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In recent years, the science of science policy has been facilitated by the greater

availability of and access to digital data associated with the science, technology, and

innovation enterprise. Historically, most of the studies from which such data are derived

have been econometric or “scientometric” in nature, focusing on the development of

quantitative data, models, and metrics of the scientific process as well as outputs

and outcomes. Broader definitions of research impact, however, necessitate the use

of qualitative case-study methods. For many years, U.S. federal science agencies such

as the National Institutes of Health have demonstrated the impact of the research they

support through tracing studies that document critical events in the development of

successful technologies. A significant disadvantage and barrier of such studies is the

labor-intensive nature of a case study approach. Currently, however, the same data

infrastructures that have been developed to support scientometrics may also facilitate

historical tracing studies. In this paper, we describe one approach we used to discover

long-term, downstream outcomes of research supported in the late 1970’s and early

1980’s by the National Institute of General Medical Sciences, a component of the National

Institutes of Health.

Keywords: science of science, citation networks, knowledge diffusion, research evaluation, research outcomes,

basic research, government funding

INTRODUCTION

For more than a decade, beginning when Dr. Jack H. Marburger III, the President’s Science Advisor
and Director of the Office of Science and Technology Policy called for a “science of science (SoS)
policy” (Office of Science Technology Policy, 2006), there has been a growing community of
practice in the US surrounding the evaluation of scientific research programs. Interest in SoS was
both reflected in, and further stimulated by, creation of the Science of Science Innovation and
Policy (SciSIP) program at the National Science Foundation (NSF) in 2006 (National Research
Council, 2014a). Through its grant program, SciSIP fostered the development of data, tools, and
methods “to inform the nation’s public and private sectors about the processes through which
investments in science and engineering (S&E) research are transformed into social and economic
outcomes” (National Science Foundation, 2007). The importance of these activities is further
strengthened by the involvement of other federal agencies in SciSIP, such as the National Institute
of General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH)
(National Institute of General Medical Sciences, 2019a). Interest in SoS—also sometimes referred
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to as “research on research” or “meta-research” (Kamenetzky and
Hinrichs-Krapels, 2020)—has not been limited to the US. Twelve
countries and regions from around the world are partners in
the Research on Research Institute, established in 2019 by the
Wellcome Trust, Digital Science, and the Universities of Sheffield
and Leiden (Skelton, 2019).

The increase in SoS studies has been fueled, in part, by greater
access to digital data on the science, technology, and innovation
enterprise (National Research Council, 2014b; Fortunato et al.,
2018; Waldman and Lariviere, 2020). As more sophisticated
databases, tools, and methods have become available,
expectations—and sometimes requirements—for public
science funding agencies to document the outcomes of national
investments in research have increased (Husbands Fealing et al.,
2011; Oancea, 2013; Kamenetzky and Hinrichs-Krapels, 2020).

Some agencies have responded by strengthening their own
data infrastructure to facilitate SoS studies. In the UK, routine
collection of research impact data has expanded through the
use of national databases such as researchfish R© (Raftery et al.,
2016). In the US, the NIH has been leading the effort of several
science agencies to construct the Federal Research Portfolio
Online Reporting Tools: Expenditures and Results (RePORTER)
website, a database of federal research investments and
associated outputs (scientific publications) (National Institutes
of Health, 2019). Federal RePORTER was modeled on NIH’s
own RePORTER system, which links NIH-funded projects to
resulting publications and patents (National Institutes of Health,
2020a). Also, the NIH Office of Portfolio Analysis has created
both internal and publicly available portfolio analysis tools and
data, such as the NIH Open Citation Collection (Hutchins et al.,
2019) and iCite, a query and analysis tool (National Institutes
of Health, 2020b). The NIH Office of Extramural Research also
has created an internal NIH Portfolio Analysis and Reporting
Data Infrastructure (PARDI) that combines grant records, NIH-
supported publications and patents, and citation data for use by
NIH staff (Zuckerman et al., 2015).

Historically, SciSIP has been largely focused on econometric
or “scientometric” research: the development of quantitative
data, models, and metrics of the scientific process, outputs, and
outcomes (National Academies of Sciences, 2017). There have
been long-standing concerns surrounding the interpretation
and use of some metrics (Donovan, 2007), and a rise in their
application coincided with the creation in 2015 of the Leiden
Manifesto, a set of principles to guide the use of metrics so that
“researchers can hold evaluators to account, and evaluators can
hold their indicators to account” (Hicks et al., 2015). Despite the
SoS community’s increased focus on metrics, the first principle in
the Manifesto emphasizes the primacy of qualitative assessment,
which quantification can support but not replace.

Broader definitions of research “impact” beyond economic
measures to include social, cultural, and environmental returns
have also necessitated the use of qualitative case-study methods
(Kearnes and Wienroth, 2011), such as the Payback Framework,
which has been used in several countries to assess the impact
of health-related research (Buxton and Hanney, 1996; Donovan,
2011; Donovan and Hanney, 2011). Case studies formed the
basis for the UK’s Research Excellence Framework beginning

in 2014 (King’s College London Digital Science, 2015; Research
Excellence Framework, 2015). That same year in the US,
the NIH Scientific Management Review Board, charged with
reviewing approaches to assess the value of biomedical research,
concluded that “[n]arratives constructed fromwell-designed case
studies can be especially effective illustrations of the broad
impacts of biomedical research” (National Institutes of Health,
2014). In a similar vein, NSF recently changed the name and
focus of the SciSIP program to “Science of Science: Discovery,
Communication, and Impact,” which may signal less emphasis
being placed on metrics and an increase in the program’s focus
on how to enhance the value of scientific research to the public
and stakeholders (National Science Foundation, 2019).

Case studies have long been used by public science funding
agencies to demonstrate the impact of the research they support.
One approach commonly used is the “historical tracing” or
“historiographic” method (Ruegg and Jordan, 2007), a narrative
account of the value of research in creating downstream
inventions, products, or social benefits by tracing a series of
incremental scientific advances ending in some outcome of
value, such as improved public health. Tracing studies have
a long history. In the late 1960’s, the US NSF supported the
TRACES (Technology in Retrospect and Critical Events in
Science) study, which illustrated the role of basic research in five
significant technologies, including the video tape recorder, oral
contraceptives, and the electron microscope (Narin, 2013). The
TRACES study was a response to “Project Hindsight” a similar
study conducted by the US Department of Defense to assess the
impact of its basic research (Sherwin and Isenson, 1967). More
recent examples of tracing studies include those produced in the
US by the Centers for Disease Control and Prevention (Centers
for Disease Control Prevention, 2017) and the NIH (National
Institutes of Health, 2018a).

A significant disadvantage of tracing studies, and a barrier
to their use among science agencies, is the labor-intensive
nature of the method (Comroe and Dripps, 1976; Smith, 1987;
Contopoulos-Ioannidis et al., 2003; Mayernik et al., 2016). Expert
knowledge is critical in identifying significant events in the path
from basic research to societal outcomes (Narin, 2013; Centers
for Disease Control Prevention, 2017). Such expertise can be
costly, whether it is in terms of federal staff time or the cost of
hiring expert consultants. However, the same data infrastructures
that have been developed to support scientometrics may also
facilitate historical tracing studies. The manual search for, and
documentation of, evidence that basic research has contributed
to a significant scientific or technological advance might be
facilitated by a data infrastructure consisting of linked databases
having records of research grants, scientific publications, patents,
and other artifacts captured throughout the research and
development process.

A data infrastructure such as that described above might also
help meet an even greater challenge: continuously monitoring
downstream technological advances to understand whether or to
what extent they might have drawn on the results of a specific
portfolio of basic research. Many historical tracing studies begin
with a significant advance and trace backwards to identify the
research on which it was based. For example, to demonstrate
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the impact of its research, NIH began with the development
of childhood Haemophilus influenzae type b vaccines and
worked backwards to identify prior vaccine development and
the foundational research supported by NIH (National Institutes
of Health, 2018b). Even when linked data sources are used, the
tracing process has typically begun with the endpoint and worked
backwards [see for example, Williams et al. (2015), Keserci et al.
(2017)].

In contrast, forward tracing is a process of discovery beginning
with a well-defined set of inputs whose outcomes have yet to be
identified [see, for example, Wooding et al. (2011)]. A portfolio
of research, embodied in a group of research grants or journal
articles, can be traced through multiple generations of references
to that work in subsequent journal articles, patents, clinical trials,
clinical practice guidelines, drug products, etc.

One challenge in forward tracing is the exponential nature
of knowledge diffusion (Chen and Hicks, 2004). Even a small
number of research projects or articles, traced over a long period
of time, can create a large amount of data that must be analyzed
to identify significant outcomes. For example, in one study, an
initial cohort of only 29 papers was cited by 731 unique second-
generation papers (“unique” meaning second-generation papers
that were not in the initial cohort), which were cited by 9,376
unique papers in the third generation (Hanney et al., 2005).
There are currently no standard procedures or best practices to
perform the data reduction and other processing necessary to
identify significant outcomes or intermediates of interest that
might be found among the large base of knowledge flowing from
a particular portfolio of research. In this respect, the current
state of the art is analogous to the ever-increasing volume of

FIGURE 1 | Databases used and linkage keys. IMPAC II, NIH Information for Management Planning Analysis and Coordination; SPIRES, NIH Scientific Publication

Information Retrieval and Evaluation System; PARDI-SCIE, Clarivate Science Citation Index Expanded, included in the NIH Portfolio Analysis and Reporting Data

Infrastructure; PARDI-DPCI, Clarivate Derwent Patent Citation Index, included in PARDI; WoS, Web of Science.

FIGURE 2 | The three-generation publication network. This is a forward trace of 18,197 publications in 1980–1984 citing support from NIGMS.
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genomic sequence data, which has driven the need for enhanced
bioinformatics tools necessary to analyze it (Batley and Edwards,
2009; Magi et al., 2010).

In this paper, we describe one approach we used to discover
whether there are long-term, downstream technological advances
to which research supported in the late 1970’s and early 1980’s
by the NIGMS may have contributed. NIGMS administers
a large portfolio of grants to support basic research in the
biomedical sciences. In the five-year period from 1980 (the
first year for which sufficient data are available) through 1984,
over 18,000 publications cited support from NIGMS funding.
We demonstrate one method by which significant health-related
outcomes that are built on this research can be identified. In
so doing, we also make some observations on the knowledge
diffusion network created. This effort represents an initial
attempt to define a replicable workflow that might be applied
to other large portfolios of research and used routinely by other
agencies and organizations to scan for significant outcomes as
they occur.

MATERIALS AND METHODS

Data Sources
Long-term outcomes associated with NIGMS-funded research
were identified through several types of linked data: NIGMS
grants, publications citing NIGMS grant support, “downstream”
publications that cited the NIGMS-supported publications,
patents whose non-patent literature referenced either anNIGMS-
supported or downstream publication, and drug products
approved by the U.S. Food and Drug Administration (FDA) that
are protected by one or more of the linked patents. Figure 1
shows the data sources used and the structure of the network
created among them.

Each of these data sources has certain weaknesses that could
prevent a comprehensive and statistically accurate assessment
of NIGMS-funded research outcomes. It is known that authors
don’t always acknowledge their grant support in the papers they
publish (in the past, some journals have not permitted such
acknowledgments) and the extent of such underreporting is not
known. (The ability to link publications to NIH grant support
has improved in recent years; in 2008, NIH began requiring
reporting of grant-supported publications as a precondition for
continued support.) Furthermore, when grant support is cited,
it is prone to errors such as typographical mistakes in grant
numbers. Similarly, references to non-patent literature in patents
is prone to error, as these references are sometimes not detailed
enough to uniquely identify the cited paper—for example, only
an author and year of publication might be cited. Nor do we have
complete information on patents associated with FDA-approved
drug products. Of the 6,843 products named in the FDA Orange
Book, patent information was available for only 16 percent.
However, our primary goal in analyzing these datasets was not
to generate a precise and reliable quantitative measurement of
research outcomes, but rather to discover long-term outcomes
that could be traced back to NIGMS-funded research, as the data
allowed, and to enumerate any linkages found.

NIH Grants
Information on NIGMS grants was drawn from NIH’s
Information for Management Planning Analysis and
Coordination (IMPAC) II database, an internal NIH database
of grant applications and awards maintained by NIH’s Office of
Electronic Research Administration. While we used an internal
database as our source data, a public version of the database is
available (National Institutes of Health, 2017a, 2020a).

FIGURE 3 | Number of publications in the citation network, by generation and year of publication.
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NIGMS Publications
The publications citing NIGMS grant support were retrieved
from NIH’s Scientific Publication Information Retrieval and
Evaluation System (SPIRES). SPIRES is an internal database
maintained by NIH’s Office of Research Information Systems
that relies on the Grant Support tag (GR) in MEDLINE/PubMed
publication records (National Library of Medicine, 2019) to link
publications to NIH grants. While we used this internal database
for this study, a public version is available (National Institutes
of Health, 2017b). Publications in SPIRES date from 1980. For
this study, all publications from 1980–1984 citing support from
NIGMS were selected as the starting point for the analysis.

Downstream Publications
Information on “downstream” publications—articles that have
cited NIGMS publications—was obtained from NIH’s Portfolio
Analysis and Reporting Data Infrastructure (PARDI), a non-
public NIH database that includes records from the Clarivate
Analytics Science Citation Index Expanded R© (SCIE). A recursive
search of the SCIE can be performed to produce multiple
generations of citations. All papers in the SCIE published from
1980 through 2016 were included in the analyses.

Patent Awards
Patents that include NIGMS and downstream publications in
their non-patent literature references were also obtained from
NIH’s PARDI, which includes the Clarivate Analytics Derwent
World Patents Index R©.

Drug Products
Patent information on drug products was obtained from
FDA’s Approved Drug Products with Therapeutic Equivalence
Evaluations (Orange Book) Data Files (U.S. Food Drug
Administration, 2020). First published in 1980, the “Orange
Book” identifies all currently marketed drug products approved
on the basis of safety and effectiveness by the FDA. The February
2019 version of the Orange Book was used in the analyses. At that
time, there was a total of 6,843 drug products with distinct trade
names in the Orange Book. Patent information was available for
1,079 of these products.

RESULTS

The Knowledge Diffusion Network
Previous research has suggested the diffusion of knowledge
underlying scientific progress is captured best by multiple

TABLE 1 | Number of publications in each generation cited by patents.

Generation Publications Cited by patents % Cited Citing patents Patent-pub pairs Avg citations

1 18,197 3,199 17.58 16,452 26,030 8.14

2 760,516 127,132 16.72 159,378 869,666 6.84

3 8,374,062 673,977 8.05 319,481 3,473,972 5.15

Total 9,152,775 804,308 8.79 334,908 4,369,668 5.43

Average citations calculated using only publications cited by at least one patent.

FIGURE 4 | Controlling for censored time series data. Average cumulative number of patent citations to papers published in the year 1993 and earlier, by generation.
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generations of citations (Hu et al., 2011). However, we found little
in extant literature to guide our choice of how many generations
to include in our analysis. The degree and type of impact
properly attributable to research when its influence is exerted
indirectly through multiple generations of citations is not clear.
There are several characteristics that could affect the number
of generations that should be included to assess impact and the
need for more research on this topic has been noted (Fragkiadaki
and Evangelidis, 2016). We found examples of previous research
using four to six generations of publications to trace the long-
term impact of biomedical research (Grant et al., 2000, 2003;
Jones and Hanney, 2016).

In this study we traced the first generation of NIGMS-funded
articles forward for two subsequent generations of literature
citations to find links to patents. We expected few articles
in the first generation of NIGMS-supported publications to
be directly cited by patents; the mission of NIGMS is to
support research into fundamental biological processes. The
Institute does not fund research directly related to a specific
disease, life stage, population, or organ system—research which
is supported by the other “categorical” NIH institutes and centers
(National Institute of General Medical Sciences, 2019b). We
considered it more likely that the role of NIGMS research in
patented inventions would be found through later generations
of research articles that built upon and cited NIGMS-funded
research. However, as more generations of publications are
added to the network, the relevance of the original NIGMS-
funded research to any patent citing that literature may become
more tangential. To focus on those patents to which NIGMS
research may have contributed most directly, we limited the
citation network to only three generations. In previous research,
three generations have been considered sufficient to illustrate
the usability and feasibility of various measures of impact
(Fragkiadaki and Evangelidis, 2016).

A total of 18,197 articles published in 1980–1984 cited support
from NIGMS (Figure 2). The second generation consisted of
760,516 unique papers and a third generation of 8,374,062 articles
cited one or more of the second-generation papers. A total of
334,908 different patents cited at least one article from these three
generations of papers. There were 774 different drug products
that claimed protection from these patents, representing 11.3
percent of the 6,843 unique trade-named drug products and 71.8
percent of the 1,078 products having patent information in the
Orange Book.

Citing Publications
The numbers of publications by year and generation number
are shown in Figure 3. As discussed above, the first generation
consists of 18,197 articles published in 1980–1984 citing
NIGMS support. The number of articles citing the first
generation each year reached a peak of 37,966 in 1987,
an average of 4.65 years after the NIGMS papers were
published. In 2016, the first-generation NIGMS papers were
still being cited over 10,000 times. The third-generation
papers had not peaked by 2016, when there were 397,154
articles citing one or more the 760,516 papers in the
second generation.

Citing Patents
Table 1 shows the number of publications in each generation
that were cited in patents’ non-patent literature. Of the
1980–1984 publications citing NIGMS support, 17.58
percent were cited by at least one of 16,452 patents. The
cited publications were referenced in an average of about
eight patents.

Subsequent generations of publications were less likely to be
cited by a patent, and those papers that were cited were referenced
on fewer patents. However, these statistics are influenced by the
censored distributions of the second and third generations of
articles.Many of these articles have been published in recent years
and some will be cited by patents in the future. To control for
this effect, we used only papers published in the year 1993 and
earlier—providing a citation follow-up time of at least 20 years
for all papers—and calculated the average cumulative number of
patent citations that papers received in the first 20 years post-
publication. These cumulative distribution functions are shown
in Figure 4. In general, the first generation of papers, which
we expect to be more heavily weighted toward basic research,
have fewer patent citations in the years immediately following
publication, but they are cited at a higher rate over longer periods
of time than second- and third-generation papers, eventually
surpassing generation 3.

FIGURE 5 | Distribution of publications by time to first patent citation.

Generation 1 articles published in 1980–1984. Generations 2 and 3 articles

published in 1980–1993. Also noted are the mean (M), median (Mdn), and

mode (Mo) of each generation’s distribution.

TABLE 2 | U.S. sales in 2018 for top-selling drugs that were linked to

NIGMS-supported research.

Rank Trade_name Publication generation Sales ($B)

8 Imbruvica 2 4.10

12 Genvoya 3 3.63

13 Lyrica 3 3.59

16 Ibrance 3 2.90

19 Victoza 2 2.70

20 Truvada 2 2.60
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Time to First Patent Citation
Figure 5 shows, for each generation, the distribution of
publications by number of years to first patent citation. Themean
(M), median (Mdn), and mode (Mo) are also given for each
generation’s distribution.

Linked Products
Of the 774 products linked to patents in the NIGMS citation
network, six (shown in Table 2), were among the top 20 best-
selling drugs in the U.S. for 2018 (Questex, 2020). The total sales
of these six products was $19.52 billion. “Publication Generation”
indicates the generation in which these products’ patents entered
the citation network.

Data Reduction
This high-level summary of the citation network provided us
with descriptive information on the broad diffusion of knowledge

developed through NIGMS-funded research. However, our
primary interest is in how to distill this large amount of
information to identify specific outcomes of interest and
significant events in the research and development process. We
turned to the network analysis and visualization platform Gephi
(Bastian et al., 2009) to analyze the network and locate nodes
of significance.

Unfortunately, a network of the size we originally created,
with 9.5 million nodes, exceeds the capacity of Gephi (as
well as some other popular graph visualization and analysis
tools; Pavlopoulos et al., 2017). As a result, we included only
two generations of publications—the original set of 18,197
articles supported by NIGMS and all the papers that cited
one or more of these NIGMS publications—and, of these, only
publications eventually led to a patent. The numbers of nodes
in this reduced network and edges are shown in Figure 6. The
NIGMS publications were ultimately linked to 435 drug products,

FIGURE 6 | The two-generation publication network. A forward trace of 15,285 publications in 1980–1984 citing support from NIGMS that eventually led to one or

more patents.

FIGURE 7 | Complete two-generation network as a directed graph. Highly linked clusters are identified by color. Blue cluster in box is enlarged at right. Visualization

by Gephi.
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FIGURE 8 | Highly linked cluster shown in Figure 7, by type of node.

representing 6.4 percent of the 6,843 unique trade-named drug
products and 40.4 percent of the 1,078 products having patent
information in the Orange Book.

A visualization of this network as a directed graph is shown
in Figure 7. To discern meaningful relationships or patterns in
the network, we identified clusters of related research, patents,
and products using the Louvain Method of community detection
(Blondel et al., 2008), implemented in Gephi using a randomized
parameter, no weights, and 1.0 resolution. Network visualization
was performed with Gephi 0.9.1 using the ForceAtlas2 layout
algorithm and default parameters.

In the lower right portion of the network in Figure 7 is a
cluster that appears to be particularly large and whose nodes
are highly linked. We arbitrarily selected this cluster for further
analysis. In Figure 8, this cluster is isolated and color-coded by
node type, making it easier to identify patents and drug products
that are linked to the outputs of research supported by NIGMS.
The size of the blue publication nodes is proportional to the
number of times each has been cited by other publications or
patents (indegree). The size of the brown patent nodes is also
proportional to their indegree, the number of drug products for
which they provide intellectual property protection.

Developing a Product Trace
There were 14 patents in the cluster, related to six drug
products, all of which affect gene expression, including several
oligonucleotide therapeutics, a relatively new class of drugs made
of chemically synthesized nucleic acids (Smith and Zain, 2019):

Cubicin R© RF (daptomycin) is a last-resort antibiotic with

excellent activity against Gram-positive pathogens. It was first

approved by the FDA for use in the treatment of skin infections.

It has a distinct mechanism of action causing rapid depolarization

of membrane potential, disrupting cell membrane function to

inhibit protein, DNA, and RNA synthesis;

FIGURE 9 | Patents and publications in the Onpattro cluster. Seven patents

are associated with Onpattro in the FDA Orange book. The cluster also

contains seven additional patents not related to Onpattro.

Epiduo R© (adapalene and benzoyl peroxide) is a treatment

for severe acne. Adapalene binds to retinoic acid nuclear

receptors, which act as transcription factors to regulate the

expression of mRNA for proteins modulating cell differentiation

and keratinization;

Kynamro R© (mipomersen) is an adjunct to lipid-lowering

medications to reduce LDL in patients with homozygous familial

hypercholesterolemia. It is an antisense oligonucleotide targeted

to human messenger ribonucleic acid (mRNA) for apo B-100, the

principal apolipoprotein of LDL;

Onpattro R© (patisiran) is a small interfering RNA (siRNA)

oligonucleotide for the treatment of polyneuropathy in people

with hereditary transthyretin-mediated amyloidosis. It is the first

siRNA-based drug approved by the FDA;

TegsediTM (inotersen) is for the treatment of polyneuropathy

in people with hereditary transthyretin-mediated amyloidosis.

It also is an antisense oligonucleotide that inhibits hepatic

production of transthyretin by binding to mRNA;

ZemdriTM (plazomicin) is an aminoglycoside antibacterial for

the treatment of complicated urinary tract infections. It acts

by binding to bacterial 30S ribosomal subunits, interfering with

mRNA and protein synthesis.

The linkage of NIGMS-funded research to Onpattro, being the
first siRNA-based drug and only recently approved for use,
was a particularly interesting discovery. We reduced the data
further by examining the nodes in the immediate neighborhood
of Onpattro. This smaller network is shown in Figure 9, where
the nodes have been resized according to their indegree within
the Onpattro network. The single product node, Onpattro, is
colored red and located in the center. It is surrounded by seven
patents, in brown, linked to NIGMS-funded research that are
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associated with Onpattro in the FDA Orange Book (out of a
total of 21 patents for Onpattro). These seven patents fall into
three families (Table 3). In the Government Interest section of
one of these patent families, RNA sequence-specific mediators
of RNA interference, support is acknowledged from NIGMS
grant number GM034277, a grant on the regulation of mRNA
processing awarded to Philip Sharp, a Nobel Laureate who co-
discovered RNA splicing.

The five patents with the largest indegree (i.e., largest number
of connections to the NIGMS publication network), evident in
Figure 9, are from two families: RNA sequence-specific mediators
of RNA interference and RNA interference mediating small RNA
molecules. The periphery of Figure 9 also shows seven patents
citing literature in the Onpattro network but which are not
themselves linked to Onpattro in the Orange Book.

To establish a chronology of events involved in the
development of Onpattro, the network nodes were placed on a
timeline using publication years, patent application and award
dates, and the approval of Onpattro in 2018 (Figure 10). The
timeline includes the network’s 67 first-generation publications
in 1980–1984 (median publication year = 1983), 62 second-
generation publications (median publication year = 1998),
and the seven patent applications (median date = 2010) and
awards (median date = 2014). Of the 62 second-generation
publications, 19 resulted from NIGMS-funded research. Across
both generations, NIGMS supported 86 (66.7 percent) of the 129
publications in the Onpattro network.

NIGMS Grant Support Linked to Onpattro
Development
Finally, we identified the specific NIGMS-funded basic research
that produced many of the articles in the Onpattro network.
A total of 80 NIGMS grants were cited by publications in
the Onpattro network. Ten of these were responsible for
generating 32 first- and second-generation articles (Table 4)
representing 37 percent of all NIGMS-supported publications
and almost one-quarter of all articles in the network. Eight
of these grants generated 34.3 percent of the first-generation
publications from which the knowledge dissemination network
was developed. Two of the ten grants were awarded after 1984
and supported only publications in the second generation. All
of these grants involve well-known investigators, including three
Nobel Laureates, working in areas of basic research critical to
the development of oligonucleotide therapeutics and other drugs
affecting gene expression. Also shown in Table 4 is the total
amount of NIGMS funding for these grants through 1984, the
final year of the first-generation publications used to generate the
Onpattro network. Total NIGMS support for the first-generation
publications was $206 million.

DISCUSSION

This initial attempt to interrogate a large network of
documentary evidence, beginning with the results of basic
research funded by NIGMS in 1980–1984, provided us with
several interesting findings to be explored in more depth. The

knowledge flowing from this body of research was traced to
the development of 774 drug products, including some of the
most popular drugs in use today. Six of these drugs were among
the best-selling in 2018, with sales of $19.5 billion (Questex,
2020). In comparison, the total funding for the 48 research
grants producing this research, through 1984, was $82.9 million,
∼311.7 million in 2018 dollars (National Institutes of Health,
2020c). Limiting grant funding to the five years preceding
publication—research in the year of publication and the four
prior years—reduces the total NIGMS investment that gave
rise to this knowledge diffusion network to $44 million, ∼$165
million in 2018 dollars.

We lack sufficient data to calculate a return on investment
(ROI) from these figures. A proper calculation of ROI would
require more completely identifying all non-NIGMS inputs
contributing to long-term outcomes, including negative
outcomes (i.e., revenue losses), applying an appropriate
economic valuation to the outcomes, and weighing the
attribution of outcomes to each input (Buxton et al., 2004).
Previous studies have more rigorously produced estimates of
the economic returns of funding for health-related research
(Buxton et al., 2004; RAND Europe., 2008; Grant and Buxton,
2018). We will simply note that, while NIGMS funding for
basic research is only one portion of the total required to bring
these products to market, these fundamental discoveries were
critical to drug development and the amount of NIGMS funding
required was small relative to the value of the outcomes to which
they contributed.

We were also able to gain a better sense of the amount of
time required for the diffusion of the basic research findings
generated by NIGMS funding. Second-generation citations of
research published in 1980–1984 peaked in 1987, an average of
4.65 years after publication [consistent with previous findings,
see Fukuzawa and Ida (2016)], but there were still many
citations of this work in 2016, more than thirty years later.
It was also interesting to see that third-generation citations of
this research had not peaked by 2016 and continue to grow
in number.

Carpenter et al. (1980) found that patents cite relatively recent
literature, but these citations varied by technology area; the
median “age” of articles cited (the time elapsed from the paper’s
publication to its patent citation) by gas laser patents was only
three years. It was slightly longer in prostaglandin patents. Chen
and Hicks (2004), studying tissue engineering research articles,
found the time elapsed between papers’ publication year and their
first front-page citation in a patent had a mean of 9.6 years, and
a mode of 2 years. While patents may more frequently cite recent
research, it is not necessarily the case that most of a research
article’s patent citations will occur shortly after publication.

In our study, the time elapsed from an article’s publication and
its first citation in a patent application varied as a function of
a publication’s generation in the citation network. We provided
a minimum of 20 years follow-up for articles in all generations.
As expected, the time elapsed from the original basic research
funded by NIGMS to its first citation in a patent was longer
than for later generations of publications that built on this
research. The median time to first patent citation in the first
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TABLE 3 | Onpattro patent families and number found in the NIGMS network.

Patent family Patent year(s) Patents in family Patents in NIGMS network Government interest

Lipid formulations for nucleic acid delivery 2011–2016 4 0

Lipid formulation 2012, 2014 2 0

Nuclease resistant double-stranded ribonucleic acid 2012 1 0

Compositions and methods for inhibiting expression of transthyretin 2012–2016 3 2

RNA sequence-specific mediators of RNA interference 2013, 2015 2 2 GM034277

RNA interference mediating small RNA molecules 2013–2017 6 3

Lipid containing formulations 2014 1 0

2′-methoxy substituted oligomeric compounds and compositions for

use in gene modulations

2018 2 0

Onpattro patents from U.S. Food Drug Administration (2020).

FIGURE 10 | Timeline of events in the Onpattro development network.

TABLE 4 | NIGMS research grants generating 37 percent of all NIGMS-supported publications associated with Onpattro development.

Investigator Gen1 pubs Gen2 pubs Grant Grant title First funded Funding

through 1984

Fire, Andrew 0 7 GM037706 Gene regulation during early development of C elegans 1987 N/A

Horvitz, H Robert 5 1 GM024663 Genetic analysis of nematode egg-laying 1978 $28,497,885

GM024943 control of cell division in the nematode C elegans 1978 $29,721,139

Apirion, David 5 0 GM019821 Genetics and biochemistry of RNA processing in E. coli 1974 $27,066,386

GM025890 The molecular biology of RNA turnover in E. coli 1979 $10,185,015

Hershey, John 4 0 GM022135 Mechanism of initiation of protein biosynthesis 1975 $30,604,835

Levin, Daniel 3 0 GM024825 Control of protein synthesis by double-stranded RNA 1978 $29,321,169

T’so, Paul 3 0 GM016066 Nucleic acid chemistry and its biomedical application 1970 $19,557,228

Turner, Douglas 3 0 GM022939 Kinetic and spectroscopic studies of nucleic acids 1976 $30,598,690

Sharp, Philip 0 1 GM034277 Regulation of MRNA processing 1985 N/A

Total 23 9 $205,552,347

generation of 1980–1984 articles was 11 years. The lags for
the second- and third-generation papers were shorter, at 6
and 5 years, respectively. The lag distributions for generations
2 and 3 were similar to those found by Chen and Hicks
(2004).

Using clustering techniques (which required that we use
a smaller dataset excluding third-generation citations), we
were able to discover meaningful clusters of papers, patents,
and products. One cluster, selected arbitrarily, was a network
of documents related to a class of drugs affecting gene
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expression, including several recently-developed oligonucleotide
therapeutics. We were able to identify the specific NIGMS
research grants and investigators whose research contributed
to the development of one of these drugs, Onpattro. From
the network of linked documents, we were able to chart key
events occurring over a 38-year period from the first NIGMS-
supported publications in 1980-1984 to approval of Onpattro
in 2018. About one-half of the NIGMS-supported articles were
produced by grants totaling about $206 million through 1984.
It is not clear how much of this funding would have directly
contributed to these key publications; for example, some of
these grants began in the early 1970s. By contrast, net product
revenues for Onpattro through 2019 were $179 million and
sales of $285 to $315 million are forecast for 2020 (Alnylam,
2020).

The Onpattro example demonstrates the ability to easily
discover useful new knowledge from large linked datasets
of information. The automated procedures to do so may
provide a useful alternative to the labor-intensive approaches
that have been used in the past, such as that described
in Comroe and Dripps (1976). While the validity of their
findings has been challenged (Smith, 1987; Grant et al.,
2003), we cite Comroe and Dripps only to exemplify the
effort that can be required by this type of study. The
Comroe and Dripps study employed about 200 consultants
to identify the most significant advances in cardiovascular
and pulmonary medicine, the essential bodies of knowledge
required for these advances, and key articles in these knowledge
flows. They used the expert opinion of many consultants
to avoid bias in the selection of key prior research and
articles. More recent tracing studies have continued to rely on
labor-intensive methods (Smith, 1987; Contopoulos-Ioannidis
et al., 2003; Mayernik et al., 2016). We employ a different
approach to avoiding bias by using objective linkages among
documentary evidence, and our study also employed a single
primary researcher with access to the necessary databases and
analytic tools.

Just as Chen and Hicks’ work was the start of a long-term
program to develop new analytic methods capturing knowledge
diffusion (Chen and Hicks, 2004), we view our study as an
exploratory effort to assess the utility of linked databases in
tracing the long-term influence of a program of basic research
in the biomedical sciences. Our ability to link new technologies
to NIGMS-funded research was facilitated by an existing data
infrastructure (PubMed) that links publications to NIH grants
in the biomedical sciences (National Library of Medicine, 2019).
Such resources are beginning to be made available in more
areas of science. Other agencies, funding research in diverse
fields, have started to make publications and other research
products associated with their grants available through public
data sources such as Federal RePORTER, an online searchable
database developed by STAR METRICS, a consortium of US
science agencies (Onken, 2016). Beginning in 2019, the EU
has made project-linked publications available through its
Open Data Portal (European Commission, 2020) and the UK
provides data on publications linked to projects funding by nine
agencies funding research in a range of fields (UK Research

Innovation, 2020). Commercial bibliographic data services such
as Web of Science, SCOPUS, and Dimensions have been
capturing such information from funding acknowledgments in
papers for some time (Rigby, 2011; Hook et al., 2018). Even
in the absence of project identifiers linked to publications,
our procedures allow the search for long-term outcomes to
begin with any set of publications produced by a portfolio
of research.

Procedures like those we describe here offer objective,
reliable, and less time-consuming ways to discover knowledge
flows contributing to new technologies and the research
playing a critical role (van Raan, 2017). Our approach
is, however, only one of many possible approaches. More
research is needed to find other, more optimal approaches
for linking databases, identifying critical nodes in knowledge
flows, and exploring the meaningfulness of the networks
discovered. Greater understanding is needed of the degree
and type of impact properly attributable to research when its
influence is exerted indirectly through multiple generations
of citations. This will require more in-depth study that
builds on the initial effort presented in this paper. For
example, previous research has demonstrated a shift from
basic to clinical science across forward generations of citations
(Grant et al., 2000, 2003). If corroborated using the citation
network developed in our study, we might be able to
describe with greater specificity the contributions made by
basic research. By investing in such research, automated
procedures thus developed can be quickly and easily applied
to other research programs, significantly reducing the time
and effort required to demonstrate, in an objective way,
long-term contributions of the results flowing from basic
research programs.
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