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Abstract: The presented comprehensive review of current knowledge about genetic factors predisposing to Graves’ 
disease (GD) put emphasis on functional significance of observed associations. In particular, we discuss recent efforts 
aimed at refining diseases associations found within the HLA complex and implicating HLA class I as well as HLA-
DPB1 loci. We summarize data regarding non-HLA genes such as PTPN22, CTLA4, CD40, TSHR and TG which have 
been extensively studied in respect to their role in GD. We review recent findings implicating variants of FCRL3 (gene for 
FC receptor-like-3 protein), SCGB3A2 (gene for secretory uteroglobin-related protein 1- UGRP1) as well as other 
unverified possible candidate genes for GD selected through their documented association with type 1 diabetes mellitus: 
Tenr–IL2–IL21, CAPSL (encoding calcyphosine-like protein), IFIH1(gene for interferon-induced helicase C domain 1), 
AFF3, CD226 and PTPN2. We also review reports on association of skewed X chromosome inactivation and fetal 
microchimerism with GD. Finally we discuss issues of genotype-phenotype correlations in GD. 
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EARLY EVIDENCE FOR GENETIC PREDISPOSI-
TION TO GRAVES’ DISEASE – FAMILY STUDIES 

 Graves’ disease (GD) is an autoimmune disorder in 
which antibodies activate the thyrotropin receptor (TSHR) 
causing a hyperfunction of the thyroid gland. This activation 
stimulates follicular hypertrophy and hyperplasia, leading to 
thyroid enlargement and increases thyroid hormone 
production. GD affects approximately 0.5-2% of the 
Caucasian population and is the cause of the majority of 
cases of hyperthyroidism.  
 The familial occurrence of autoimmunological thyroid 
disorders (AITD) has been noticed a relatively long time ago 
when it was reported that a third of siblings of GD patients 
developed AITD and over half of asymptomatic children had 
thyroid antibodies in their blood [1]. Similar observations 
were made when examining patients with Graves’ 
ophthalmopathy (GO), of which 36% had a first- or second-
degree relative affected with GD or other AITDs [2].  
 Perhaps the most convincing evidence for genetic 
predisposition to the disease is provided by twin studies. 
While in monogenic diseases there is a full concordance 
among monozygotic (MZ) twins, in disorders with complex 
inheritance the concordance is incomplete, but still higher 
compared to dizygotic (DZ) twins. Such observations were  
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made in several twin studies of GD. In the Dutch twin 
cohorts the probandwise concordance rates were 0.36 and 
0.03 for MZ and DZ pairs, respectively [3]. Model-fitting 
analysis of these data showed that 79% of the predisposition 
to the development of GD is attributable to genetic factors 
whereas individual specific environmental factors not shared 
by the twins could explain the remaining 21% [3,4]. The 
results obtained during extensive American twin studies 
indicated that the estimated pairwise concordance for GD is 
0.17 in MZ twins and 0.02 in DZ siblings [5] suggesting a 
smaller contribution of genes for GD development in 
American vs. European population. 
 Family and twin studies clearly demonstrated that GD is 
not caused by a single gene defect but has a complex pattern 
of inheritance [6,7]. Today it is clear that genetic 
predisposition to GD is accounted for by multiple genes with 
very modest individual effects. The majority of already 
identified loci confer only low risk for disease (~1.2-1.5) and 
it is likely that loci with even weaker effects will be 
discovered in the future.  

METHODOLOGICAL APPROACHES USED FOR 
IDENTIFYING GENETIC VARIANTS PREDISPOSI-
NG TO GD 

 The main methodological approaches used for studying 
genetic predisposition to GD are based on linkage or 
association analysis. 

Linkage Analysis 

 Linkage analysis is based on study of family(ies) 
allowing to evaluate the co-segregation of a genetic variant 
with disease. If a tested marker is close to a disease-causing 
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variant the frequency of recombination between them may 
be sufficiently low to cause a preferential inheritance of the 
marker among affected individuals, even though the marker 
itself is not involved in disease pathogenesis. The likelihood 
of linkage between a disease and genetic marker is described 
by the odds calculated as the ratio of the likelihood of a 
given distribution of genotypes in a family assuming linkage 
vs. assuming random segregation. This likelihood ratio is 
typically presented as a logarithm with the base of 10 and is 
called LOD (logarithm of odds) score. A significant 
evidence for linkage occurs when a LOD score is greater 
than 3.3 and is replicated at least in two separate studies [8]. 
In a typical approach a set of ~300 markers is sufficient to 
cover the whole genome so that a study can be performed. 
Whereas linkage analysis has proved valuable in analysis of 
Mendelian traits its use for examining complex disorders like 
GD is limited by the requirement for multiplex families and 
by its low power to detect weak effects. Another limitation 
of linkage analysis is low resolution which makes it usually 
impossible to separate effects of loci within 2-3 Mb.  

Association Analysis 

 Association analysis is a more sensitive method to detect 
weak genetic risk factors than linkage analysis and currently 
is the predominantly used method. Association analysis is 
based on comparing the frequency of a variant in patients 
and in ethnically matched controls. If a statistically 
significant difference in the frequency of a variant is 
observed between cases and controls it is concluded that this 
variant is associated with disease. The strength and direction 
of an association is expressed as OR (odds ratio) which is a 
parameter approximately equal to relative risk (RR) if the 
disease is relatively rare (< 10%) which generally is the case 
for GD. For biallelic polymorphisms such as single 
nucleotide polymorphisms (SNPs) it is common to calculate 
OR so that it reflects the effect of the variant with lower 
population frequency (MAF or minor frequency allele). 
Whereas association studies offer better resolution than 
linkage analysis (~0.5Mb) it still should be emphasized that 
presence of an association does not imply causality and 
should usually be interpreted only as pointing to direct 
involvement of some variant(s) in linkage disequilibrium 
(LD). Indeed, it is common to observe statistically 
significant associations of a group of markers whose 
individual effects cannot be separated due to strong 
(sometimes absolute) LD [9].  
 Recently, due to advances in high throughput genotyping 
technologies it has became possible to conduct genome wide 
association (GWA) studies, i.e. association studies using 
hundreds of thousands of markers which allow to scan the 
entire genome and not only candidate loci suggested by prior 
hypotheses [10]. Implementation of the GWA approach 
significantly benefitted from information made available 
through the HapMap project [11]. Within the HapMap 10 
million SNP across the entire human genome were typed 
allowing to dissect patterns of LD and to define haplotype 
blocks consisting of highly correlated SNPs. Based on this, 
an informed selection of SNPs to analyze became possible 
allowing to maximize coverage without unduly increasing 
costs.  

 Despite their unquestionable value GWA studies have 
limitations such as a potential for false-positive results which 
necessitates very large sample sizes, genotyping errors or 
insensitivity to structural variants [12]. Another criticism of 
current GWA studies stems from the increasingly recognized 
possibility that in addition to common polymorphisms, 
which are currently focused on, the disease risk may be 
significantly influenced by rare (<0.05) or very rare genetic 
variants (<0.001). For example, recently Surolia et al. [13] 
identified a number of rare/very rare defective variants 
within sialic acid acetylesterase (SIAE) gene which together 
were clearly more prevalent among patients with 
autoimmune disorders than among controls. Although our 
data do not support the role of SIAE in GD [14] this study 
[13] is a good example of an increasingly popular approach 
in the field of genetics of complex diseases.  

Future Approaches – Next Generation Sequencing  

 Whereas at present the most interesting novel data on 
genetics of autoimmune diseases come from carefully 
designed GWA studies (such a study in GD, not limited to 
coding variants, is still conspicuously missing!) in the near 
future this technology may be replaced by even more 
powerful approaches based on next generation DNA 
sequencing. Progress in this field makes it possible to 
sequence genomes or large parts thereof (such as an exome, 
i.e. all exons from a genome) at unprecedented speed and a 
wealth of information on rare variants obtained using this 
technology has already been provided by The 1000 Genomes 
Project [15]. Whereas at present this effort concentrates on 
healthy people [15] in the near future similar projects 
involving patients in addition to controls will most likely be 
undertaken. 
 A more detailed discussion of methodological 
approaches for analysis of genetic predisposition to GD can 
be found in an excellent recent review [16].  

GENES PREDISPOSING TO GD 

HLA Region 

 A set of genes located on the short arm of chromosome 6 
termed the Major Histocompatibility Complex (MHC) has 
been attracting attention of immunogeneticists ever since it 
was shown to determine survival of allogeneic grafts. 
Human MHC is often referred to as the HLA region in 
parallel with the major loci which are located there and 
which encode proteins known as Human Leukocyte 
Antigens. HLA molecules are central for the function of the 
immune system because they bind fragments of antigens in 
the form of peptides and present them to T lymphocytes.  
 HLA molecules are divided into HLA class I (HLA-A, B, 
C) and class II (HLA-DR, DQ, DP). HLA class I molecules 
interact with CD8 lymphocytes which fulfill mainly 
cytotoxic effector functions. Because all tissues need to be 
surveyed by CD8 lymphocytes, HLA class I molecules are 
widely expressed. HLA class II molecules present antigens 
to CD4 lymphocytes which initiate and regulate specific 
immune response. Although the final outcome of an 
encounter with an antigen is determined by many factors, 
binding of an antigen fragment by HLA class II is necessary 
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for the development of any specific immune response. HLA 
class II molecules are permanently expressed on the surface 
of cells involved in antigen presentation (dendritic cells, 
macrophages, B cells) whereas expression in other cells may 
be induced by inflammation. Apart from their direct 
involvement in immunologic reactions HLA molecules are 
necessary for ontogenesis of the immune system since they 
participate in the maturation and selection of lymphocytes in 
the thymus [17]. 
 HLA genes and molecules display a polymorphism 
which is particularly extensive in regions, known as 
‘pockets’, which directly bind peptide residues. HLA 
polymorphism has profound functional significance because 
different HLA variants bind a distinct repertoire of peptides. 
HLA polymorphism results from evolutionary selection 
driven by advantages associated with a diversification of the 
pool of variants present in a population. One significant 
advantage of HLA diversity may be to hinder the spreading 
of infections. 
 HLA class I molecules consist of a heavy chain non-
covalently bound with beta2 microglobulin (b2m, also called 
the light chain) which is non polymorphic and is encoded 
outside the HLA complex. HLA class II molecules are 
composed of two chains of similar mass (alpha and beta 
chain) which are encoded by distinct loci. In case of HLA-
DQ both chains (encoded by the DQA1 or DQB1 loci, 
respectively) are polymorphic whereas in the case of DR and 
DP significant polymorphism is limited to the beta chain 
(encoded by the DRB1 or DPB1 loci). Thus, to characterize 
HLA-DQ, both chains or the appropriate genes need to be 
analyzed, whereas in the case of DR and DP it is sufficient to 
analyze the beta chain. 
 The HLA complex is characterized by strong LD. In 
Caucasians exceptionally strong LD is found between genes 
encoding DR and DQ molecules so that presence of a given 
DRB1 variant to a large extent determines DQA1 and DQB1
alleles and the other way around. Because of this strong LD 
it is often convenient to refer to HLA haplotypes in order to 
describe blocks of alleles virtually always found together in 
a population. It is usually difficult to characterize effects of 
individual alleles forming a haplotype. 
 Within the MHC complex the problem of LD is relevant 
also because in the close proximity of HLA genes there are 
numerous other loci making MHC the most gene rich region 
in the whole human genome [18]. Some of these loci encode 
proteins with accessory functions in antigen presentation 
such as LMP2/LMP7 and TAP1/TAP2 which function in 
HLA class I pathway, or DMA and DMB which are 
similarly involved in the HLA class II pathway [19]. Another 
group of MHC located loci such as TNF, genes encoding 
complement components or heat shock proteins take part in 
an immune response without direct interaction with HLA. 
However, despite clear enrichment for genes involved in 
immune response, approximately 60% out of 252 expressed 
MHC loci have other functions [20]. 
 The majority of autoimmune diseases including GD 
display strong associations with HLA variants [21]. In 
Caucasian GD patients increased prevalence of the DRB1*03 
DQA1*05 DQB1*02 haplotype is usually observed 

suggesting that some gene(s) encoded there increase the risk 
of disease development 2-3 times [22]. At present it is not 
clear which locus is responsible for the observed association. 
Out of the three most frequently studied genes encoded on 
this haplotype DQB1*02 can be excluded as it is commonly 
found on haplotypes encoding DRB1*07 which appear to 
protect from GD [23-25]. Conversely, the relative 
importance of DQA1*05 and/or DRB1*03 is under 
discussion. Although in some studies a stronger association 
with DQA1*05 was found [26, 27] an argument against a 
primary role of this allele is the lack of established 
association between GD and DRB1*11/12 which in 
Caucasians are also in strong LD with DQA1*05.  
 In contrast to the attempts to disentangle LD by statistical 
methods, an approach similar to the one originally used to 
develop ‘shared epitope’ hypothesis in rheumatoid arthritis 
[28] suggested a primary role of the DRB1 locus in GD [29]. 
This suggestion was based on direct analysis of DNA 
sequence of exon 2 of the HLA-DRB1 gene in 208 GD 
patients and 149 controls with a focus on amino acid position 
74 which was identified as the only polymorphic position 
among those forming the DR peptide-binding pockets 
specific for DRB1*03. Whereas variants with arginine at 
position 74 were expected to be overrepresented among GD 
patients due to increased prevalence of DRB1*03, the 
interesting observation was that they were associated with 
disease also when only DRB1*03 negative subjects were 
considered (OR=10.5, P= 0.02) [29]. The possibility that 
DRB1 position 74 is a primary determinant of GD 
susceptibility was consistent with results of a subsequent 
study analyzing DRB1, DQB1 and DQA1 loci in 871 patients 
and 621 controls, although a conclusive test was not possible 
because of the small number of subjects in whom Arg-74 
was not associated with DRB1*03 [24]. Arg-74 was also 
found to significantly contribute to the pocket structure 
conferring risk for HT [30] and was associated with co-
occurrence of T1DM with AITD [31].  
 In parallel with susceptibility conferred by Arg-74 it was 
proposed that Gln-74 protects against GD [29]. This was 
consistent with the observation that DRB1*07 alleles which 
always encode Gln-74 are found at decreased frequency 
among GD vs. controls [24,25,29]. Different effects of Gln-
74 and Arg-74 on HLA-DR peptide binding were also 
suggested after structural modeling [31]. 
 A turn in the discussion about the role of HLA in GD 
was brought about by the suggestion that the disease may be 
primarily associated with alleles of HLA class I, in particular 
HLA-C*07 [32]. While studying distribution of alleles of the 
HLA-B,C, DRB1, DQA1 and DQB1 loci among ~500 
patients and controls from the UK it was observed that the 
strongest association was with HLA*C (P=1.20x10-22). 
Whilst the DRB1 was the next most strongly associated 
locus, the statistical significance of its effect was distinctly 
lower (P=6.67x10-12) [32]. Analysis of individual HLA-C
alleles showed that C*07 was the most predisposing allele 
(OR 1.63) whereas C*03 and C*16 had protective effects. 
Although the association with HLA-C alleles was the 
strongest other locus/loci had independent effect(s). When 
genotypes or alleles of other tested loci were added to a 
model already containing HLA*C variants, an improvement 
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of disease prediction was observed in all analyses with the 
most pronounced effect for HLA*B. Analyses of individual 
contribution of HLA*B alleles showed the strongest effect 
for B*08 and a protective association for B*44 [32]. Both 
C*07 and B*08 are encoded on the common haplotype 
associated with GD in Caucasians which also includes 
DRB1*03, DQA1*05 and DQB1*02. However, the authors 
concluded that the observed associations to HLA class I 
alleles could not be attributed to LD within this haplotype 
[32]. 
 Whereas Simmonds et al. clearly demonstrated that in 
Caucasians in addition to DQA1*05 and/or DRB1*03 there 
are other HLA linked genes which are associated with GD a 
limitation of their study was the lack of analysis of HLA-A
and HLA-DPB1 loci [32]. Since in Caucasians the search for 
association between GD and DPB1 alleles has been 
relatively limited and inconclusive [33-35], it should be 
interesting to include this locus in adequately powered future 
studies.  
 The association between GD and HLA loci from the 
haplotype encoding DRB1*03 DQA1*05 and DQB1*02, 
although well documented in Caucasians, is conspicuously 
absent in other ethnic groups.  
 The most comprehensive study on HLA associations in 
GD in an Asian population was recently published by Chen 
et al. [36]. While studying ~500 GD patients and controls 
selected in a case control design as well as a cohort of 
families including >400 patients these authors found that 
HLA-DPB1*05:01 was the major gene predisposing to GD 
among Han Chinese with an OR=2.3 and a high population-
attributable risk of 48%. Other susceptibility variants with 
independent effects included B*46:01, DRB1* 15:02 and 
16:02 whereas DRB1*12:02 and DQB1*03:02 conferred 
protection [36]. Unfortunately, the authors did not study the 
DQA1 locus so that an effect of DQA1*05:01 whose primary 
role was postulated in Caucasians [22] was not directly 
evaluated. However, the authors argued that association of 
DQA1*05:01 with GD in their cohort was not supported by 
LD patterns observed in Asians [36]. The data from the 
study of Chen et al. did not support the role of Arg-74 as 
proposed in Caucasians [29]. 
 In addition to the novel observations Chen et al. provided 
an excellent review of previous studies on HLA associations 
in GD performed among Asian subjects [36]. One interesting 
conclusion from this review was that the association with 
DPB1*05:01 had been observed in three out of four former 
studies which analyzed this locus but had not been 
appropriately focused on subsequently [36]. 
 Relatively few studies on HLA associations with GD 
have been performed among Blacks [37-42]. Whereas all 
these studies were based on limited numbers of patients 
(n~50) it is noteworthy that only one reported an association 
with the DRB1*03 variant [38]. Notably, none of the studies 
analyzed the DPB1 locus. Since Blacks display the largest 
HLA diversity, well powered studies of GD in this 
population may be particularly worth performing in the 
future. 
 It is likely that HLA associations with autoimmune 
diseases including GD are caused by the physiological 

function of these molecules, i.e. antigen presentation [21]. 
The frequently postulated hypothesis posits that disease-
associated variants but not other variants efficiently bind 
peptides derived from autoantigen(s) such as thyroglobulin 
or TSHR and thus have a permissive role in the development 
of immune response. Another possibility is that disease-
associated HLA variants operate at the stage of thymic 
selection unfavorably influencing positive and/or negative 
selection of T cell clones with regulatory or effector 
functions. Additional mechanisms proposed to explain HLA 
class I association included influence on NK (natural killer) 
cell repertoire through interactions with killer 
immunoglobulin-like receptors (KIR) and/or serving directly 
as a source of autoantigens after misfolding and presentation 
by HLA class II molecules [32]. It should be emphasized 
that these mechanisms remain speculative.  
 In conclusion, although the HLA region clearly contains 
genes predisposing to GD, the exact identity of involved 
variants or even loci remains unknown. There is an 
agreement that in Caucasians at least some of these genes are 
located on common DRB1*03 haplotypes whereas in Asians 
an emerging consensus points to a role of the DPB1 variants. 
It should be emphasized that HLA associated risk for GD 
may well reflect superimposing effects (also protection) of 
many alleles of different loci including loci encoding other 
molecules than HLA. Importantly, the variants involved 
need not be the same in all ethnic groups due to differences 
in genetic profile of the background population and/or 
differences in pathogenesis caused for example by different 
pathogen milieu.  
 Clearly high resolution HLA studies across various 
ethnic groups are needed. Such studies are particularly 
warranted since the available evidence indicates that 
similarly as in other autoimmune diseases the HLA linked 
gene(s) may be the strongest of all genetic factors 
predisposing to GD.  

Protein Tyrosine Phosphatase-22 (PTPN22) 

 Lymphoid tyrosine phosphatase (LYP) encoded by the 
protein tyrosine phosphatase-22 (PTPN22) gene was 
originally associated with T1DM based on candidate gene 
approach [43] and subsequently shown to increase the risk 
for a number of autoimmune diseases including GD [44], 
rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA) 
and autoimmune Addison disease (AAD) [45]. In many 
autoimmune diseases PTPN22 represents the second most 
strongly associated locus after HLA.  
 PTPN22 is involved in limiting the adaptive response to 
antigen by dephosphorylating and inactivating T cell 
receptor (TCR) associated kinases and their substrates. In 
lymphocytes, PTPN22 physically associates through a 
proline-rich motif with the SH3 domain of the Csk kinase, an 
important suppressor of the Src family kinases that mediate 
TCR signaling. PTPN22 inhibits activation of T cells in a 
synergistic manner with Csk [46,47].  
 The best documented association of PTPN22 variants to 
autoimmune disorders including GD is rs2476601 (C1858T). 
The disease-associated C1858T SNP, encoding an Arg to 
Trp substitution at residue 620 (R620W), is located in the P1 
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proline-rich motif of PTPN22, which binds with high affinity 
to the Src homology 3 (SH3) domain of the tyrosine kinase, 
Csk. The W620 variant disrupts the interaction between 
PTPN22 and Csk [48] and also increases phosphatase 
activity, which in turn suppresses TCR signaling more 
efficiently than the wild-type protein [49,50]. In vitro
experiments have shown that T-cells expressing the W620 
allele may be hyperresponsive, and therefore carriers of this 
allele may be prone to autoimmunity [43,48]. A role of 
PTPN22 in T-cell regulation has been confirmed by the 
results of knocking out the murine homologue of PTPN22,
which lowered thresholds for T-cell-receptor signaling and 
inhibited production of IL-2 in these animals [51]. However, 
in another study, significantly higher numbers of IL-2 
producing cells in W620 carriers after autoantigen 
stimulation have been found, suggesting that the W620 
variant is rather a loss-of-function variant [52]. One 
explanation of these discrepant results is that the decreased 
levels of IL-2 associated with the W620 variant may be 
caused, rather than by an increase in activity, by an alteration 
in the cellular location of PTPN22 which impairs the binding 
of PTPN22 to the protein tyrosine kinase Csk leading to a 
phenotypic change [52,53]. 
 Despite these contradictory observations, the net result of 
the PTPN22 620W substitution appears to be a gain of 
function with respect to reduction of phosphorylation of key 
signalling molecules and associated downregulation of TCR 
signaling which leads to inhibition of expansion of T cells, 
weakening of the positive selection in the thymus, and 
reduction of antibodies’ production through lowering activity 
of helper T lymphocytes [51]. 
 Interestingly, there are reports indicating that human 
PTPN22 also inhibits the activity of B-cell antigen receptor 
[50,54]. Although it seems counterintuitive that the blunted 
cell activation should lead to increased risk of autoimmunity, 
there is evidence for such a mechanism also in other models 
[55]. While a full explanation of these findings is not yet 
possible, the dysfunction of regulatory cells and deregulation 
of lymphocyte maturation in the thymus have been invoked 
as mechanisms [56].  
 Association between PTPN22 620W polymorphism and 
GD has been demonstrated in numerous studies among 
Caucasians with strength typically estimated as OR 1.5-1.9 
[44,57-59], which makes this variant one of the strongest 
known genetic factors predisposing to autoimmune diseases. 
A gene dose-dependent effect of PTPN22 'T' allele on the 
age of onset of Graves' disease has been observed in a Polish 
population [57] but was not replicated in a cohort from the 
UK [60]. 
 PTPN22 has multiple listed copy number variants 
(CNVs) encompassing the entire gene. When CNVs 
deposited in a Database of Genome Variants [61] for the 
PTPN22 gene were tested, only two controls showed a copy 
number change, one deletion and one duplication, suggesting 
that CNVs at this locus do not contribute to the etiology of 
GD [62].  
 Although most of the studies focused on the C1858T 
variant, other polymorphisms of the PTPN22 gene may also 
be relevant. The variant R263Q has been shown to reduce 

the risk of systemic lupus erythematosus (SLE) due to 
reduced phosphatase activity [63]. In a study of patients with 
GD from the UK population, a haplotype reducing the risk of 
disease, regardless of the effect of the polymorphism at 
position 1858, has been identified [64]. The conclusions 
from this study were generally similar to an earlier one 
conducted among patients with RA [65]. However, it must 
be stressed that the protective haplotypes identified in the 
aforementioned studies were different [64,65]. The role of 
other variants of PTPN22 is particularly interesting in 
populations of Asians and Africans, in which R620W occurs 
very rarely or not at all [66,67]. The total absence of R620W 
in patients with AITD was confirmed in the Japanese [68]. 
However, a subsequent analysis of SNP markers within the 
region of the PTPN22 gene revealed the presence of a 
protective haplotype which is different from those identified 
previously [69].  
 Overall, available results indicate that apart from the 
well-known polymorphism C1858T, the PTPN22 locus 
contains other functionally important variants, particularly 
those conferring protection. Currently, the identity of these 
variants, except for R236Q, remains unknown, and their 
effect can be estimated only indirectly through analysis of 
haplotypes which differ in frequency between patients and 
healthy controls. 

Cluster of Differentiation 40 (CD40) 

 CD40 has been associated with GD as a positional 
candidate on the basis of a genome-wide linkage study in 
GD which implicated 20q11 chromosomal region, 
designated GD-2, as harboring a susceptibility locus [70,71]. 
A potentially functional SNP in the CD40 gene is the C/T 
polymorphism (rs1883832) located at position -1 relative to 
translation start and affecting Kozak sequence which plays a 
major role in the initiation of the translation. The C allele of 
rs1883832 has been found to confer OR=1.6 for GD among 
Caucasians whereas the results from in vitro
transcription/translation system suggested that this allele 
predisposed to disease by increasing the efficiency of 
translation of CD40 mRNA [70,71].  
 The association between GD and rs1883832 was not 
replicated in two large case-control studies in the United 
Kingdom [72,73]. Despite this controversy [72,73] 
association between the rs1883832 CC genotype and GD has 
been confirmed in a meta-analysis including 1961 and 1960 
Caucasian patients and controls, respectively, as well as 132 
patients and 164 controls from Korea (OR=1.22, 95% CI: 
1.08–1.38) [74]. The association between GD and C variant 
rs1883832 is also supported by studies in the population of 
Japan although in this population the effect may be limited to 
patients with late onset of disease [75] and/or to the CC and 
CT genotypes, suggesting a dominant rather than a recessive 
model of inheritance [75,76].  
 Even though a CNV in the CD40 gene is listed in the 
DGV, Huber et al. while using two different assays failed to 
find any deletions or duplications of CD40 locus in either the 
controls or GD patients [62].  
 CD40 is a surface molecule of the TNFR (tumor necrosis 
factor receptor) family constitutively expressed on a variety 
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of cells in the immune system, including antigen-presenting 
cells (APCs) and B cells [77], as well as on other types of 
cells, for example, thyroid follicular cells [78] and orbital 
fibroblasts [79]. CD40 plays a fundamental role in B cell 
activation as its ligation provides the necessary co-
stimulatory signal for B cell proliferation, immunoglobulin 
class switching, antibody secretion, prevention of apoptosis 
of germinal-center B cells, affinity maturation and 
generation of long-lived memory cells [80,81]. The 
physiological ligand for CD40 is the CD154 (CD40L) 
molecule which is expressed on the surface of activated T 
helper cells [82].  
 Recently, inhibition of CD40 expression by siRNA was 
evaluated for potential to prevent disease development in 
mice immunized with adenovirus expressing human TSHR 
A subunit. However, despite successful lowering of CD40 
expression, no effect on the rate of disease induction was 
observed [83]. 

The Cytotoxic T Lymphocyte-Associated Factor 4 
(CTLA4 also known as CD152) 

 CTLA4 consists of four exons encoding different 
functional domains such as a leader sequence and 
extracellular, transmembrane as well as cytoplasmic 
domains. The CTLA-4 protein acts as a potent negative 
regulator of T-cell response [84,85] and variants of CTLA4 
have been consistently associated with numerous 
autoimmune disorders [86]. 
 CTLA-4 acts by delivering an inhibitory signal through 
its cytoplasmatic domain which can reverse the classic TCR-
induced stop signal needed for physical interaction between 
T cell and APC, thus reducing adhesion periods between 
these cells which in turn decreases cytokine production and 
proliferation [87-89]. In addition to this cell intrinsic action 
another model emphasizing the role of soluble CTLA-4 
(sCTLA-4) has been proposed [90]. The mechanism of the 
cell extrinsic action could involve stimulation of regulatory 
T cells but the precise mechanism is not clear since elevated 
levels of sCTLA-4 are found in patients with autoimmunity 
[91,92]. Recently Omaer et al. demonstrated yet another cell 
extrinsic mode of CTLA-4 action occurring through removal 
of co-stimulatory ligands (CD86) from APCs via trans-
endocytosis [93]. Clearly, more work is needed to decipher 
all physiologically relevant effects CTLA4.  
 The most consistent associations with GD within CTLA4
locus were found with three polymorphisms, the first being 
the AT-microsatellite polymorphism (ATn) at the 
3’untranslated region (3’UTR) of the gene [94,95]. It has 
been proposed that long AT-repeat allele decreased stability 
of CTLA4 mRNA thus blunting the inhibitory function of the 
protein and thus reducing control of T-cell proliferation [96].  
 The second polymorphism implicated as causative was 
rs231775, a SNP (A49G ) in the signal peptide causing a 
substitution Thr to Ala [95,97-103]. This amino acid change 
could influence post-translational processing leading to 
inefficient glycosylation of the autoimmunity predisposing 
variant [104]. However studies conducted by Hu et al. did 
not support these observations as both the extrinsic and 
intrinsic actions of recombinant human CTLA-4 expressed 

in transfected Jurkat T cells were not affected by the signal 
peptide polymorphism indicating that the association of the 
rs231775 to GD is secondary to LD with the causative 
variant [105].  
 Another widely studied genetic CTLA4 polymorphism is 
rs3087243 located downstream from the 3’UTR of the 
CTLA4 and also known as CT60 [101,102,106-108]. 
Investigation of full-length (flCTLA-4) and sCTLA-4 
expression after taking into account the CT60 genotype 
revealed a lower expression of sCTLA-4 in individuals 
homozygous for the G allele [109,110]. However, this result 
was not replicated in a larger Swedish study which also did 
not find any correlation between concentration of serum 
sCTLA4 and disease status or CT60 genotype [111]. 
Recently, a significant association with CTLA4 CT60 was 
found for GD (OR=2.97) in Japanese patients. Stratification 
analyses suggested a possible synergistic interaction of 
CTLA4 with HLA-A*02 and -DPB1*05:01 in the 
susceptibility to GD [112].  
 In a comprehensive meta-analysis by Kavvoura et al.
[113] the A49G and CT60 polymorphisms among Asians 
and Caucasians have been studied. There were 28 studies 
that reported data for the A49G polymorphism and 7 for 
CT60 with a total of 4848 GD cases typed for A49G and 
3047 for CT60 as well as 7314 and 3741 healthy controls, 
respectively. The summary OR for A49G was estimated as 
1.49 with respect to G-allele carriers with a significant 
between-study heterogeneity. Interestingly, the magnitude of 
the overall OR diminished over time, from 1.64 in 1996 to 
1.49 found in meta-analysis by Kavvoura et al. in 2007 
[113]. The G allele of CT60 polymorphism increased odds of 
GD 1.45 fold and similarly to A49G, there was a significant 
heterogeneity among studies [113].  
 The obtained results were similar for Asians and 
Caucasians but the Asian studies were more divergent [113]. 
Haplotype analysis indicated that GD association with A49G 
polymorphism is secondary to LD with CT60 rather then an 
independent effect. A dose-effect association was observed 
since carriers of two copies of the risk haplotype had 
significantly higher odds for disease development when 
compared to single copy carriers (OR 1.97 vs. 1.29) [113]. 
 Kavvoura et al. also analyzed other CTLA4 
polymorphisms previously described and found a modest 
association of the G alleles of JO31 and JO30 with GD. No 
significant associations were obtained for the (AT)n 
microsatellite, C(-318)T or JO27_1 polymorphism although 
it should be noted that these polymorphisms were examined 
in relatively smaller numbers of studies [113].  
 The current state of knowledge does not indicate clearly 
the causal mechanism behind the association of CTLA4 with 
GD. However, CTLA4 polymorphism is among those most 
consistently associated with thyroid autoimmune diseases in 
the majority of populations.  

The Thyrotropin Receptor (TSHR)  

 The thyrotropin receptor (TSHR) is a Gs-protein coupled 
receptor responding to thyrotropin (thyroid-stimulating 
hormone, TSH). It is primarily found on the surface of the 
thyroid epithelial cells [114]. TSH is central to the regulation 
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of the thyroid gland. Since anti-TSHR antibodies in serum 
are the main serological manifestation of GD, TSHR gene 
was the obvious candidate for genetic studies. TSHR is 
located on 14q31 [115,116] and consists of 13 exons [117]. 
Initial studies focused on the three common non synonymous 
SNPs in the TSHR: D36H and P52T, both located in the 
extracellular domain of the receptor, and D727E found in the 
intracellular part of the protein. Despite the positive results 
of some studies [118-120], subsequent linkage and case-
control studies have largely shown no association of GD 
with either of these TSHR SNPs in Caucasians [121-124]. 
Nevertheless, genome wide linkage analysis subsequently 
suggested a GD susceptibility locus in chromosomal region 
14q31 [125]. This encouraged extending the search for 
susceptibility loci to non-coding sequences within the TSHR
gene. Among the Japanese large scale analyses of SNPs 
which were prompted by initial associations found by typing 
of microsatellites [126] showed evidence for three 
haplotypes within TSHR intron 7 that were strongly 
associated with GD [127].  
 The first evidence for association between TSHR and GD 
in Caucasians has been provided by Dechairo et al. [128]. 
These authors analyzed LD structure across the entire TSHR 
gene, identified LD blocks and analyzed SNPs which 
captured the majority of intra-block haplotype diversity. One 
haplotype stretching two LD blocks showed association with 
GD (OR 1.7), with the most strongly associated SNP 
(rs2268458) located in intron 1 and conferring OR=1.31 
[128].  
 Further refinement of the association between variants in 
intron 1 of THSR and GD was provided by studies in a UK 
population by Brand et al. who investigated a combined 
panel of 98 SNPs, including rs2268458, across an extended 
800 kb region of the TSHR [129]. Among 28 SNPs 
associated with the disease the strongest signal was at 
rs179247 (OR=1.53) and rs12101255 (OR=1.55) [129]. The 
multiple logistic regression suggested these two SNPs in 
strong LD explained the association signal in the region 
[129]. Functional analyses suggested that rs179247 and 
rs12101255 could be associated with reduced expression of 
full length TSHR mRNA relative to two truncated splice 
variants which in turn could lead to increase in shedding of a 
part of the TSHR receptor called the A-subunit [129]. Since 
the TSHR A-subunit may be a particularly important target 
for autoantibodies against TSHR [129,130] its excessive 
production could well have relevance for GD pathogenesis.  
 The results obtained in the UK population were recently 
replicated in a Polish and extended British cohorts [131]. It 
was found that rs179247 and rs12101255 were in strong but 
incomplete LD (D'=0.98 and r2=0.50). Logistic regression 
indicated that association at rs179247 may be secondary to 
rs12101255 or that rs12101255 is in stronger LD with the 
etiological variants within the region [131]. Genotype-
phenotype correlations provided no clear evidence of 
association between rs12101255 and any specific clinical 
characteristics of GD [131]. 
 Although the most strongly associated subregion of 
TSHR gene is different in Caucasians (intron 1) 
[128,129,131] and Asians (intron 7) [127] there may be 
some sharing of genetic susceptibility factors between these 

populations. A marginal (P=0.026) association to an intron 1 
SNP (rs2268474) was observed by Hiratani et al. in a 
Japanese cohort [127] whereas another SNP in intron 1 – 
rs2239610 – was associated with GD in a study of an 
ethnically mixed Asian population from Singapore [132]. 
Notably, rs2239610 is a perfect proxy of rs2268458 which 
was associated with GD in Caucasians [128,129]. On the 
other hand rs3783941, a nonsynonymous SNP in the distal 
part of the gene (exon 9) has been associated with GD in a 
large GWAS study of nonsynonymous variants, albeit only 
after the control group was expanded to include a total of 
4500 subjects [133]. As this association was not replicated, it 
could be a false positive, although there remains a possibility 
that the lack of replication was due to insufficient power 
[129]. 
 To summarise, whereas it is safe to conclude that the 
TSHR gene polymorphism is associated with GD, further 
fine mapping, perhaps using next-generation sequencing, as 
well as functional studies will be required to determine the 
exact location of the etiological DNA variants and to 
determine to what extent TSHR linked susceptibility factors 
for GD differ between Caucasian and Oriental populations. 

Thyroglobulin (Tg) 

 Thyroglobulin (Tg) represents one of the major 
autoantigens for autoimmune thyroid diseases (AITD), 
including both GD and Hashimoto’s thyroiditis (HT). 
However, in GD the main autoantigen is TSHR and 
antibodies against TSHR (TRAb) are found almost 
exclusively in patients with Graves’ hyperthyroidism. In 
contrast to TRAb, autoantibodies against Tg (TgAb) are not 
disease specific and they are found in 80-90% of HT 
patients, in 50-70% of GD patients (usually in lower 
concentration) and in other forms AITD. The induction of 
experimental autoimmune thyroiditis in mice using Tg as an 
antigen provides further evidence of their major role in the 
pathogenesis of HT (and not GD) in humans.  
 The TG gene has been mapped to chromosome 8q24, 
which has been linked to HT, AITD (GD and HT) or thyroid 
antibody production in independent studies [125,134,135]. 
Detailed sequence analysis of the entire TG gene revealed 
several intronic and exonic SNPs. One SNP cluster in strong 
LD (in exons 10–12) and a SNP in exon 33 have been 
analyzed in further association studies in different 
populations. There is some evidence that TG polymorphisms 
are associated with general susceptibility to AITD and 
separately to HT [136-141]. In several studies, association of 
TG polymorphisms with GD as well as with the relapse of 
Graves' hyperthyroidism after antithyroid treatment was 
found [142-146]. Unfortunately, these results have to be 
interpreted with caution because of rather small sizes of 
studied groups. Moreover, the association of TG SNPs with 
AITD, GD or HT could not be uniformly replicated [147]. 
Possibly the observed inconsistencies reflect differences in 
the autoimmune response to Tg in various forms of AITD. 
Therefore, genetic studies so far support the notion that TG 
may be a susceptibility gene for AITD in general, and not a 
specific marker for GD or HT.  
 There are several possible mechanisms by which TG 
SNP’s could influence susceptibility to AITD. Tg is a large 
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glycoprotein dimer, each subunit being ~330 kD. The extent 
of iodination, changes within the amino acid sequence and 
posttranslational modifications of Tg may lead to changes in 
antigenicity and binding to HLA. Indeed, experiments in 
human class II MHC-transgenic (‘humanized’) mice lacking 
their own class II MHC genes suggest an important role of 
human DR3 and DQ8 alleles in initiating Tg-induced 
experimental thyroiditis [148-150]. Especially exon 33 SNP 
causing a change from a hydrophobic amino acid (Trp) to a 
positively charged hydrophilic amino acid (Arg) would be 
expected to change the structure of Tg. This is in agreement 
with evidence of the interaction between exon 33 TG 
variants and HLA-DRB1*03 (Arg74) which increases OR 
for GD up to 16.1 [137,151]. These results imply that a gene-
gene interaction between an immunoregulatory gene (HLA-
DR) and a thyroid-specific autoantigen gene (TG) may play 
a role in susceptibility to AITD.  
 Most recently, a newly identified TG promoter SNP  
(-1623A/G) was associated with AITD [152]. In vitro studies 
suggest that the disease-associated G allele confers increased 
promoter activity through the binding of the interferon 
regulatory factor-1 (IRF-1), a major interferon-induced 
transcription factor. These data fit with observations that 
interferon-� treatment of chronic hepatitis C infection may 
be a trigger of AITD and provide a new mechanism of gene-
environment interaction in inducing thyroid autoimmunity 
[152]. Finally, an interesting hypothesis which has not been 
studied posits that differences in transcription of TG in the 
thymus could influence the negative selection of autoreactive 
T-lymphocytes.  

FCRL3 (FC Receptor-Like-3) 

 FCRL3 is a receptor of unknown function with structural 
homology to classical receptors for immunoglobulin constant 
chains (Fc receptors). The allele C of rs7528684 located at 
position –169 in promoter of FCRL3 (FC receptor-like-3) 
gene was convincingly associated with GD (OR=2.15, P = 
0.00000085) in a Japanese population [153]. FCRL3 is 
expressed in lymphoid organs, particular strongly on the 
surface of the B-cells [153]. Presence of FCRL3 was also 
demonstrated on the surface of a subset of Treg cells 
characterized by lower relative response to antigenic 
stimulation and reduced suppressor activity [154]. In the 
original report, rs7528684 was suggested to have functional 
significance as the disease-associated C allele increased 
affinity for NFKB transcription factor and showed enhanced 
transcription rate in luciferase assay [153].  
 The association between GD and FCRL3 was replicated 
in two studies in a UK population. Simmonds et al. studied 
1056 GD patients and 864 controls and reported a difference 
in allele distribution with statistical significance of P=0.024 
[155] whereas The Wellcome Trust Case Control 
Consortium in an analysis including 2500 GD cases and 
2500 controls found an association at rs3761959 (a perfect 
proxy of rs7528684 according to HapMap) which was 
significant at P=0.0094 [133]. Notably, in this study, a 
stronger association (P=1.6x10-5) was found with another 
SNP (rs11264798, located in the intron 8 of FCRL3) [133]. 
Yet another study in a UK population based on 625 cases 
and 490 controls failed to observe an association at 

rs7528684 providing instead some evidence for association 
at rs2282284 in exon 14 (P=0.02 before correction for 
number of comparisons) [156].  
 In contrast, negative conclusions regarding association of 
rs7528684 as well as three other SNPs in FCRL3 with GD 
were reached by Gu et al. who studied 436 cases and 316 
controls from a Chinese population. In the case of rs7528684 
the conclusion was particularly strong since an opposite 
effect (protection) was reported. Unfortunately, 
interpretation of these data is complicated since for 
rs7528684 the authors present distribution of A/G rather than 
C/T alleles presumably reflecting a nomenclature based on 
the other DNA strand than in the original study [153]. 
However, assuming that A corresponds to T and G to C the 
data presented by Gu et al. are at odds with their conclusion 
being instead consistent with increased prevalence of CC and 
CT genotypes among cases vs. controls [145]. 
 Recently, the association to the FCRL3 region was fine 
mapped in 2504 patients and 2688 controls from the UK 
[157]. Although the study confirmed association of 
rs3761959 (tagging rs7528684) with GD, this association 
turned out to be secondary to the effect of two other SNPs 
within FCRL3: the previously implicated rs11264798 [133] 
and rs10489678 [157]. Further analysis suggested that 
rs11264798 may not be the etiological variant, as the effect 
of risk G allele of this SNP was haplotype dependent being 
apparent only when present together with the rs10489678 C 
allele.  
 Overall the available data suggest that genetic 
polymorphism(s) modifying susceptibility for GD do exist in 
the FCRL3 region but the primarily associated variant(s) 
remain(s) to be found [157].

Secretoglobin 3A2 (SCGB3A2) Gene Encoding Secretory 
Uteroglobin-Related Protein 1 (UGRP1) 

 Variants in the promoter of the SCGB3A2 gene encoding 
secretory uteroglobin-related protein 1 (UGRP1) have been 
associated with GD in an extensive study of a total of ~2500 
patients and controls from the Chinese population by Song et 
al. [158] who aimed to explain signals in the chromosomal 
region 5q12-q33 obtained in previous studies using linkage 
analysis [134,159]. The strongest association reported by 
Song et al. was to rs1368408 (�112G/A, OR=1.28, 
P=1.43x10-6) and SNP75 (-623~-622 AG/-T, OR=1.32, 
P=7.62x10-5) [158]. Association between GD and the A 
allele of rs1368408 (OR=1.18, P=0.007) was independently 
confirmed in a similarly sized UK cohort (SNP75 was found 
to have low polymorphism and was not analyzed) [160]. 
Recently, further evidence for association between 
rs1368408 and GD was provided by a study in a Russian 
cohort (~1500 cases and controls, OR=1.33, P=2.9�10-5)
[161]. It should be noted that a relatively early study in a 
Chinese population did not observe the effect of rs1368408 
although this might have been caused by low power due to 
limited numbers of subjects (~200 cases and controls) [162]. 
 The �112G/A variant of SCGB3A2 (rs1368408) was 
originally discovered by Nimi et al. who also showed that it 
was functional with the A allele conferring a 24% reduction 
of promoter activity [163]. This was confirmed and extended 
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by Song et al. who showed that lower expression from 
haplotypes encoding rs1368408 A was associated with lower 
concentration of SCGB3A2 mRNA also in thyroid tissue 
[158]. Further support for functional significance of the 
rs1368408 A variant comes from its association with reduced 
concentration of UGRP1 in serum of healthy subjects as well 
as of patients with GD or asthma [161,164]. The functional 
effect of the A allele of rs1368408 may occur through 
disruption of the binding site for CCAAT/enhancer-binding 
protein � (C/EBP�) which positively regulates transcription 
of SCGB3A2 [158,165]. 
 UGRP1 is a ligand for macrophage scavenger receptor 
with collagenous structure (MARCO) [166] which has an 
important function in the innate immune system of the lung 
where it binds inhaled particles including microbial 
pathogens and facilitates their clearance by the macrophage 
system [167-169]. Accordingly, UGRP1 is predominantly 
expressed in the lung although a low level expression was 
also found in human thyroid and kidney [158,163].  
 At present it is not clear how variants in SCGB3A2
predispose to GD. Whereas expression of this gene in the 
thyroid does not preclude a local effect the well documented 
function of MARCO (and presumably UGRP1) in lung 
physiology suggest that the association may be caused by 
systemic effects originating from the respiratory system. 
Interestingly, rs1368408 A has been associated with asthma 
[163]. Although this was not confirmed, an intriguing link 
between this variant and total IgE, although limited to 
healthy controls, was recently suggested [161]. 
 Finally it should be noted that other functionally 
attractive candidates for association with GD such as 
cytokine genes: IL3, IL4, IL5, IL9, IL13 and the ADRB2 gene 
encoding beta-2-Adrenergic receptor are located on 
chromosome 5q, close to the SCGB3A2 locus. Notably, out 
of these, variants in IL3 [170,171], IL5 [171] and ADRB2
[172,173] were all associated with GD.  

Other Candidate GD Susceptibility Genes  
 Because GD is known to share genetic susceptibility with 
T1DM, a set of SNPs associated with T1DM has been tested 
in GD (2200 patients, 3600 controls) [174]. Out of 14 SNPs 
analyzed, seven showed association, although evidence was 
modest (0.0018<P<0.026) [174].  
 The strongest of associations found was to rs17388568 
although the direction of effect (protection) was opposite to 
that found in T1DM [174]. The rs17388568 is located in 
chromosome region 4q27 (Tenr–IL2–IL21) containing, 
among others, the locus for IL2. Given the central role of 
IL2 in immune response it is perhaps not surprising that this 
region was also associated with other autoimmune diseases 
such as celiac disease [175], ulcerative colitis [176], RA 
[177], JIA [178], psoriasis and psoriatic arthritis [179] and 
others [180] although in the majority of studies another SNP 
(rs6822844), only weakly linked with rs17388568, was 
implicated with the minor allele generally conferring 
protection [181]. It is indeed possible that the 4q27 contains 
more than one susceptibility locus since rs6822844 but not 
rs17388568 is associated with RA [181]. In the context of 
these data, a comprehensive analysis of 4q27 SNPs in GD 
seems warranted. 

 The second strongest association reported by Todd et al.
was with rs1445898 encoding a non-synonymous aa change 
(Gln75Arg) in calcyphosine-like protein (CAPSL) which 
possibly has a role related to calcium binding [174]. This 
finding was not secondary to the effect of an established risk 
marker of multiple sclerosis (MS) located in the same region 
(rs6897932 in IL7R) [182-184] as this SNP was not 
associated with GD [174].  
 The association between GD and rs1990760 [A946T in 
IFIH1 -interferon-induced helicase C domain 1 also known 
as melanoma differentiation-associated 5 (MDA-5) or 
Helicard] on chromosome 2q24.3 observed by Todd et al.
[174] was actually reported earlier in another British cohort 
including 602 patients and 446 controls [185]. A subsequent 
study in a German population (258 patients, 227 controls) 
did not report statistically significant association between 
rs1990760 and GD although the expected trend was noted 
[186]. No association between rs1990760 and GD was found 
among the Chinese (261 patients, 206 controls) [187] or the 
Japanese (290 patients and 229 controls) [188].  
 The association between autoimmunity and rs1990760 
was first found in a GWA of nonsynonymous SNPs in 
T1DM with the minor allele (threonine) conferring 
protection [189]. The association with T1D was confirmed 
by a recent meta-analysis (allelic OR= 1.176) although with 
evidence for some (P=0.023) heterogeneity among studies 
[190]. rs1990760 and/or other SNPs in the region of IFIH1
were also associated with MS [191,192], RA [193] (although 
there is controversy here) [194], psoriasis [195] and, 
tentatively, with SLE [196]. 
 Whereas statistical analyses did not prove that IFIH1 was 
the primary associated locus, support for this hypothesis 
came from massive resequencing of IFIH1 in T1DM patients 
and controls which revealed four rare variants 
(rs35667974/Ile923Val, rs35337543/IVS8+1, rs35744605/ 
Glu627X, rs35732034/IVS14+1) associated with the disease, 
independently both from each other and from rs1990760 
[197].  
 IFIH1 is one of a family of intracellular proteins involved 
in innate immunity through recognition of viral RNA [198]. 
Interestingly, available data indicate that a normal (i.e. 
encoded by the more prevalent allele/haplotype) activity of 
IFIH1 increases the disease risk whereas rare variants confer 
protection. Whereas the rare variants identified by Nejentsev 
et al. were associated with a decreased/absent protein 
activity, the functional consequences of variation are less 
clear for rs1990760 since the Thr946Ala change did not 
influence double stranded RNA binding or IFN gene 
activation [197,199]. It has been shown that Ala946 is 
associated with reduced IFIH1 transcription [200,201] but 
there are also reports conflicting with this conclusion 
[194,202]. 
 Association to rs9653442 on 2q11 [174] may indicate the 
role of locus AFF3 which encodes nuclear protein LAF-4 
with homology to a protein involved in leukemia 
development and a possible function in lymphoid 
ontogenesis [203]. Through a perfect proxy SNP 
(rs1160542) rs9653442 has also been associated with RA 
and JIA [178,204].  
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 Another novel association in GD suggested by Todd et
al. was to rs763361 - a nonsynonymous SNP (Thr307Ser) in 
the intracellular tail of the CD226 molecule (DNAX-
accessory molecule-1 (DNAM-1)) which is a surface 
receptor with a co-stimulatory function [174]. CD226 is 
expressed in cells of haematopoetic lineage such as CD4+ 
and CD8+ T lymphocytes, platelets, as well as some B cells, 
and natural killer (NK) T lymphocytes [205-207]. Apart 
from the link with T1D and the tentative association with 
GD [174] rs763361 has been associated with MS [208], RA 
[208], SLE [209], Wegener's granulomatosis [210] and 
systemic sclerosis [211]. 
 The 307Ser variant alters splicing of the CD226 
transcript and this has been suggested to explain the 
association [174]. Another not exclusive possibility is that 
the amino acid change increases receptor signaling by 
strengthening the phosphorylation of neighboring sites 
[208,209]. Conversely, recent in vitro analysis indicated a 
direct functional effect of another SNP closely linked with 
rs763361 (rs727088), with the disease associated variant 
causing a decreased expression [208,209]. Consistent with 
this was the in vivo observation that disease-associated 
rs763361-rs727088 haplotype correlated with lower surface 
expression of CD226 in T cells and NKT (Natural Killer T) 
cells [209]. Since no such genotype-dependent differences in 
expression were observed in NK or B cells it was suggested 
that CD226 function in T cells or NKT cells was important 
in disease pathogenesis [209]. 
 Independent associations with GD were also found with 
two SNPs (rs1893217 and rs478582) in the region of PTPN2
[174]. PTPN2 was initially associated with T1DM, Crohn’s 
disease and RA in a study by Wellcome Trust Case Control 
Consortium (WTCC) including ~3000 shared controls and 
sets of ~2000 patients with common diseases including the 
abovementioned autoimmune disease [212]. These results 
were later extended to ulcerative colitis [213], JIA [214] and 
possibly celiac disease [215].  
 Whereas the originally reported association between 
PTPN2 and autoimmunity was to rs2542151, the SNPs 
which were tested and found associated with GD (i.e. 
rs1893217 and rs478582) were those which showed stronger 
association to T1DM than rs2542151 [174]. Subsequently it 
was suggested that there was even stronger association with 
T1DM at rs45450798 so that this marker should replace 
rs1893217 [215] but so far there have been no data on 
association with GD of rs1893217 or SNPs in the PTPN2
region other than rs1893217 or rs478582.  
 PTPN2 encodes a classical, non-receptor protein tyrosine 
phosphatase, related to but distinct from PTPN22 which is a 
very well established risk factor for autoimmunity (see 
above). PTPN2 is highly expressed in hematopoietic cells 
and the phenotype of the knockout mouse model indicates its 
important role in immune system development, function and 
predisposition to autoimmunity [216].  
 Apart from the loci associated with T1DM [174] and 
discussed above, a number of other genes such as VDR
(vitamin D receptor) [217,218], FOXP3 (a gene whose 
expression determines Treg commitment), DIO2 (type II 
iodothyronine deiodinase), [119], IL23R (IL23 receptor) 

[219] have been associated with GD, based on candidate 
gene approach (reviewed in [16]).  
 In addition to the loci discussed above, a recent study 
from our group suggested that the A allele of rs4986938 
within ESR2 (estrogen receptor beta) locus was associated 
with GD, in particular among DRB1*03-negative subjects 
[220]. Subsequently, rs4986938 was associated with SLE 
[221] and differences of ESR2 mRNA concentration 
suggesting that increased expression of this gene may 
predispose to autoimmunity [222].  

 We also reported an association between NFKB1-94del 
ATTG (a promoter variant of a gene encoding nuclear factor-
�B) and GD which was found in two independent Polish 
cohorts [P=0.00005; OR=1.37 (1.18-1.60)] [223]. Although 
the association with susceptibility to GD could not be 
replicated in a Japanese cohort, subgroup analysis in 
Japanese GD patients revealed a correlation between the 
NFKB1 genotype and the development of GO as well as the 
age of disease onset [223]. NFKB1-94del ATTG has been 
associated with a decreased transcription [224] and its 
prevalence was assessed in cohorts with various autoimmune 
diseases although with variable results [225]. These 
observations, together with the broad role of nuclear factor-
�B in immune function [226], make NFKB1-94del ATTG an 
interesting candidate for further studies in thyroid 
autoimmunity.  

Skewed X Chromosome Inactivation (XCI) 

 In female cells, one of the two X chromosomes is 
inactivated in early embryonic life and this epigenetic system 
assures that men and women have equal expression of the 
genes from the X chromosome, despite the difference in X 
chromosome copy number. The X chromosome inactivation 
(XCI) has been regarded a random process which on average 
leads to inactivation of the maternal and paternal X 
chromosomes in 50% of cells, respectively. However, in 
accordance with normal distribution, this random process 
sometimes generates an unbalanced inactivation pattern with 
one copy of the X chromosome preferentially expressed.  

 Skewed XCI could also result from a bias in the initial 
choice of the X chromosome which is inactivated due to 
germline XIST (X-inactive-specific transcript) mutations 
[84] or deleterious X-linked mutations, X chromosome 
rearrangements, ageing, twinning, or monoclonal expansion 
of cells [227]. Importantly, the degree of XCI skewing may 
also be determined by polymorphic variants on the X 
chromosome, in particular those located close to the X 
inactivation centre or chromosomal bands Xq25-q26 [228-
231]. Significant skewing of XCI has been arbitrarily 
defined as a situation in which 80% or more of the cells 
inactivate the same X chromosome [232]. 

 The original study linking XCI with GD was based on 32 
pairs of female twins with AITD (including 19 with GD) and 
96 healthy female twin individuals [233]. The study 
demonstrated a higher prevalence of skewed XCI in blood 
cells of females with AITD compared with controls. 
Moreover, skewed XCI was more frequent in female twins 
with AITD than in their healthy co twins [233]. 
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 These results were confirmed by three studies in other 
populations [234-236]. Ozcelik et al. demonstrated skewed 
XCI in peripheral blood mononuclear cells in a significant 
proportion (34%) of female subjects with AITDs and 8% of 
control females [234]. The effect was even more pronounced 
when extreme patterns of XCI skewing (90:10 or more) were 
considered – in such an analysis it was found that 20% of 
AITDs patients showed skewing, compared with only a few 
percent of control subjects. Skewed XCI (73:27) was also 
demonstrated in thyroid specimens [234]. Yin et al. in a 
study based on 87 patients with GD, 47 patients with HT and 
69 controls confirmed that XCI skewing was associated with 
both GD and HT (OR = 4.0) [235]. Similar conclusions were 
reached by Chabchoub et al. based on a study of 58 GD 
patients, 87 HT patients and 257 controls [236].  

 The explanation of the mechanism by which skewed XCI 
can lead to autoimmunity has been based on the loss of 
mosaicism hypothesis which posits that lower expression of 
self-antigens from one X chromosome may interfere with 
induction of tolerance in the thymus [237-239]. The 
inefficient negative selection in the thymus could result from 
the fact that the cells mediating it (i.e. the thymic epithelial 
and dendritic cells) are derived from a few progenitors (~1 
and ~10, respectively) which makes expression of antigens 
exclusively from one X chromosome possible, especially in 
the presence of skewed XCI [238]. Owing to an overlap 
between HLA class I and II antigen presentation pathways 
these untolerized T cells could in turn provide help to a 
population of B cells expressing these antigens, thus causing 
their polyclonal activation. Whereas originally proposed to 
explain pathogenesis of SLE [238] this mechanism could 
conceivably decrease the threshold also for other forms of 
autoimmunity, including GD.  
 Another mechanism of autoimmunity development could 
be related to differences in the degree of XCI skewage found 
among different tissues [232]. In particular, it could happen 
that antigens with low expression in the thymus are 
relatively highly expressed in peripheral tissues (such as 
thyroid) and induce autoimmunity [237-239].  
 Skewed XCI may offer an interesting explanation for a 
marked female preponderance of AITD [233]. However, this 
explanation is difficult to reconcile with the lack of skewed 
XCI observed in other autoimmune disorders with female 
preponderance such as MS, SLE or primary biliary cirrhosis 
[240-242] as well as data from animal experiments showing 
that female predisposition to autoimmunity is not influenced 
by homozygosity for X chromosome which should eliminate 
defective tolerance induction due to skewed XCI [236,243].  
 Although the association between skewed XCI and AITD 
has been found repeatedly [233-236] its mechanism should 
be regarded as speculative. Recently the same group who 
described the original association between AITD and skewed 
XCI provided preliminary evidence of its noncausality [244]. 
The argument was based on lack of correlation of within-pair 
differences in values of XCI with differences in 
concentration of autoantibodies against thyroid peroxidase 
observed in MZ but not DZ twin pairs [244]. Whereas the 
study had limited power mainly because of high within-pair 
similarities in the concentration of autoantibodies among 

MZ, its results were interpreted to suggest that skewed XCI 
and AITD both share genetic determinants but are not 
causally related [244].  
 Since the degree of XCI skewing may be linked with 
markers on the X chromosome [231] such an interpretation 
would suggest that there are as yet unidentified AITD 
susceptibility loci located on the X chromosome. The 
relevance of the X chromosome for AITD susceptibility is 
supported by findings of increased disease risk in Turner’s 
syndrome, in particular among females with isochromosome 
Xq, i.e. an X chromosome with deletion of the short arm and 
duplication of the long arm [245] as well as by observations 
of increased prevalence of X chromosome monosomy in T 
and B lymphocytes of females with AITD compared with 
healthy women [246]. The existence of GD susceptibility 
loci on the X chromosome was suggested by early studies 
based on linkage analysis, but without agreement regarding 
the exact location [247,248]. It should be interesting to look 
for X linked loci when a GWA study is eventually completed 
in GD.  

Fetal Microchimerism (fMC) 

 Fetal microchimerism refers to presence within the 
maternal organism of a small population of cells originating 
from the fetus. fMC arises during pregnancy and may persist 
for years or decades [249]. A convenient method to study 
fMC consists of looking among females for male cells or 
their DNA [249].  
 Since the presence of foreign cells can potentially cause 
immune deregulation it has been hypothesized that fMC may 
be a risk factor for AITD and also explain its female 
predominance as well as frequently observed association 
between disease onset/aggravation and the postpartum period 
[250,251]. A first link between fMC and thyroid pathology 
was provided by demonstration of male cells in 
thyroidectomy specimens from female patients but not in 
control autopsy samples [252]. Interestingly, whereas fMC 
accompanied various thyroid pathologies it was most 
prevalent in women with HT (5/6 or 83%) [252]. Association 
between HT and fMC was also found by Klintschar et al.
who detected fMC in 8/17 patients vs. 1/25 controls [253]. 
Subsequently, the same group extended these findings using 
a different methodology [254]. Studying fresh-frozen 
specimens Ando et al. found high prevalence (6/7) of fMC in 
patients with GD vs. controls with thyroid adenoma (1/4) 
[255]. Somewhat lower prevalence of fMC (4/26 vs. 0/6, 
respectively) was obtained in the same study from paraffin-
embedded material which might have suffered from 
degradation [255]. The association between HT/GD and 
fMC was also confirmed in a relatively large study of 25 
women with HT, 15 with GD and 9 with thyroid adenomas 
in which prevalence of fMC was 60%, 40% and 22%, 
respectively for HT, GD and controls [256].  
 Whereas association between fMC and AITD is well 
documented, it is not clear whether fMC causes the thyroid 
disease or vice versa. Some indirect support for a causative 
role of microchimerism in AITD has been provided by an 
observation that twins from opposite sex pairs have a higher 
frequency of thyroid autoantibodies then monozygotic twins 
[257]. However, in this setting, the relevant microchimersim 



GD Genetics Current Genomics, 2011, Vol. 12, No. 8    553

should result from in utero cell trafficking between twins 
rather than from migration of fetal cells into the mother 
organism and thus could be qualitatively different [257].  
 In a murine experimental autoimmune thyroiditis model 
it was shown that inflamed (but not healthy) thyroid 
accumulated fetal cells, including T cells and dendritic cells 
[258]. Although these cells could theoretically contribute to 
postpartum exacerbation of thyroid inflammation 
[251,258,259] these data are compatible with high 
prevalence of fMC in human AITD being a consequence 
rather than the cause of disease. Indeed, the hypothesis that 
presence of fetal cells was associated with the maternal 
response to injury (inflammatory or other) as opposed to 
causing disease was proposed relatively early [260] and is 
consistent with observations in animal models [261-263] and 
humans [264].  
 Furthermore, if fMC were a cause of AITD, an 
epidemiological association between thyroid autoimmunity 
and history of pregnancy/parity would be expected. Whereas 
such an association was indeed found in one cohort [265] it 
was not observed in four other studies [266-269].  
 Thus, despite association with AITD, fMC is most likely 
not a risk factor for disease development. Whereas the role 

of fMC in postpartum disease aggravation cannot be 
excluded, available data suggest that this and other sex 
related features of GD such as female preponderance will 
perhaps be more readily explained by hormonal differences 
between females and males. Interestingly, in pathogenesis of 
AITD a role for hyperestrogenic state due to a longer 
reproductive span has been proposed [266]. The role of 
hormonal factors in thyroid autoimmunity is also consistent 
with the association discussed above between GD and a 
ESR2 variant [220].  
 A broader discussion of the role of fMC in autoimmunity 
and other diseases such as cancer can be found in a recent 
review [270]. 

GENOTYPE-PHENOTYPE CORRELATIONS IN GD 

 GD is typically characterized by hyperthyroidism, diffuse 
goiter and the presence of stimulating TSH receptor 
autoantobodies (TRAb). The severity of thyrotoxicosis in 
GD is variable and the response to anti-thyroid drugs is 
difficult to predict. Graves’ ophthalmopathy (GO) is the 
most common extrathyroidal manifestation of GD. GO 
significantly impairs the quality of life of affected patients 
and the most severe cases can be threaten sight. Although the 
genetic predisposition to GD is well established, the 

Table 1. Selected Genetic Markers Associated with Susceptibility to Graves’ Ophthalmopathy 

Locus  Polymorphism (allele) Population [Ref.]  Studied groups P-value, odds ratio

Immune- modifying genes: cytokines 

IFN-�  intron 1 (CA) repeat Canada and German 
[276]  

GO (n=53), GH (n=149) P<0.00001, OR=4.8 
For allele  

IFN-Y*3 

TNF C-863A Japan [277]  GO (n=62), GH (n=111) P =0.003, OR=2.7 

 TNF  T-1031C Japan [277]  GO (n=62), GH (n=111)  P=0.0003, OR=3.3, 

TNF G-238A Poland [278]  GO (n=106), GH (n=122) P=0.008, OR=0.1 

IL-23R rs2201841 USA [219] GO (n=103), GH (n=111) P=0.008, OR=1.8 

IL-1A C-889T Iran [279] GO (n=50), GH (n=57)  P=0.006, OR=2.16 

IL-5 rs2069812 China [171] GO (n=190), GH (n=561) P=0.003, OR=1.45 

IL-16 rs4778889, rs1131445, rs4778641 China [280] GO (n=136), GH (n=122) Haplotype (C-T-C) P=0.013, 
OR=0.57 

Immune- modifying genes: other 

CTLA4 A49G UK [281]  GO (n=129), GH (n=172)  P=0.006, OR=2.1 

CTLA4 C-318T China [282] GO (n=142), GH (n=121) P=0.009, OR=0.51 

ICAM-1  A1405G Poland [283]  GO (n=108), GH (n=127) P=0.003, OR= 1.8 

PTPN12 rs1468682,  

rs 4729535 

UK [284] mild GO# (n=354), GH (n=366) P=0.004, OR=1.41 

P=0.006, OR=1.37 

NFKB1  -94ins/del ATTG Japan [223] GO (n=123), GH (301) P=0.009, OR=1.37 

TLR-9 rs352140  Taiwan [285] GO (n=200), GH (271) P=0.03, OR=1,97 

in male GD patients 

CD86 rs_9831894 Taiwan [286] GO (n=200), GH (271) P = 0.0017 

GO - Graves’ ophthalmopathy, GH - Graves’ hyperthyroidism without eye disease, HS – healthy subjects. 
#Mild GO - NOSPECS score 2-4. 
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significance of genotype-phenotype correlations remains 
controversial. Moreover, the lack of complete phenotypic 
concordance in MZ pairs strongly indicates that 
environmental and/endogenous factors are of importance 
[271]. The major environmental factor influencing the 
clinical course of GD is cigarette smoking. 
 Several genes have been shown to confer susceptibility to 
GO (Table 1). Unfortunately, the results of these studies 
have to be judged very carefully [272]. It is now apparent 
that “reliable” association studies should consist of large 
datasets, small P values, functional polymorphisms and an 
independent replication. The vast majority of studies 
analyzing genetic susceptibility to GO are small and 
underpowered, resulting in a high risk of both false positive 
and false negative results. Replication studies are lacking or 
were unable to confirm the initial association between 
immunoregulatory genes polymorphisms and GO. Finally, 
the studied groups were usually poorly characterized and the 
definition of “clinically evident ophthalmopathy” varied 
between studies.  
 Similarly, some studies suggested an association between 
candidate genes polymorphisms and the course of 
hyperthyroidism (Table 2): the age of onset of GD, the 
relapse rates after anti-thyroid drug treatment and/or the 
level of anti-thyroid antibodies, with the same limitations as 
above. Most studies suggested an association between 
CTLA4 SNP (A49G) and severity of Graves’ 
hyperthyroidism. However, these findings could not be 
uniformly confirmed [273-275].  

 At present, while some genetic differences between 
subgroups of GD patients have been identified, none of the 
polymorphisms justifies genetic testing to guide therapy or 
preventive strategies. Genotype-phenotype correlations in 
GD remain to be elucidated in the future, through well 
designed and appropriately powered studies.  

NOTE ADDED IN A PROOF 

While this article was in press a genome-wide association 
study of GD in a Chinese population was published by Chu 
et al. (Nature Genetics 2011; 43: 897). The study confirmed 
four previously reported loci (HLA, TSHR, CTLA4 and 
FCRL3) and identified two new susceptibility markers 
(rs9355610 and rs6832151).  
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