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INTRODUCTION: We reported previously that exercise significantly increases plasma adrenaline and oxidized low-density
lipoprotein (oxLDL) in healthy subjects but not in persons with spinal cord injury (SCI). Since oxLDL and adrenaline levels are
associated with oxidant/antioxidant balance, and exercise training elicits production of reactive oxygen species, we elucidated the
effects of exercise on adrenaline, oxidant/antioxidant balance and oxLDL in individuals with SCI.
CASE PRESENTATION: Eight subjects with cervical spinal cord injury (CSCI) and nine subjects with lower lesion of SCI (lower SCI
(LSCI)) participated in a wheelchair half marathon race, and blood samples were collected before (pre), immediately after (post) and
1 h after the race (post 1 h). The blood samples were used to determine adrenaline, derivatives of reactive oxygen metabolites (d-
ROMs) and biological antioxidant potential (BAP), both as markers for oxidant/antioxidant balance.
DISCUSSION: Pre-serum oxLDL levels were 147.2 ± 8.1 and 97.0 ± 10.4 U l− 1 (mean± s.e.m.) in LCSI and CSCI subjects, respectively,
and remained stable throughout the study. Adrenaline levels were higher in LSCI athletes than in CSCI athletes, especially post half
marathon. Serum d-ROMs level did not change between pre and post in both groups. The mean BAP was significantly higher in
LSCI than in CSCI subjects (2574± 94.6 vs 2118 ± 94.6 μmol l− 1) at post, whereas the oxidative stress index (d-ROMs/BAP) was
similar in the two groups throughout the study. In conclusion, exercise did not increase the d-ROMs or d-ROMs/BAP ratio in CSCI
and LSCI subjects. The lack of increase in the plasma oxLDL level in SCI subjects was not due to the lack of response of adrenaline to
exercise.
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INTRODUCTION
Oxidized low-density lipoprotein (oxLDL) enhances the formation
of atherosclerotic plaques and increases the risk of coronary artery
disease, type 2 diabetes mellitus and atherosclerosis. Physical
exercise is known to reduce the risk of these diseases, causing
oxidative stress that eventually induces an antioxidative response,
which reduces the levels of oxidized lipids, proteins and DNA.
Chronic aerobic exercise reduces LDL oxidation,1,2 but acute
strenuous exercise is often followed by a significant increase in
oxLDL.3 Furthermore, regular exercise has been reported to
reduce oxLDL levels in patients with heart diseases, hypertension,
dyslipidemia and type 2 diabetes mellitus.4,5

Reactive oxygen species (ROS) trigger the formation of oxLDL.
ROS are a group of compounds endowed with high reactivity and
short half-life based on their tendency to give or receive electrons
to attain stability.6 Regular physical exercise has many health
benefits, but intense and prolonged exercise induces excessive
formation of ROS in various tissues, such as skeletal muscles and
liver, leading to a shift in redox balance in favor of oxidative
stress.7 ROS are generally thought to cause deleterious oxidative
damage to proteins,8 lipids9 and DNA.10 Polyunsaturated fatty acid
residues of lipids in LDL are oxidized by ROS-mediated lipid
peroxidation, and the subsequent radical reactions result in the
formation of both protein and lipid hydroperoxide on LDL.11

In vitro studies have indicated that these radical reactions are
accelerated in the presence of Fe2+ or adrenaline-FeCl3 mixture.12

We reported previously that 2 h of arm crank ergometer
exercise at 60% VO2 max increases plasma oxLDL level in
able-bodied subjects, but not in subjects with spinal cord injuries
(SCI) between T3 and T12.13 The same study also showed
significantly higher adrenaline levels in able-bodied subjects than
in SCI subjects, indicating a positive correlation between plasma
adrenaline and oxLDL levels. The formation of oxLDL is dependent
on the oxidant/antioxidant balance. Skeletal muscle cells are
considered to be the predominant source of ROS in exercise.
SCI subjects generally have lower VO2 max than able-bodied
subjects due to the smaller mass of exercising muscles. Therefore,
the low oxLDL level in these individuals may be associated with
low production of ROS during exercise. However, only a few
studies have evaluated changes in the oxidant/antioxidant
balance in SCI athletes during exercise.
The present study was designed to determine the relationship

among exercise, adrenaline, oxidant/antioxidant balance and LDL
oxidation in athletes with SCI. The study was based on the finding
reported by Paulsen et al.14 that participants with CSCI, but not
with lesion of SCI (lower SCI (LSCI)), have impaired sympathetic
nervous system function. Specifically, in the present study we
measured the levels of derivatives of reactive oxygen metabolites
(d-ROMs), a marker of oxidation, and biological antioxidant
potential (BAP), as a marker of antioxidation, before and after a
wheelchair half marathon. The participants were well-trained
athletes with SCI, either cervical SCI (CSCI) or LSCI. We also
measured plasma oxLDL and adrenaline levels.
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MATERIALS AND METHODS
Subjects
Eight subjects with LSCI and nine subjects with CSCI were briefed
about the study protocol and possible risks, signed informed
consent before the study and voluntarily participated in the
present study. Age was 54.9 ± 3.6 (34–65) and 37.7 ± 4.6 (20–64)
years (mean± s.e.m. (range)), body weight, 63.0 ± 2.3 (52–72) and
56.4 ± 3.9 (42–83) kg, for LSCI and CSCI athletes, respectively. The
lesion levels were T8-L1 and C5-8 for LSCI and CSCI, respectively
(Table 1). All subjects participated in the half marathon division of
the 34th Oita International Wheelchair Marathon Race in Japan.
All subjects participated in a regular physical training before the
race and completed the race. Selection criteria used in the present
study were the following: (1) males. Female athletes were
excluded to avoid possible influence of menstrual cycle-related
hormonal changes on the cardiovascular, endocrine and fluid
regulation system. (2) Over 1-year post SCI. (3) American Spinal
Injury Association (ASIA) Impairment Scale A. (4) Free from acute
infection and healthy except for SCI-related dysfunctions. None of
the subjects was on any medications that would affect the
cardiovascular and endocrine responses during the study period.
The Human Research Committee of Wakayama Medical

University School of Medicine approved the present protocol.

Study protocol
Blood samples were collected from the antecubital vein in the
afternoon (between 1200 and 1530 hours) of the day before the
race, immediately after the race within 10 min of each racer’s
finishing time (1100 to 1200 hours) and 1 h following the
completion of the race. Each blood sample was stored into a
chilled vacutainer containing ethylenediaminetetraacetic acid
(EDTA)-2K for the measurement of blood cell counts and plasma
adrenaline and into a lithium heparin-treated syringe for the
measurements of oxLDL, d-ROMs and BAP levels.

Assays of plasma levels of LDL, oxLDL, d-ROMs, BAP and
adrenaline
Blood samples were processed immediately for the determination
of hematocrit and hemoglobin. Hematocrit and hemoglobin were
measured using a full-automatic blood cell counting device. Blood
samples were centrifuged at 4 °C immediately after collection,
and plasma was separated and the samples were stored at − 80 °C
in a freezer until analysis. Plasma LDL-cholesterol concentration
(LDL-c) was measured using direct narration, and oxLDL was
measured using an enzyme-linked immunosorbent assay, based
on the principles reported previously by Kotani et al.15 The
d-ROMs test was used for the determination of oxidative stress
using plasma samples. This method allows the estimation of the
total amount of hydroperoxide present in a 20 μl sample. The
results of d-ROMs were expressed in arbitrary units called
‘Carratelli units’ (U.Carr). The antioxidant abilities of plasma were
measured by the BAP test. The underlying principle of this test is
similar to that of the well-known FRAP test, which measures the
ferric-reducing ability of plasma. The test uses a 15-μl sample in a

specially designed photometer in conjunction with the FRAS4
system (Wismerll Co., Tokyo, Japan). Adrenaline was extracted
from plasma using alumina and measured by high-performance
liquid chromatography using a modification of the procedure
described by Hunter et al.16 All measurements were performed in
duplicates and completed within 1 month after each sampling.

Statistical analysis
Data were expressed as mean ± standard error of the mean
(s.e.m.). Data were analyzed by using one-way analysis of variance,
and the difference in variables between CSCI and LSCI at baseline
was determined with Student’s t-test using GraphPad Prism
software (version 5.0; GraphPad Software, Inc., La Jolla, CA, USA)
followed by Tukey post hoc test. A P-value less than 0.05 denoted
the presence of a significant difference.

RESULTS
The characteristics of the participating subjects are presented in
Table 1. The LSCI subjects were older than CSCI subjects, and the
time since SCI was longer in LSCI subjects. Although height was
similar between the groups, the body weight of CSCI subjects
(55.8 ± 3.5 kg) was significantly lower than that of LSCI subjects
(63.0 ± 2.9 kg). The mean record for the half marathon race was
1:02:30 and 1:26:43 for LSCI and CSCI athletes, respectively.

Changes in oxLDL level in CSCI and LSCI athletes
In LCSI subjects, the oxLDL level before the race was
147.25 ± 8.11 U l− 1 and did not increase throughout the study.
(Figure 1a). Similarly, the oxLDL level before the race
was 97.0 ± 10.4 U l− 1 in CSCI and did not change the levels from
pre-race levels versus those assessed immediately after the race.
However, the levels before and immediately after the race were
significantly higher in LSCI subjects than in CSCI subjects.

Table 1. Anthropometric data

LSCI subjects CSCI subjects P-value

Number 8 9
Age (years) 54.9± 3.6 37.7± 4.6 0.006
Height (cm) 170.1± 1.3 171.7± 2.8 NS
Weight (kg) 63.0± 2.3 56.4± 3.9 0.0003
Spinal cord lesion T8–L1 C5–8
ASIA A A
Story of injury (year) 29.5± 4.9 15.9± 3.6 0.03

Abbreviations: ASIA, American Spinal Injury Association; NS, nonsignificant.
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Figure 1. Levels of oxLDL (a) and oxLDL/LDL-c ratio (b), before (pre),
immediately after (post) and 1 h after the half marathon race
(post 1 h) in athletes with cervical spinal cord injury (CSCI, n= 8) and
athletes with lower lesion of spinal cord injury (LSCI, n= 9). #Po0.05
vs CSCI.
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LDL-c concentrations were 92.3 ± 9.9, 94.7 ± 10.9 and
94.2 ± 12.0 U l − 1 before, immediately after and 1 h after the race,
respectively, in CSCI athletes, and 120.5 ± 7.5, 125.8 ± 6.9 and
117.4 ± 7.1 U l − 1, respectively, in LSCI athletes. Thus, LDL-c levels
before and immediately after the race were significantly higher in
LSCI athletes than in CSCI athletes. The ratio of oxLDL to LDL-c
(oxLDL/LDL-c) did not change throughout the study in both
groups (Figure 1b). Furthermore, there were no significant
differences in the ratio between CSCI and LSCI athletes at any
time point.

Effects of exercise on d-ROMs and BAP levels in CSCI and LSCI
athletes
Figure 2a shows plasma d-ROMs levels before, immediately after
and 1 h after the race. The baseline level of d-ROMs before the
race was 329.0 ± 18.7 and 384.6 ± 16.5 U.CARR in CSCI and LSCI,
respectively. The d-ROMs levels in both groups were higher than
the normal level reported elsewhere (range: 250–300 U.CARR).17

The levels in both groups did not change significantly throughout
the study. Although the levels in CSCI subjects tended to be lower
than those in LSCI subjects at all measurement points, values were
not significantly different between the two groups.
In contrast, BAP values increased in response to exercise only in

LSCI subjects and were significantly higher than in CSCI subjects
(‘post’ in Figure 2b). However, except for this time point, there was
no significant difference in BAP values between CSCI and LSCI
subjects. Changes in oxidative stress marker (d-ROMs/BAP;
Oxidative Stress Index) are illustrated in Figure 2c. Oxidative
Stress Index did not change over the sampling period in both
groups, and there were no significant differences between the two
groups.

Exercise-induced changes in adrenaline levels in CSCI and LSCI
athletes
Figure 3 shows the mean plasma concentrations of adrenaline
in CSCI and LSCI athletes before, immediately after and 1 h
after the race. Adrenaline concentration before the race was
higher in LSCI athletes (62.3 ± 10.8 pg ml− 1) than in CSCI athletes
(8.6 ± 1.2 pg ml− 1) (Po0.05). The level in LSCI athletes increased
to 408.0 ± 52.7 pg ml− 1 (Po0.01) immediately after the race, but
decreased to 150.0 ± 22.0 pg ml− 1 at 1 h after the race. In contrast,
adrenaline levels in CSCI athletes were 12.3 ± 1.5 and
7.5 ± 0.8 pg ml− 1 immediately after and 1 h after the race,
respectively. The post-race level was significantly lower in CSCI
than in LSCI athletes.

DISCUSSION
We reported previously that the oxLDL level increased after 2-h of
arm crank ergometer exercise in able-bodied subjects, but not in
subjects with SCI between T3 and T12.13 We also demonstrated
that the extent of increase in adrenaline in SCI subjects
was significantly lower than in able-bodied subjects in that
study. Since Fe2+ or adrenaline–FeCl3 mixture is important for
augmentation of oxLDL formation,12 we hypothesized that the
lack of effect of exercise on the oxLDL level in SCI subjects was
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Figure 2. Levels of d-ROMs (a), BAP (b) and OSI (d-ROMs/BAP) (c),
before (pre), immediately after (post) and 1 h after the half marathon
race (post 1 h) in athletes with cervical spinal cord injury (CSCI, n= 8)
and athletes with lower lesion of spinal cord injury (LSCI, n= 9).
*Po0.05 vs pre; #Po0.05 vs CSCI. OSI, Oxidative Stress Index.
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Figure 3. Plasma adrenaline concentrations before (pre), immedi-
ately after (post) and 1 h after the half marathon race (post 1 h) in
athletes with cervical spinal cord injury (CSCI, n= 8) and athletes
with lower lesion of spinal cord injury (LSCI, n= 9). *Po0.05 vs pre;
#Po0.05 vs CSCI.
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due to the lower availability of adrenaline. To confirm
this hypothesis, our study determined oxLDL levels before,
immediately after and 1 h after the wheelchair half marathon in
subjects with LSCI (lesion at T8–L1) and those with CSCI subjects
(lesion at C5–8). According to the above hypothesis, LSCI athletes,
but not CSCI athletes, are expected to show an increased oxLDL
level after a marathon, because a complete SCI above T6 is
reported to result in low circulating adrenaline plasma concentra-
tions due to dysfunction of the sympathetic nervous system.14,18

However, oxLDL levels remained stable during and after the race
in both groups of subjects, although adrenaline increased
immediately after the race in LSCI subjects, but not in CSCI
subjects. These findings suggest that adrenaline plays only
a minor role in the oxidation process of LDL during exercise.
It is well known that oxLDL levels are higher in obese and

overweight individuals and correlate with body mass index (BMI)
in able-bodied subjects.19 OxLDL is also known to be associated
with physical activity in SCI:20 subjects with chronic SCI exhibited
higher oxLDL levels compared with physically active SCI and
able-bodied persons. In the present study, we showed that oxLDL
levels were higher in LSCI than in CSCI athletes. Since oxLDL levels
correlate strongly with those of LDL-c,21,22 the higher oxLDL in
LSCI athletes could be mainly due to higher LDL-c. Indeed, LDL-c
levels in LSCI athletes were higher than in CSCI athletes at rest
(P= 0.04), and the oxLDL/LDL-c ratio was similar in the two groups
(P= 0.09). These results suggest that the higher LDL-c level in LSCI
athletes mainly contributes to the higher oxLDL. Furthermore, this
higher level of oxLDL in LSCI athletes could be related to older age
and higher BMI, since LSCI athletes were significantly older and
had higher BMI (Po0.05) than CSCI athletes.
It is generally known that aerobic and anaerobic exercises, both

maximal and submaximal, stimulate ROS production and elicit
oxidative stress.23 ROS are important factors in triggering the
formation of oxLDL. Thus, in the present study, we measured
d-ROMs and BAP as markers of oxidative stress before and after
a wheelchair half marathon race. Our results showed no significant
changes in d-ROMs and BAP in both LSCI and CSCI athletes
during/following the race, except that BAP value increased
immediately after exercise in LSCI subjects. Parker et al.24 reported
that intense exercise (470% VO2max) did not increase d-ROMs,
but increased BAP levels, indicating that moderate-to-high-
intensity exercise significantly increases endogenous antioxidant
defenses, possibly to counteract increased levels of exercise-
induced ROS. Previous studies reported significantly lower
maximum heart rate and VO2max in subjects with CSCI than with
LSCI.14,25 Thus, the exercise intensity of a wheelchair half
marathon would be much lower in CSCI athletes than in LSCI
athletes. Unfortunately, both the heart rate and VO2max were not
measured in the present study. Indeed, the recorded time for the
half marathon race was more than 20 min longer in CSCI than in
LSCI athletes. Thus, it is likely that the increase in the BAP value
immediately after exercise in LSCI subjects was to counteract the
high levels of exercise-induced ROS. Consequently, not only CSCI
athletes but also LSCI athletes could maintain a redox balance
during half marathon race, although Oxidative Stress Index tended
to decrease after half marathon race in LSCI athletes (P= 0.09). LDL
oxidation was probably unaffected by exercise in both CSCI and
LSCI groups due to the maintenance of redox balance.
The antioxidant activity of adrenaline was analyzed in

a previous in vitro study.26 Adrenaline can induce the generation
of superoxide anions, with subsequent upregulation of endogen-
ous antioxidant species superoxide dismutase. Moreover, cate-
cholamine secretion parallels the secretion of ascorbic acid from
the adrenal glands.27 Hence, the increase in BAP observed in LSCI
athletes immediately after the race could be associated with
enhanced plasma adrenaline release during exercise. Exercise is
also followed by increased levels of noradrenaline, which correlate
with the increase in certain antioxidants after exercise.28

Noradrenaline as well as adrenaline levels increased significantly
only in LSCI athletes (data not shown). The increase in adrenaline
and noradrenaline levels is a possible mechanism underlying the
increase of BAP in LSCI after half marathon race.
There is no information on ROS production at rest or after

exercise in SCI subjects. Our study is the first to measure d-ROMs
and BAP levels in SCI subjects. The baseline levels of d-ROMs
before the race were 329± 19 and 385 ± 16 U.CARR in CSCI and
LSCI, respectively. The normal reference value provided by the
assay manufacturer (Wismerll Co., Tokyo, Japan) for d-ROMs is
o300 U.CARR. Nojima et al.17 also reported a mean value of
d-ROMs of 287 ± 100 (±2 s.d.) U.CARR in 312 healthy Japanese
subjects. Thus, the d-ROMs levels of our SCI subjects seem to be
higher than those published for healthy able-bodied subjects. This
result is consistent with the finding of increased ROS production in
the spinal cord and peripheral tissues after SCI.29,30 The value
of d-ROMs increases with age in able-bodied subjects.17 Further-
more, adipose tissue contributes to systemic lipid peroxides,
and d-ROMs decrease after reduction in BMI.31 In our study,
LSCI athletes were significantly older with greater BMI than CSCI
athletes (Po0.05). Therefore, d-ROMs levels may be higher in LSCI
athletes than in CSCI athletes due to the older age and higher BMI.
In conclusion, d-ROMs and oxLDL did not change after a

wheelchair half marathon in both CSCI and LSCI athletes, whereas
BAP increased only in LSCI. Since Oxidative Stress Index did not
change during the race, the balance between oxidation and
antioxidation was maintained, indicating that exercise intensity of
the half marathon race is not excessive for SCI subjects.
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