Master Mix (1X PCR buffer, 2 mM MgCl2, 0.6 units of Taq DNA polymerase and

0.2 mM of each dNTPs), 11 μl of nuclease-free water, 0.5 μl oligonucleotide primer set (0.1μM

final reaction concentration) and 1 μl of DNA template was prepared. E. coli ATCC 35218 and

other in-house strains previously confirmed positive for the other targeted strains were used as

Table 2. Oligonucleotide primer sequences used in the study.

Gene Target Primer sequences (5’-3’) Product size (bp) Annealing temperature Reference

16S rRNA 27F: AGAGTTTGATCMTGGCTCAG 1420 55 ˚C [52]

1492R: TACGGYTACCTTGTTACGACTT

E. coli uidA gene UAL: TGGTAATTACCGACGAAAACGGC 147 50˚C [53]

UAR: ACGCGTGGTTACAGTCTTGCG

K. pneumoniae 16S-23S spacer PF: ATTTGAAGAGGTTGCAAACGAT 130 55 ˚C [54]

PA: TTCACTCTGAAGTTTTCTTGTGTTC

Shigella spp. putative integrase gene GF: TCCGTCATGCTGGATGAACGATGT 159 60 ˚C [55]

GR: ACAGTTCAGGATTGCCCGAGACACA

BlaTEM F: AAACGCTGGTGAAAGTA 822 45˚C [56]

R: AGCGATCTGTCTAT

AmpC genes

MOX-1, MOX-2, CMY-1 CMY-8 to CMY-11 MOXMF: GCTGCTCAAGGAGCACAGGATGAT 520 55.9 ˚C [31]

MOXMR: CACATTGACATAGGTGTGGTGC

LAT-1 to LAT-4, CMY-2 to CMY-7, BIL-1 CITMF: TGGCCAGAACTGACAGGCAAA 576

CITMR: TTTCTCCTGAACGTGGCTGGC

ACC ACCMF: AACAGCCTCAGCAGCCGGTTA 403

ACCMR: TTCGCCGCAATCATCCCTAGC

MIR-1T ACT-1 EBCMF: TCGGTAAAGCCGATGTTGCGG 302

EBCMR: CTT CCACTGCGGCTGCCAGTT

FOX-1 to FOX-5b FOXMF: AACATGGGTATCAGGGAGATG 190

FOXMR: CAAAGCGCGTAACCGGATTGG

DHA-1, DHA-2 DHAMF: AACTTTCACAGGTGTGCTGGGT 619

DHAMR: CCGTAC GCATACTGGCTTTGC

https://doi.org/10.1371/journal.pone.0253647.t002
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controls. Otherwise mentioned, all DNA and amplicons resulting from PCR assays in this

study were resolved by electrophoresis on a 1% (w/v) agarose gel stained with 0.001mg/ml

ethidium bromide (BioRad, UK). Gel electrophoresis was carried out at 70V and 250A for 90

minutes in 1 X TAE buffer (40 mM Tris, 1 mM EDTA and 40 mM glacial acetic acid, pH 8.0).

Gels were visualized under UV light at a wavelength of 420 nm and the images were captured

using a ChemiDoc Imaging System (Bio-Rad ChemiDoc™ MP Imaging System, California,

USA).

2.3 Antimicrobial susceptibility testing

The antimicrobial resistance profiles of the isolates were determined by the disc diffusion

assay on Mueller Hinton agar following the CLSI (Clinical Laboratory Standards Institute) rec-

ommendations [50]. Twelve antibiotics (Mast Diagnostics, UK) belonging to seven groups

were used: β-lactam/ β-lactamase inhibitor (Piperacillin-tazobactam, 100 μg /10 μg), Carbape-

nem (Meropenem, 10 μg), Monobactam (Aztreonam, 30 μg), Aminoglycoside (Gentamicin,

10 μg; Amikacin, 30 μg), Quinolone (Ciprofloxacin), Cephem (Cefepime, 30 μg; Cefotaxime,

30 μg; Ceftriaxone, 30 μg; Cefuroxime, 30 μg and Ceftazidime, 30 μg) and folate pathway

inhibitor (Trimethoprim-Sulfamethoxazole, 1.25/ 23.75 μg). These antimicrobial agents were

selected based on resistance data from some previous studies conducted in the study area [15,

50]. In addition, third-generation cephalosporins were included in the evaluation due to the

fact that they have a wide activity against gram-negative microorganisms and are very useful

for the treatment of serious bacterial infections in humans. The resulting growth inhibition

zone diameters were used to classify isolates as resistant, intermediate resistant and susceptible

based on the CLSI breakpoint values [51]. Isolates presenting intermediate resistant patterns

were considered as potential resistant isolates.

2.4 Phenotypic and genotypic detection of AmpC β-lactamases and ESBL

Phenotypic detection of AmpC β-lactamase production was carried out using cefoxitin disc

(30 μg) as previously described [22, 30]. E. coli (ATCC 35218), a beta-lactamase-producing

strain was used as a positive control. Isolates exhibiting resistance to cefoxitin (inhibition

zone� 18 mm) were preliminarily considered positive for AmpC β-lactamase. These potential

AmpC beta-lactamase-producing isolates were subjected to a confirmatory phenotypic test

using the D96C AmpC detection test based on the manufacturer’s instructions. The D96C

AmpC test uses cefpodoxime to screen for chromosomal and plasmid-encoded AmpC [30]. In

performing the test, a sterile needle was used to place three discs, A (cefpodoxime and Amp C

inducer), B (cefpodoxime, AmpC inducer and ESBL inhibitor) and C (cefpodoxime AmpC

inducer, ESBL inhibitor and AmpC inhibitor) at equitable distances on an inoculated bacterial

lawn. The plates were incubated aerobically at 37 ˚C for 24 hours. An isolate was considered

AmpC positive if the zone of inhibition of disc C exceeded that of both discs A and B by� 5

mm, while zones differing by� 3 mm were AmpC negative isolates. In a case where the zones

of inhibition of both disc B and C exceeded that of disc A by� 5 mm and those of disc B and

C had a difference of� 4 mm, the isolate was reported to be negative for AmpC-production

but considered to be exhibiting a different resistance mechanism [29]. Molecular detection of

AmpC beta-lactamases was achieved through PCR amplification of plasmid-mediated ampC
genes encoding the phenotypes MOX, CIT, ACC, EBC, FOX and DHA (Table 2). Each PCR

cycling condition comprised an initial denaturation at 95 ˚C for 2 minutes, followed by 30

cycles of DNA denaturation at 94 ˚C for 45 seconds, primer annealing at 55.9 ˚C for 45 sec-

onds, primer extension at 72 ˚C for 1 minute and a final extension at 72 ˚C for 5 minutes. All

PCR products were resolved by electrophoresis.
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Phenotypic identification of ESBL-producing isolates was done using the D64C ceftazidime

ESBL identification set (Mast Diagnostics, UK). The test was performed and results interpreted

according to the manufacturer’s instructions. Similar to the D63C test, discs containing cefta-

zidime (30 μg) and ceftazidime/clavulanic acid (30/10 μg) were placed equitably apart on

MHA inoculated with the standardised bacterial suspension. Following overnight incubation

at 37 ˚C, the diameter of the zones of inhibition around the discs was recorded. An increase in

the inhibition zone diameter of� 5 mm in the presence of clavulanic acid indicated an ESBL-

positive strain. ESBL producing isolates were screened for the presence of the blaTEM gene by

PCR assay using specific primers (Table 2).

2.5 Molecular typing of AmpC beta-lactamases producing Escherichia coli
using ERIC-PCR

Fifteen (15) PCR confirmed AmpC beta-lactamase-producing E. coli isolates were subjected to

ERIC-PCR to generate genetic fingerprints. The primer ERIC 2 (5’-AAGTAAGTGACTGGG
GTGAGCG-3’) was used based on a previous report [57]. Cycling conditions included an ini-

tial denaturation at 94 ˚C for 2 minutes followed by 30 cycles of denaturation at 94 ˚C for 30

seconds, annealing at 50 ˚C for 1 minute and elongation at 65 ˚C for 8 minutes and a final

extension at 65 ˚C for 8 minutes. The ERIC fingerprints were obtained by resolving PCR prod-

ucts on a 2% (w/v) agarose gel stained with 0.0001 μg/ml ethidium bromide (Bio-Rad Labora-

tories, Canada). Electrophoresis was performed at 60 V for 120 minutes. The gels were

visualized under UV and imaged using a ChemiDoc™ MP Imaging system (Bio-Rad, Hercules,

USA). Fingerprinting patterns were analysed using the BioNumerics software version 7.6

(Applied Maths, Sint-Martens-Latem, Belgium). Salmonella Braenderup H9812 was used as a

control and for standardization of the gels. Band similarity was calculated by applying the dice

coefficient method with an optimization of 0.5% and a band matching tolerance of 1%. Cluster

analysis was performed using the unweighted pair group methods arithmetic average algo-

rithm to construct a dendrogram. The dendrogram was further analysed for associations of

isolates in the various clusters originating from the different sources.

2.6 Statistical analysis

Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS) v. 27.

The Fisher Exact test was used to determine relationships between variables and statistical sig-

nificance was set at p = 0.05.

3. Results

3.1 Occurrence of Enterobacteriaceae in various samples

One hundred and fifty (150) out of the 177 samples screened were positive for Enterobacteria-
ceae and included all groundwater (n = 40) and cattle faecal (n = 54) samples, 41 (64.1%) clini-

cal swabs, 11 (91.7%) beef and 4 (57.1%) human faecal samples. PCR identification of 203

presumptive Enterobacteriaceae isolates resulted to a higher detection frequency for E. coli
(32.0% n = 65), followed by Shigella species (26.1%, n = 36) and Klebsiella pneumoniae 15

(17.7%). The rest (42.9%, n = 87) were considered as other members of Enterobacteriaceae not

considered for further analysis in the study. There was a significant difference (p< 0.001) in

the distribution of Enterobacteriaceae species with respect to sample source. Fig 1 shows the

distribution of various Enterobacteriaceae strains. Representative gels (S1-S3 Figs in S1 File)

are documented in the supplementary material.
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3.2 Antimicrobial resistance profile of isolates

Generally, resistance to the quinolone antibiotic was the most frequent, followed by resistance

to the Cephems while high susceptibilities were recorded to Amikacin (Aminoglycoside) and

Meropenem (Carbapenem). These patterns were observed in E. coli isolates whereby non-sus-

ceptibility was highest to Ciprofloxacin (55.4%, 36/65), followed by the cephems [Cefotaxime

(43.1%, 28/65), Cefuroxime and Ceftazidime (33.8%, 22/65)]. Apart from a 29.2% (19/65)

resistance recorded to Aztreonam, E. coli isolates revealed < 25% resistance to the rest of the

antibiotics tested with a remarkable sensitivity (100%) to Amikacin (Table 3). Similar to the

resistance observed in E. coli isolates, Shigella spp. were often resistant to Ciprofloxacin

(44.4%, 16/36) and their resistance to Cefuroxime (36.1, 13/36), Cefepime (30.6, 11/36),

Cefuroxime and Aztreonam (27.8, 10/36) were higher compared to the rest (susceptibilities

of� 75%) of the antibiotics tested. Ciprofloxacin was also the least effective antibiotic (53.3%

resistance) against K. pneumoniae. Klebsiella pneumoniae isolates also exhibited a 40% resis-

tance to Aztreonam and Ceftazidime, 33.3% to Cefotaxime, Cefepime and Cefuroxime and

26.7% to Trimethoprim-Sulfamethoxazole. Only 3 (20%) isolates in this group were resistant

to Ceftriaxone and Gentamicin, 2 (13.3%) to Amikacin and Meropenem, and 1 (6.7%) to

Piperacillin/Tazobactam.

Generally, the aforementioned differences observed for most of the antibiotics tested

were insignificant (p> 0.05), except for the resistance of the various bacterial species/groups

obtained against Amikacin (p = 0.024). Table 3 depicts detailed results of the antimicrobial-

resistant profiles of the isolates.

Fig 1. Summarized results of PCR-identified isolates from various environments.

https://doi.org/10.1371/journal.pone.0253647.g001

PLOS ONE AmpC beta-lactamase producing Enterobacteriaceae isolated from various sources

PLOS ONE | https://doi.org/10.1371/journal.pone.0253647 July 29, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0253647.g001
https://doi.org/10.1371/journal.pone.0253647


3.3 Prevalence of AmpC beta-lactamases/ ESBL among Enterobacteriaceae
isolates

Cefoxitin disc revealed about a third of the Enterobacteriaceae isolates (38/116, 32.8%) as

cefoxitin-resistant, considered as potential AmpC β-lactamase producers. Nineteen (50%) of

these (16 E. coli and 3 Shigella spp.) were confirmed positive using the D69C AmpC detection

test comprising 16.4% (19/116) of the overall Enterobacteriaceae population. A large propor-

tion of the AmpC beta-lactamase producers harbored the blaACC gene (n = 14; 73.7%), while

the blaCIT, blaFOX, and blaDHA were detected in 5 (26%), 3 (16%), and 2 (11%) isolates respec-

tively (Table 4). None of the isolates harboured the blaACT and blaFOX genes. Only one (5.3%)

isolate harboured both blaACC and blaDHA genes. S4-S6 Figs in S1 File are representative aga-

rose gels (supplementary material).

Out of the 116 Enterobacteriaceae isolates screened for ESBL phenotypes, 34 (29.31%) tested

positive which comprised 19 E. coli, 10 Shigella spp. and 5 K. pneumoniae strains (Table 5, Fig 2).

Table 3. Number and proportion of antibiotic-resistant Enterobacteriaceae strains.

Bacteria species Origin CPM CXM CAZ CRO CTX PTZ MEM GM AK TS CIP ATM

E. coli (N = 65) CE (n = 27) - 6 1 5 8 1 1 1 - 1 6 5

CF (n = 19) 6 8 10 5 7 3 3 3 - 4 16 7

BP (n = 11) 3 4 6 1 6 1 - - - 5 9 1

BH (n = 6) 5 3 4 2 5 - - 3 - - 4 4

HF (n = 2) 2 1 1 2 2 1 - 1 - 2 1 2

Total (%) 16 (24.6) 22 (33.8) 22 (33.8) 15 (23.1) 28 (43.1) 6 (9.2) 4 (6.2) 8 (12.3) 0 (0) 12 (18.5) 36 (55.4) 19 (29.2)

Shigella spp. (N = 36) CE (n = 16) - 3 - 1 2 - 1 - 1 2 2 2

CF (n = 12) 7 7 7 5 4 5 - 4 1 2 9 5

BP (n = 4) 3 1 - 2 4 - - - - 3 3 1

BH (n = 3) - 1 1 1 - - - 1 - 1 1 1

HF (n = 1) 1 1 1 1 - - - 1 - 1 1 1

Total (%) 11 (30.6) 13 (36.1) 9 (25) 10 (27.8) 10 (27.8) 5 (13.9) 1 (2.8) 6 (16.7) 2 (5.6) 9 (25) 16 (44.4) 10 (27.8)

K. pneumoniae (N = 15) CE (n = 3) - - - - - - - - - 2 1 1

CF (n = 1) - 2 2 1 - 1 2 - 2 - 3 1

BP (n = 6) 1 - 1 - 1 - - 1 - - 1 1

BH (n = 3) 2 2 2 2 2 - - 1 - 1 2 2

HF (n = 2) 2 1 1 - 2 - - 1 - 1 1 1

Total (%) 5 (33.3) 5 (33.3) 6 (40) 3 (20) 5 (33.3) 1(6.7) 2(13.3) 3 (20) 2(13.3) 4(26.7) 8(53.3) 6(40)

�Resistant (resistant + intermediate resistant). CTX = Cefotaxime (30 μg), CPM = Cefepime (30 μg), CXM = Cefuroxime (30 μg), CAZ = Ceftazidime (30 μg),

CRO = Ceftriaxone (30 μg), PTZ = Piperacillin + Tazobactam (110 μg), MEM = Meropenem (10 μg), GM = Gentamicin (10 μg), AK = Amikacin (30 μg),

TS = Trimethoprim-Sulfamethoxazole (25 μg), CIP = Ciprofloxacin (5 μg), ATM = Aztreonam (30 μg), CE = Clinical environment, CF = Cattle faeces, BP = Beef

product, BH = Borehole (Groundwater), HF = Human faeces,

https://doi.org/10.1371/journal.pone.0253647.t003

Table 4. Distribution of AmpC beta-lactamase producers and encoding genes among Enterobacteriaceae isolates.

Species Cefoxitin disc AmpC D96C AmpC beta-lactamase genes detected

blaACC blaACT blaCIT blaDHA blaFOX blaMOX

E. coli (n = 65) 24 (36.9) 16 (24.6%) 14 0 5 2 3 0

Shigella spp. (n = 36) 11 (30.6%) 3 (8.3%) 0 0 0 0 0 0

K. pneumoniae (n = 15) 3 (20%) 0 (0) - - - - - -

Total (N = 116) 38 (44.8) 19 (16.4%) 14 (73.7) 0 (0) 5 (26.3) 2 (10.5) 3 (15.8) 0 (0)

https://doi.org/10.1371/journal.pone.0253647.t004
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Table 5. Prevalence of ESBL-producing Enterobacteriaceae.

Sample origin Number tested E. coli (n = 65) Shigella spp (n = 36) K. pneumoniae (n = 15)

Clinical environments 49 6 2 3

Cattle feces 34 6 5 0

Borehole water 12 4 2 1

Human feces 5 2 1 1

Beef 16 1 0 0

TOTAL 116 19 (29.2%) 10 (27.8%) 5 (33.3%)

https://doi.org/10.1371/journal.pone.0253647.t005

Fig 2. Proportion of ESBL-producing Enterobacteriaceae.

https://doi.org/10.1371/journal.pone.0253647.g002
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Only a small percentage (n = 2; 1.72%) exhibited both AmpC and ESBL phenotypic traits. A

large proportion (n = 27; 79.4%) of the phenotypically positive ESBL isolates consisting of 15, 8

and 4 isolates of E. coli, Shigella spp. and K. pneumoniae respectively, harboured the blaTEM gene

(S7 Fig in S1 File).

In summarily, most of the AmpC producers were multidrug-resistant and a Shigella species

from cattle faeces, Y10 showed resistance or intermediate resistance to all antibiotics initially

tested and doubles as a co-producer of ESBL. All AmpC isolates were susceptible (17/19) or

showed intermediate susceptibility (2/19) to the cephem antibiotics. A detailed summary

of the characteristics of all AmpC beta-lactamase isolates detected in the study is shown in

Table 6.

3.4 Genetic relatedness of AmpC positive Enterobacteriaceae
The Fifteen AmpC beta-lactamase-producing E. coli strains typed by ERIC-PCR were of beef,

clinical environment and cattle faecal origin. Generally, ERIC fingerprints ranged from 3 to 9

fragments per isolate and the relative sizes were between 250 bp to 3000 bp (Fig 3). ERIC fin-

gerprinting profiles (Fig 3) placed the 15 isolates into 6 major clusters indicating genetic diver-

sity with the largest cluster (cluster IV) having four isolates (one each from beef and cattle

faeces samples and two from hospital swabs). On the contrary, the smallest cluster (cluster II)

Table 6. Summary characteristics of AmpC beta-lactamase positive Enterobacteriaceae.

S/

N

Isolate code Bacterial

strain

Source Antibiotic resistance pattern AmpC genes

present

ESBL

phenotype

1 Y6 E. coli Cattle faeces CTXI, FOXI, CIPI, ATMI, MEMI, CROI, PTZI blaACC Negative

2 Y22 E. coli Cattle faeces CXMR, CAZR, CTXI, CIPI, blaACC, blaCIT Negative

3 Y11 E. coli Cattle faeces CTXR, CPMR, TSR, CIPI, CAZI, ATMI blaACC Negative

4 Y27 E. coli Cattle faeces CTXR, CPMR, TSR, ATMR CIPI blaACC Positive +

5 BCC E. coli Hospital

environment

TSI - Negative

6 MCB2P E. coli Hospital

environment

- blaCIT Negative

7 MPCW E. coli Hospital

environment

FOXR blaACC Negative

8 BCB1 E. coli Hospital

environment

CTXR, FOXR, CXMR, CROR MEMI, blaACC, blaCIT Negative

9 MPCP E. coli Hospital

environment

- blaDHA Negative

10 LPVAW E. coli Hospital

environment

CXMR, TSI, blaACC Negative

11 ZM2-B E. coli Beef product CTXR, FOXR, CIPR, CXMR, ATMI, TSI blaACC Negative

12 ZM1-B E. coli Beef product FOXR, CXMR, CTXI, CIPI CPMI, CAZI blaACC, blaCIT Negative

13 LM1-A E. coli Beef product CTXI blaACC blaCIT Negative

14 LB1-A E. coli Beef product - blaACC Negative

15 ZB1-A E. coli Beef product CTXR, CROR, TSR, CIPI, CAZI, PTZI blaACC Negative

16 LM1-C E. coli Beef product TSI, FOZI, CIPI, CAZI, blaACC, blaDHA Negative

17 Y10 Shigella spp. Cattle faeces CTXR, GMR, FOXR, CIPI, CXMR, CAZR, ATMR, CROR, PTZI,

CPMI, ATMI
Positive

18 LPCB Shigella spp. Hospital

environment

CTXR, FOXR, CXMR - Negative

19 KW1-B Shigella spp. Beef product CTXR, CPMI, TSR, FOXR, CIPI, CXMR, ATMI, CROR Negative

� R = resistant, I = intermediate resistance

https://doi.org/10.1371/journal.pone.0253647.t006
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possessed only one isolate from a clinic environment in Motlabeng (Fig 4). However, this iso-

late shared some similarity with those in cluster I that mainly comprised isolates from beef

samples collected from Zeerust (Fig 4). Cluster analysis revealed a 45% similarity cut off value

regardless of the sampling area or source of the isolate. Fig 4 shows the dendrogram obtained

from ERIC-PCR fragments.

4. Discussion

Enterobacteriaceae pathogens are implicated in intra-abdominal, urinary tract, bloodstream,

and various nosocomial infections and may resist antibiotic treatment due to the production

of beta-lactamases that hydrolyse beta-lactam antibiotics [19]. The presence of these pathogens

in borehole water intended for human use and consumption suggests potential health risks to

consumers. Boreholes are usually proved to supply pure water when first drilled with little

need for treatment. However, over time, boreholes become vulnerable to pollution with

increased microbial contamination. Unfortunately, especially in poor communities, there is a

continued water usage without tank cleaning and treatment [58]. Moreover, boreholes are

compromised by solid waste dumping sites and general littering by animal droppings from

farms [59]. Even in cases where residents are aware of the possible unsafe nature of the water,

they are often left with no alternatives as these are usually poverty-stricken communities with-

out access to water purifiers [58].

Meat safety is increasingly becoming an issue of severe concern. Cattle faeces harbouring

Enterobacteriaceae such as E. coli is not surprising. However, cross-contamination in

Fig 3. Agarose gel showing ERIC-PCR fingerprints of 15 AmpC- beta-lactamase E. coli isolates. M = 1Kb DNA

molecular weight marker; Lane 1 = BCC; Lane 2 = BCB1; Lane 3 = LPVAW; Lane 4 = 6; Lane 5 = ZM2-B; Lane

6 = ZM1-B; Lane 7 = 22; Lane 8 = 11; Lane 9 = LM1-A; Lane 10 = 27; Lane 11 = ZB1-A; Lane 12 = LM1-C; Lane

13 = MCB2P; Lane 14 = MPCW; Lane 15 = MPCP; Lane 16 = LB1-A.

https://doi.org/10.1371/journal.pone.0253647.g003

Fig 4. Dendrogram generated from ERIC-PCR cluster analysis of AmpC- beta-lactamase-producing Escherichia
coli isolates.

https://doi.org/10.1371/journal.pone.0253647.g004
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slaughterhouses and contamination during processing and distribution due to poor handling

practices may occur resulting in the detection of the strains in beef products [60]. The higher

isolation frequency of E. coli compared to other Enterobacteriaceae is similar to a report by

Gwida et al. [46] in which a large proportion (54%) of the isolates from raw beef were identi-

fied as E. coli. The consumption of Enterobacteriaceae-contaminated food or water may lead to

illnesses including diarrhoea, urinary and respiratory tract infections, dysentery, and in some

cases bacteraemia [61–63]. These bacteria species were also detected on surfaces of clinical

environments for which both patients and personnel had been in contact, which serves as

potential sources for the development of nosocomial infections. Nosocomial infections are

most often associated with invasive medical procedures and present a major challenge to

patients’ health [64, 65]. Bloodstream nosocomial infections caused by Gram-negative organ-

isms such as E. coli and Klebsiella species have been previously reported [1, 64] Unlike with

other environments, the microbial population in a clinical environment has to be in check,

especially as patients are often immunocompromised and unable to combat infections effec-

tively compared to their healthy counterparts. A noticeable percentage of Shigella species were

also obtained during the study. Shigellosis, caused by Shigella infection, is a more severe form

of gastroenteritis and regularly leads to the death of children under the age of five [62, 66]. Shi-
gella species have earlier been detected in the study area from meat abattoirs [67] and river

catchments [68], but not from clinical environments highlighting the immense epidemiologi-

cal relevance of this data.

The emergence and increased dissemination of beta-lactam resistance, especially in Entero-
bacteriaceae is an impediment to antibiotic therapy and public health as a whole. In the present

study, large proportions of the isolates originating from various sources displayed significant

susceptibilities to the aminoglycoside; amikacin and the carbapenem; meropenem. A similar

outcome of no resistance against imipenem and two aminoglycosides was obtained in a previ-

ous study among young children in the Limpopo Province of South Africa [69]. These findings

are of great therapeutic significance particularly because carbapenems especially meropenem

are often used as the first-line antibacterial agents for infections caused by AmpC beta-lacta-

mase-producing Enterobacteriaceae. Despite the high susceptibility of AmpC beta-lactamase-

producing Enterobacteriaceae to aminoglycosides, these antibiotics are not highly recom-

mended for treating these infections because of their unnecessary increased toxicity [25].

The proportion of resistant isolates against the oxymino-cephalosporins; second (cefepime,

cefuroxime) and third-generation cephalosporins (cefotaxime, ceftriaxone and ceftazidime)

might have resulted mainly from the expression of plasmid-borne beta-lactamases (ESBL or

AmpC) or to a lesser extend hyperproduction of chromosomal-encoded AmpC due to pro-

moter or attenuator mutation [21]. The trend in which isolates from cattle most often dis-

played resistance to oxymino-cephalosporins and ciprofloxacin was particularly concerning as

cattle are food-producing animals. Moreover, given that the projected increase in meat pro-

duction from 200 million tons to 470 million tons globally by 2050 this may significantly

increase the usage of antibiotics for both the prevention and remediation of livestock diseases

[70]. This reliance will ultimately increase antimicrobial resistance among bacterial pathogens

which in turn will not only affect the quality of food products produced from these animals

but also greatly hamper therapeutic processes in humans.

Resistance to cefoxitin is useful in screening for AmpC production in Enterobacteriaceae
such as Klebsiella spp. and E. coli especially in areas where ACC-1 and ACC-4 enzymes have

never been detected [71]. The large proportion of the isolates positive for AmpC by the use of

cefoxitin disc contradicts earlier findings of Polsfuss et al. [15], Helmy and Wasfi [72] and

Wassef et al. [73] in which 9.9%, 18.2% and 5.8% of the isolates respectively were resistant to

cefoxitin. The presence of transmissible AmpC gene (s) in the majority (15/19) of AmpC
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positive Enterobacteriaceae is a cause for concern, because these strains or their resistance

traits may potentially be dispersed amongst other strains in the environment, a public health

threat.

ESBL-producing Enterobacteriaceae have been officially recognized as pathogens of critical

priority by the World Health Organization as they have over the years been seen as problem-

atic to global public health [74]. As such, it was of importance to investigate their occurrence

especially their co-existence/production with AmpC. A 29.3% (n = 34) ESBL production rate

in the current study and co-existence of both enzymes in two of the isolates ranks below the

proportion previously obtained in parts of South Africa: Richter et al. [75] obtained a 79.2%

ESBL and 41.6% of AmpC in Enterobacteriaceae isolates from vegetables while Founou et al.
[76] reported a 19.5% ESKAPE pathogens ESBL producers from clinical samples. Also, the

percentage of detection of ESBL in this study was higher than the 9.4% detected from retail

foods in China [77] but lower than the proportion (45.2%) detected from clinical strains

from Sudan [42]. Although the CTX-M enzymes in ESBL producers are the most frequently

detected globally [78], the TEM type enzymes are known to be horizontally transferrable with

ease and are degraded by clavulanic acid [78, 79]. The significant number of ESBL producing

isolates positive for the blaTEM gene, do not agree with previous studies by Oduro-Mensah

et al. [80] and Bajai et al. [81] who reported lower frequencies of detection; 41.8% and 48.7%

respectively although comparable to a very high occurrence rate (95.1%) in penicillin-resistant

E. coli isolated from young children in the Limpopo province of South Africa [69]. It is worth

mentioning that ESBL producers are clinically significant because associated infections are

related to high mortality, lengthened hospital stay, failure of therapy and general health cost. A

study for monitoring antimicrobial resistance trends over 10 years, 2002–2011 revealed that

ESBL-producing Enterobacteriaceae causing intra-abdominal infections increased from 2003

(about 115) to almost 16% in 2005 in Africa. However, there was a steady decrease in the later

years reaching just below 10% by 2010. Unfortunately by 2011, intra-abdominal infections

caused by these pathogens was on the rise (almost 12%), especially amongst patients in inten-

sive care units [82]. In neonates and children, ESBL-producing Enterobacteriaceae have been

estimated at 15% in Africa [83]. The high incidence of ESBL obtained herein is therefore very

worrisome as ESBL-producing Enterobacteriaceae are often associated with various diseases

and most infective bacteria are multi-drug resistant.

The ERIC-PCR of 15 isolates revealed low similarity of AmpC beta-lactamase-producing

Enterobacteriaceae. Although E. coli have potentially transmissible AmpC beta-lactamase

determinants, cross-contamination had unlikely occurred. Despite the genetic diversity and

high heterogeneity, the great similarities in the drug resistance genes (identified by the pres-

ence of the blaACC gene) as shown in clusters I and IV indicate the potential to pose similar

public health and/or therapeutic challenges in humans. The data generated through

ERIC-PCR proved that there is a need to reduce or eradicate contamination levels in beef

products by implementing strict hygiene practices during the handling of beef carcasses.

5. Conclusion

The increased public health threat posed by multidrug-resistant ESBL and AmpC beta-lacta-

mase-producing strains especially among pathogenic Enterobacteriaceae is a cause for concern.

The potential of chromosomally encoded ampC genes to be induced and upregulated in most

Enterobacteriaceae when exposed to β-lactam antibiotics or other stimuli thus conferring resis-

tance to broad-spectrum Cephalosporins as well as the potential for the rapid dissemination of

plasmid-mediated ampC genes in other Enterobacteriaceae strains amplify the need for con-

stant surveillance. In summary, the study revealed the occurrence of AmpC positive E. coli,
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Shigella species and K. pneumoniae in borehole water, beef, human and cattle faeces as well as

clinical environments with high frequencies of occurrence in the latter two. Although AmpC

beta-lactamases were confirmed less prevalently than ESBL, their occurrence is a cause for

concern because the expression ampC genes in the identified Enterobacteriaceae strains are

often carried on transmissible plasmids and may be a source of transmission to other environ-

ments and humans, as well as a source of antibiotic resistance in HA- infections, a severe

health threat. Thus, strategies to ensure food safety and proper hygienic practices especially

with regards to those meant for human consumption are essential. There might be a need to

reassess and improve hygienic practices in cattle farms and abattoirs. Moreover, vigorous

cleaning methods could be adapted as these pathogens could be thriving within the currently

used methods. Continuous surveillance studies are also required for a better understanding of

the clinical implications of AmpC infections, which will, in turn, aid in hospital infection con-

trol and administration of appropriate antibiotics.

6. Limitation of the study

In this study, Multilocus Sequence Typing (MLST) was not included as a tool to determine the

genetic relatedness of isolates from different sources and this is a limitation.
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