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Abstract: Multiple environment phenotypes may be utilized to implement genomic prediction in
plant breeding, while it is unclear about optimal utilization strategies according to its different
availability. It is necessary to assess the utilization strategies of genomic prediction models based
on different availability of multiple environment phenotypes. Here, we compared the prediction
accuracy of three genomic prediction models (genomic prediction model (genomic best linear un-
biased prediction (GBLUP), genomic best linear unbiased prediction (GFBLUP), and multi-trait
genomic best linear unbiased prediction (mtGBLUP)) which leveraged diverse information from
multiple environment phenotypes using a rice dataset containing 19 agronomic traits in two disparate
seasons. We found that the prediction accuracy of genomic prediction models considering multiple
environment phenotypes (GFBLUP and mtGBLUP) was better than the classical genomic prediction
model (GBLUP model). The deviation of prediction accuracy of between GBLUP and mtGBLUP
or GFBLUP was associated with the phenotypic correlation. In summary, the genomic prediction
models considering multiple environment phenotypes (GFBLUP and mtGBLUP) demonstrated better
prediction accuracy. In addition, we could utilize different genomic prediction strategies according to
different availability of multiple environment phenotypes.

Keywords: genomic prediction; multiple environment phenotypes; genomic feature best linear
unbiased prediction; multi-trait genomic best linear unbiased prediction; genome-wide association
study; rice

1. Introduction

Although the traditional breeding program had achieved notable genetic improve-
ments in most livestock and crop species, further efforts are still needed to meet the increas-
ing food needs in future decades. Genomic prediction (GP) [1] is one of the crucial methods
that can efficiently improve genetic gain of agronomic traits by using genome-wide genetic
markers. After the first elucidate of GP method (2001), VanRaden [2] proposed a common
approach, the genomic best linear unbiased prediction (GBLUP), which was based on the
genomic relationship matrix (GRM) to estimate the genomic estimated breeding values
(GEBVs). Comparing with the traditional pedigree-based relationship matrix, the GRM
could more effectively capture the effect of markers which link with the quantitative trait
locus (QTL). Many simulative and empirical studies have shown that the GRM is superior
to the pedigree-based relationship matrix for genetic evaluation in animal [3], plant [4],
and aquaculture [5]. Based on the previous studies, a series of genomic prediction models
were proposed or modified aiming to improve the prediction accuracy, such as single-step
genomic best linear unbiased prediction (ssGBLUP) [6] and the others [7,8]. These models
had various assumptions about the statistical distribution of the marker effects. However,
they only took the statistical distribution into consideration and neglected the biologically
complex genetic architecture.
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Recently, numerous genomic prediction studies have shown that the genetic architec-
ture of complex quantitative traits might affect the accuracy of genomic prediction [9,10].
Then, aiming to improve the prediction accuracy, a number of innovative genomic pre-
diction models were proposed to incorporate the information of genetic architecture.
Zhang [11] proposed a novel strategy, BLUP|GA, which could integrate the prior knowl-
edge derived from a genome-wide association study (GWAS) of public databases into
the genomic prediction model. In addition, Spindel [12] suggested that incorporating
the genetic architecture and population structure explained by GWAS into the genomic
prediction model might become an effective strategy for improving the prediction accuracy.
Besides, a meaningful approach proposed, called “de novo GWAS”, which aimed to select
the markers from GWAS, results in the training population and using these markers as
fixed effects in the GBLUP model [13]. Furthermore, Edwards [14] developed a genomic
feature best linear unbiased prediction (GFBLUP) that distinguished the weight of the
individual genetic relationships by the genomic features, such as gene ontology. Moreover,
the gene annotation or the estimated marker effects could be utilized to weight the genomic
relationships to improve the reliability of GP [15,16]. In general, GP, considering the genetic
architecture, could generally improve the prediction accuracy.

Due to the particularity of the plant breeding, one trait could be measured in multiple
environments, and it could be utilized in GP to improve the prediction accuracy. There
were several strategies to make use of the multiple environment phenotypes in GP. The
first strategy was to take the non-additive effect into account in the GP model. Several
studies showed that combining genotype by environment interaction (G × E) into the
GP model could improve the GP performance [17,18]. The second strategy was that
the same traits measured in different environments were served as a distinguishing and
correlated trait which could be utilized in multi-trait genomic prediction model. Several
simulation and empirical studies showed that the multi-trait genomic prediction model
had superior prediction accuracy over the single-trait genomic prediction model for the
low heritability traits [19,20]. However, the usage of multi-trait GP model was limited by
data availability, because multiple-environment phenotypes required more cost of breeding
and time. Therefore, it is important to use diverse GP models according to the different
availability of the multiple environment phenotypes in the plant breeding program.

In this study, we used a set of elite rice breeding lines from the International Rice
Research Institute (IRRI) irrigated rice breeding program to implement GP. The objective
of this study was: (a) to compare the prediction accuracy of different GP models, and (b)
to assess different utilization strategies in different availability of multiple environment
phenotypes in GP.

2. Materials and Methods
2.1. Rice Population and Phenotype

The phenotypic (dry and wet season) and genotypic dataset, including 342 rice elite
breeding lines, were downloaded from the Rice Diversity Panel [12,21] (http://www.
ricediversity.org/data/index.cfm, accessed on 30 December 2019). This dataset was selected
for phenotyping and genotyping from the International Rice Research Institute (IRRI)
irrigated rice breeding program. Furthermore, a total of 19 agronomic, grain, and yield-
related traits, consisting of plant height (PH), flowering date (FLW), culm length (culmL),
number of effective tiller or panicle per plant (PN), panicle length (PL), flag leaf length
(FlgLL), flag leaf width (FlgLW), flag leaf area (FlgLA), number of spikelet per panicle
(SPn), number of filled grain per plant (FGP), grain length (GrL), grain width (GrW), grain
length-breadth ration (LBR), lodging score (LG), peduncle length (PedL), panicle exertion
rate (Exs), 1000 grain weight (1000 GW), yield per plant (YPP), and grain yield per plot
(YLD), were recorded in both the dry (DS) and wet season (WS) for the years 2009–2012.
The details of this rice breeding population can be viewed in ref. [12].

http://www.ricediversity.org/data/index.cfm
http://www.ricediversity.org/data/index.cfm
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2.2. Genotype

Genotypic data of this rice breeding population contained 108,024 single nucleotide
polymorphisms (SNPs). SNPs were filtered using the following criteria: (1) SNPs call
rates of <0.9; (2) lines call rates of <0.9 and minor allele frequencies (MAF) <0.01 step
by step using PLINK (version 1.90) [22]. After that, the missing maker genotypes were
phased and imputed simultaneously using BEAGLE (version 5.1) [23] with the default
parameters setting. A total of 74,251 SNPs and 342 lines met these criteria and were retained.
Furthermore, the lines with missing phenotypes for both seasons were eliminated. Finally,
323 lines and 74,251 SNPs were used for further analyses.

2.3. Genome-Wide Association Study (GWAS)

GWAS was implemented in R statistical platform using GEMMA (version 0.98.1) [24].
The standard linear mixed model was performed, which was expressed as:

y = Wα+ Xβ+ Zu + ε, (1)

where y is an n-vector of the phenotypes for n lines; α is a vector of fixed effect, including
the 1n vector; β is an n-vector of marker genotypes; u is the random effect and it is set as
u ∼ N

(
0, Gσ2

u
)
, where G is the genomic relationship matrix; W, X, and Z are incidence

matrices for α, β, and u; ε is the random residuals and consistent with ε ∼ N
(
0, Iσ2

ε

)
,

where I is an identify matrix. The genomic relationship matrix G was also calculated using
GEMMA (parameter k = 1).

2.4. Genomic Prediction Models

Aiming to evaluate the prediction accuracy using different multiple environment
phenotypes, three genomic prediction models were mentioned later. GBLUP, GFBLUP, and
multi-trait genomic best linear unbiased prediction (mtGBLUP) models were expressed as
Equations (2)–(4), respectively.

y = 1nµ+ g + e, (2)

y = 1nµ+ g + gf + e, (3)[
yd
yw

]
=

[
µd
µw

]
+

[
Zd 0
0 Zw

][
gd
gw

]
+

[
ed
ew

]
, (4)

where y was the vector of the phenotypic values for each trait. µ was the overall mean
of phenotypic values. g ∼ N

(
0, K1σ

2
g1

)
was the vector of additive genetic effect. gf ∼

N
(

0, K2σ
2
g2

)
was the vector of specific additive genetic effect. The σ2

g1 and σ2
g1 were the

additive genetic variance for all markers and for specific selected markers, respectively.
e ∼ N

(
0, Iσ2

e
)

was a vector of residual effect where I and σ2
e were an identity matrix and

the residual variance separately. The details of genomic relationship matrices K1 and K2
were described in the following section.

In Equation (4), Z was the design matrix for additive genetic effect.
[

gd
gw

]
∼

N
(
0, Vg ⊗ K1

)
was the additive genetic effect, and Vg =

[
σ2

gd
σgdw

σgwd
σ2

gw

]
was the variance–

covariance of additive genetic effect.
[

ed
ew

]
∼ N(0, Ve ⊗ I) was the residual effect and

Ve =

[
σ2

ed
σedw

σewd σ2
ew

]
was the variance–covariance of residual effect. The subscript of d

and w represented dry season and wet season, respectively. Besides, the genetic parameters
were estimated by Equation (4).



Genes 2022, 13, 722 4 of 10

2.5. Genomic Relationship Matrices

The genomic relationship matrix K was constructed in line with the method originated
from VanRaden [2] for all genomic prediction models, which was defined as

G =
ZZT

2 ∑m
i=1 pi(1 − pi)

, (5)

where the matrix Z was the minor allele frequency (MAF) adjusted genotype matrix
with the elements (0–2pi), (0–2pi), and (0–2pi) for homozygote, heterozygote, and other
homozygote, respectively. The m represented the number of markers. For the locus i, pi
was the MAF of the ith SNP and 1 − pi was the other.

(1) All of the markers are utilized to construct the genomic relationship matrix G and
applied in Equations (2)–(4) as K1.

(2) In addition, with the purpose of comparing prediction accuracy for different availabil-
ity of multiple environment information, the GWAS summary statistics from the other
environment were leveraged to sort the markers from minimum to maximum by the
column of p-values. After that, 60 genomic relationship matrices GF were constructed
with the top percentage markers (from the top 1% to top 60% with step of 1%), which
was implemented to Equation (3) as K2.

(3) Furthermore, in order to confirm the role of multiple environment information, the
percentage of markers, in the same as GF, selected randomly was leveraged to con-
struct the genomic relationship matrices GR. the relationship matrices GF and GR
were applied in Equation (2) as K1.

Using average information restricted maximum likelihood (AI-REML) [25] via the
regress package [26] in R statistical platform [27], and variance components of these model
were estimated to be utilized in the cross-validations.

2.6. Predictive Ability Evaluation

A five-fold random cross-validation (CV) was utilized to assess prediction accuracy
for all genomic prediction models, shown in Figure 1. For each CV test, the rice lines
were randomly divided into five groups on average. Four of five-fold were treated as a
training set, and the other one served as a test set. In the mtGBLUP model, the phenotypes
from environment 1 (Env 1) were treated the same as before, and the phenotypes from
environment 2 (Env 2) were treated as training set 2, described in Figure 1. The variance
components were estimated by the training set, which was used to calculate the genetic es-
timated breeding values (GEBVs) of the test set. The prediction accuracy of these strategies
was evaluated by the Pearson’s Correlation of the GEBVs and the observed phenotypes of
test set. The CV was replicated 20 times. Finally, the average prediction accuracy for each
approach was utilized to evaluate the predictive ability.
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Figure 1. A scheme of cross validation using multiple environment phenotypes for genomic pre-
diction. mtGBLUP model directly utilizes the Env2 phenotypes, while GFBLUP model only lever-
ages the Env2 information (GWAS summary statistics). Env1/Env2 = Dry season or Wet season,
GWAS = Genome-wide association study. G = Genomic relationship matrix using all markers,
GF = Genomic feature relationship matrix using specific selected markers.
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3. Results
3.1. Statistical Summary and the Estimated Genetic Parameters for All Traits

The descriptive statistics and the estimated genetic parameters for all agronomic traits
for DS and WS are shown in Table 1. The result shows that the mean of phenotypes is
different between DS and WS for the same trait. Besides, these traits differed in their
narrow-sense heritability. For example, the narrow-sense heritability of PH and FLW are
high, and Exs and PnN are low. However, the narrow-sense heritability is differential for
the same trait between DS and WS (i.e., the narrow-sense heritability of PH is 0.46 ± 0.09
and 0.39 ± 0.08 for DS and WS, respectively). In addition, a great number of traits possess
high genetic correlation (~1) between DS and WS. Furthermore, there is a median/low
phenotypic correlation for all traits between DS and WS, such as Exs and PnN.

Table 1. Descriptive statistics and estimated genetic parameters for all measured traits.

Trait
Dry Season Wet Season

Cg ± s. e. Cp
N Mean h2

d ± s.e. N Mean h2
w ± s.e.

PH 342 105.6 0.46 ± 0.09 370 119.7 0.39 ± 0.08 0.973 ± 0.03 0.691
FLW 342 84.17 0.57 ± 0.09 370 92.39 0.48 ± 0.09 0.763 ± 0.07 0.687
Lg 342 1.274 0.02 ± 0.04 370 1.588 0.12 ± 0.06 1.000 ± 0.65 0.393
Exs 342 1.22 0.04 ± 0.03 370 1.447 0.17 ± 0.06 1.000 ± 0.45 0.046

CulmL 342 82.47 0.40 ± 0.09 363 95.62 0.49 ± 0.09 0.993 ± 0.02 0.690
PnN 342 12.73 0.06 ± 0.05 370 12.58 0.14 ± 0.06 0.352 ± 0.37 0.291
PedL 342 3.204 0.29 ± 0.08 370 4.356 0.31 ± 0.07 0.953 ± 0.05 0.693
PnL 342 23.47 0.27 ± 0.08 370 24.14 0.20 ± 0.07 0.990 ± 0.05 0.688

Flg LL 342 29.34 0.32 ± 0.09 370 31.65 0.18 ± 0.07 0.640 ± 0.17 0.560
Flg LW 342 1.146 0.41 ± 0.09 370 1.155 0.44 ± 0.08 0.925 ± 0.07 0.413
Flg LA 342 22.65 0.35 ± 0.10 370 24.54 0.24 ± 0.08 0.624 ± 0.16 0.427

SPn 342 77.01 0.16 ± 0.07 370 107.1 0.14 ± 0.06 0.948 ± 0.17 0.241
FGP 342 977.6 0.12 ± 0.06 370 1065.5 0.05±0.04 0.472 ± 0.39 0.220
GrL 342 9.693 0.31±0.08 370 9.794 0.50 ± 0.08 1.000 ± 0.03 0.718
GrW 342 2.301 0.23 ± 0.07 370 2.436 0.38 ± 0.08 1.000 ± 0.05 0.509
LBR 342 4.253 0.36 ± 0.08 370 4.081 0.44 ± 0.08 1.000 ± 0.04 0.696

1000 GW 342 24.42 0.41 ± 0.09 370 24.98 0.33 ± 0.08 0.955 ± 0.04 0.665
YPP 342 24.15 0.16 ± 0.06 370 29.01 0.05 ± 0.04 0.536 ± 0.33 0.275
YLD 342 4917 0.30 ± 0.09 370 4720 0.38 ± 0.09 0.946 ± 0.06 0.492

Note: h2
d and h2

w is the narrow-sense heritability of dry season and wet season; s.e. is the standard error of the
narrow-sense heritability; Cg and Cp are the genetic and phenotypic correlation between dry season and wet
season for each trait. Plant height (PH), flowering date (FLW), culm length (culmL), number of effective tiller or
panicle per plant (PN), panicle length (PL), flag leaf length (FlgLL), flag leaf width (FlgLW), flag leaf area (FlgLA),
number of spikelets per panicle (SPn), number of filled grain per plant (FGP), grain length (GrL), grain width
(GrW), grain length-breadth ration (LBR), lodging score (LG), peduncle length (PedL), panicle exertion rate (Exs),
1000 grain weight (1000 GW), yield per plant (YPP), and grain yield per plot (YLD).

3.2. Prediction Accuracy for Three Genomic Preidcition Models

The prediction accuracy among GBLUP, GFBLUP, and mtGBLUP is displayed in
Table S1 and Figure 2. The percentage of top markers with best prediction accuracy of
GFBLUP model is reported. The result shows that the prediction accuracy of mtGBLUP
model is better than GBLUP model for all traits (Figure 2). In addition, it is similar to
the GFBLUP model for the majority of traits (30 out of 38). Furthermore, the mean of
prediction accuracy of mtGBLUP model for all traits is greater than the GBLUP (+14.53%)
and GFBLUP (+3.23%) model (Figure S3). The result shows that the prediction accuracy
of mtGBLUP model shows advantages to the other models. Compared with the GBLUP
model, the prediction accuracy of GFBLUP model and mtGBLUP model is preferable for
the majority of traits. In addition, the prediction accuracy of GFBLUP model is slightly
similar to mtGBLUP model (Figure S3, the median of deviation of prediction accuracy
between mtGBLUP and GFBLUP model is +0.0342 and +0.0248 for dry and wet season,
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respectively). Furthermore, the prediction accuracy is different, even for the same trait at
different environments.
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Figure 2. The predictive accuracy of three genomic prediction models for DS and WS (sorted by the
narrow-sense heritability). The labels of x-axis denote 19 traits’ names. The y-axis represents the
predictive accuracy for three models. Each point represents the mean prediction accuracy of 100 times
(n = 5 × 20 times). The error bar indicates the standard deviation of prediction accuracy. The dot
color of red, green, and blue represent GBLUP, GFBLUP, and mtGBLUP model, respectively.

We found that the trend of prediction accuracy for GBLUP model is different between
the markers selected specifically or randomly, which is shown in Figure S2. For the majority
of traits, the prediction accuracy of GBLUP model with markers selected specifically shows
a trend of first rising and then decreasing, while a GBLUP model with markers selected
randomly implies a tendency of first increasing and then maintaining stability.

3.3. The Relationship between the Prediction Accuracy and the Genetic Parameters

Figure 3 displays the correlation between the genetic parameters and the deviation
of the prediction accuracy between different models. First of all, the fitness between the
deviation of the prediction accuracy and the estimated genetic parameters has a similar
trend between DS and WS. Secondly, the prediction accuracy of mtGBLUP model and
GFBLUP model is strongly preferable to GBLUP model. In addition, the prediction accuracy
of mtGBLUP model is slightly similar to the GFBLUP model. Finally, compared with other
parameters, the deviation of both the GFBLUP model and mtGBLUP model with the
GBLUP model is more associated with the phenotypic correlation.
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Figure 3. The relationship between the predictive accuracy and estimated genetic parameters for
the different models for DS (three columns at left) and WS (three columns at right). y-axis is the
deviation of predictive accuracy between models. The correlation coefficient is the Pearson correlation
calculated by the prediction accuracy and estimated genetic parameter. Each point represents the
prediction accuracy of mean for each trait and the dash line indicates the linear regression fitness
between the prediction accuracy and estimated genetic parameter.

4. Discussion

The objective of this study was to compare the performance of different GP models
and assess the utilization strategies of GP models in different scenarios. Compared with
other models, the mtGBLUP model demonstrated the best performance for the majority of
traits. On the other hand, the optimal GP model could be selected according to different
availability of multiple environment phenotypes.

Compared with other models, the mtGBLUP model presents a better prediction
accuracy for all traits. One of the reasons for improving prediction accuracy is that joint
prediction of multiple traits could benefit from the high genetic correlation between the
traits, which is consistent with the previous studies [19,28]. In addition, mtGBLUP model
makes full use of the multiple environment phenotypes, which could greatly improve the
prediction accuracy. However, the prediction accuracy of mtGBLUP model is not only
influenced by the genetic correlation but affected by the availability of multiple environment
phenotypes. In summary, the prediction performance of mtGBLUP model is generally
better than the other genomic prediction models on the basic of the complete availability of
multiple environment phenotypes.

Due to partial availability or unavailability of multiple environment phenotypes, mt-
GBLUP model is not applicable. With the purpose of improving prediction accuracy, the
additional information, such as the GWAS results, originated from the other environment,
could be utilized. In this study, the result shows that integrating the GWAS results origi-
nated from the other environment (GFBLUP model) could strongly increase the prediction
accuracy comparing to GBLUP model. Besides, the prediction accuracy of GFBLUP model
is slightly close to mtGBLUP model (Figure 2 and Table S1). It indicates that although other
environment phenotypes could not be combined straightly, the information from other
environments, such as the GWAS results, could be integrated to improve the prediction
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accuracy. Therefore, when the multiple environment phenotypes are partially unavailable,
the GFBLUP model could slightly substitute the mtGBLUP model.

The prediction accuracy would be improved by considering the genetic architecture of
complex quantitative traits. Zhang et al. [11] suggested that integrating public GWAS results
into the standard GBLUP model could improve the prediction accuracy. Several studies
showed that considering the genomic features could optimize the prediction accuracy, such
as gene ontology [14] and gene annotation [15]. In our study, it showed that incorporating
GWAS results from other environments into GBLUP model could increase the prediction
accuracy, which was consistent with the recent study [29]. Besides, Teng et al. [30] showed
that optimizing the casual gene to the GP model could improve the prediction accuracy.
Furthermore, comparing to GBLUP model with markers selected randomly, GBLUP model
with markers selected specifically could increase the prediction accuracy for some traits,
which demonstrated that the casual variants might played a more significant role in GP. In
summary, aiming to improve the prediction accuracy, it is important to consider the genetic
architecture of complex quantitative traits.

With the increase of the narrow-sense heritability of the traits, the prediction accuracy
is synchronously improved (Figure 2), which is in line with the previous study [31]. In ad-
dition, a small number of traits display the poor prediction accuracy for all models, which
might be caused by the distribution of the phenotypes. Besides, compared with other ge-
netic parameters, the deviation of prediction accuracy between GFBLUP model and GBLUP
model is more correlated to the phenotypic correlation (Pearson’s correlation is equal to
0.91 and 0.67 for DS and WS, respectively.) (Figure 3). One of the critical reasons is that the
GWAS information takes full advantage of the phenotypes from other environments.

The GWAS results are shown in Figure S1. For the majority of traits, with the increase
of the marker density, the prediction accuracy of GBLUP model whose marker selected
randomly first increased and then stabilized (Figure S2) was consistent with the previous
study [32]. In addition, the prediction accuracy of the GBLUP model, whose selected
marker specifically first raised and then decreased, implies that an excess of marker density
might interfere with the prediction accuracy of GP. In summary, the prediction accuracy of
GBLUP model is not only influenced by the marker density, but also largely affected by the
casual variants.

5. Conclusions

In summary, genomic prediction models considering multiple environment pheno-
types (GFBLUP and mtGBLUP model) demonstrated better prediction accuracy. We could
utilize different genomic prediction strategies according to availability, the GWAS summary
statistics, or phenotypes from multiple environment phenotypes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes13050722/s1, Figure S1: The Manhattan plot of the GWAS
results for all traits. Figure S2: The trend of predictive accuracy by the marker density selected
randomly or specifically for GBLUP model for dry season and wet season. Figure S3: The deviation
of prediction accuracy for three genomic prediction models. Table S1: The predictive accuracy of
three models for all traits for dry season and wet season.
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