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Abstract

This study investigated the repercussions of adjuvant-induced arthritis (AIA) on body composition and the structural
organization of the soleus and cardiac muscles, including their vascularization, at different times of disease manifestation. Male
rats were submitted to AIA induction by intradermal administration of 100 mL of Mycobacterium tuberculosis (50 mg/mL), in the
right hind paw. Animals submitted to AIA were studied 4 (AIA4), 15 (AIA15), and 40 (AIA40) days after AIA induction as well as a
control group of animals not submitted to AIA. Unlike the control animals, AIA animals did not gain body mass throughout the
evolution of the disease. AIA reduced food consumption, but only on the 40th day after induction. In the soleus muscle, AIA
reduced the wet mass in a time-dependent manner but increased the capillary density by the 15th day and the fiber density by
both 15 and 40 days after induction. The diameter of the soleus fiber decreased from the 4th day after AIA induction as well as
the capillary/fiber ratio, which was most evident on the 40th day. Moreover, AIA induced slight histopathological changes in the
cardiac muscle that were more evident on the 15th day after induction. In conclusion, AIA-induced changes in body composition
as well as in the soleus muscle fibers and vasculature have early onset but are more evident by the 15th day after induction.
Moreover, the heart may be a target organ of AIA, although less sensitive than skeletal muscles.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease
affecting about 1% of the world population (1). This chron-
ic and progressive disease is characterized by an inflam-
matory response that first affects the articular structures
(2,3). The RA-related inflammatory process that begins in
the joints triggers systemic manifestations (4), which are
characterized by extra-articular injuries in the early or later
stages of the disease (5,6).

The systemic manifestations of RA can occur in dif-
ferent organs and tissues (4,7). Changes in the total body
mass, as well as in the masses of both skeletal and adi-
pose tissue, are described in RA patients. These changes
may lead to rheumatoid cachexia, characterized by loss
of muscle mass, with or without fat mass change (8,9).
Evidence suggests that body mass loss is directly related to
severity and RA mortality (8). Although rheumatoid cachex-
ia is a well-studied clinical manifestation in RA patients
due to its impact on the health of these patients, many
questions remain. It is not yet fully established whether the
reduction of muscle mass in these patients is consequent
to a decrease in the number of muscle fibers or to the loss
of proteins that constitute these fibers. Details are also not

known about the vascular changes that can occur in the
muscles affected by arthritis.

Pathophysiological mechanisms similar to those ob-
served in rheumatoid cachexia have also been des-
cribed in experimental models of arthritis (10–12). Like in
RA, experimental arthritis reduces both muscle mass and
the total body mass of animals (10–13). We decided to
use the adjuvant-induced arthritis (AIA) model, which
presents rapid clinical evolution, is very reproducible, and
shows similarities to RA (14,15). Because it is an experi-
mental model, AIA also enables an invasive approach to
the manifestations of arthritis in these animals.

In addition, arthritis-induced cardiovascular manifesta-
tions have also been described in recent years (6,16–19).
The mortality rate is 50% higher in RA patients than in the
general population (20). Research has demonstrated in
humans and animal models that arthritis can affect both
macro- (16,18,20–22) and microcirculation (6,19,23,24).
RA-induced injuries in the heart muscle may occur regard-
less of hemodynamic changes and/or cardiovascular risk
factors that might be associated (25,26). Moreover, evi-
dence suggests that repercussions of arthritis on the
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microcirculation precede those occurring on vessels of
conductance (6,19). However, it is still necessary to under-
stand in greater depth the changes induced by arthritis on
the vascularization of skeletal and cardiac musculature.
Finally, little information is available about the temporal
evolution of the changes induced by arthritis on the skel-
etal and cardiac muscles.

Hence, the present study aimed to investigate the AIA
repercussions on body composition and on the structural
organization of the soleus and cardiac muscles, including
their vascularization, at different times of arthritis manifes-
tation.

Material and Methods

Animals
Seventy male Wistar rats (12 weeks old) were used.

During the experiments, the animals were housed in a
room next to the laboratory, inside cages (50� 40�
20 cm) with four animals per cage, under controlled tempera-
ture (21–24°C), 12-h light/dark cycle, with food and water ad
libitum. This study was approved by the Research Ethics
Committee on the Use of Animals of Marilia Medical
School/CEUA-FAMEMA (protocol number 158/17).

Experimental groups
The animals were distributed into the following experi-

mental groups: Control (CTRL): false-immunized; AIA4:
immunized and studied 4 days after AIA induction; AIA
15: immunized and studied 15 days after AIA induction;
AIA40: immunized and studied 40 days after AIA induction.
To minimize the influence of seasonal differences, the
control animals were subdivided into three subgroups, each
studied in parallel to the AIA groups (AIA4, AIA15, and
AIA40) to analyze body mass gain. For the remaining
analyzes, however, these three subgroups were regrouped
into a single CTRL group.

Adjuvant-induced arthritis (AIA) protocol
Under anesthesia with 2,2,2–tribromoethanol (250 mg/

kg, ip), rats were submitted to intradermal injection of
100 mL emulsion of mineral oil-distilled water (3:1) contain-
ing 50 mg/mL heat-inactivated Mycobacterium tuberculosis
(Difco, USA), in the right hind paw. The CTRL animals
received only the emulsion (false-immunized). After AIA
induction, the animals were returned to their cages with
food and water ad libitum. These animals were observed
daily after AIA induction. The AIA-induced articular inflam-
matory process was first detected in the hind paws of
these animals by erythema and edema. The edema was
quantified by measuring the diameter of the tibiotarsal joint
(hind paw diameter) using an analog pachymeter (0.05 mm
accuracy). Animals submitted to AIA that showed negative
C-reactive protein (CRP) were excluded from the study.

Food intake
Throughout the experimental protocol period, food

intake was estimated daily. Therefore, each cage contain-
ing four animals received 500 g of chow daily. Twenty-four
hours later, the amount of chow remaining in each cage
was weighed. The food intake was calculated by the
following equation (27):

Food intake ¼ offered food ðgÞ � remaining food ðgÞ
number of animals in the cage

Sample harvest
The animals were weighed, euthanized by deep

thiopental anesthesia (Thiopentaxs, 10 mg/100 g of body
weight, ip, Cristália – Produtos Químicos Farmacêuticos
Ltda., Brazil) and then exsanguinated through puncture of
the inferior vena cava. The blood harvested was placed in
a tube containing coagulation activator and then centri-
fuged (1613 g, 10 min, 4°C) to obtain the serum. The
serum volume recovered was aliquoted and stored at
–80°C for further analysis.

Soleus muscle of both hind paws and heart were also
harvested from these animals and weighed. The wet mass
of soleus muscles and heart were normalized by the tibia
length (cm) and body mass (kg) of each animal, respec-
tively. Later, these tissues were fixed for 24 h in 4% para-
formaldehyde solution (prepared in PBS), with pH adjusted
to 7.2. Then, these tissues were washed in running water
for 24 h. The tissues remained immersed in 70% alcohol
until processing.

Body composition
Body composition was estimated based on the lean

mass and fat mass of these animals. Lean mass was
estimated by summing the wet mass of soleus, gastroc-
nemius, and extensor digitorum longus muscles, har-
vested in both legs, normalized by the tibia length (cm).
Fat mass was estimated by summation of the periepidid-
ymal and retroperitoneal adipose tissue, normalized by
the tibia length (cm) (28).

C-reactive protein
C-reactive protein (CRP) was determined in the serum

of the animals by the RCP-LÁTEX kit (Ebram Produtos
Laboratoriais Ltda, Brazil), according to the manufac-
turer’s instructions.

Histopathological analysis
For histological analysis, soleus and cardiac muscles

fixed in 4% paraformaldehyde were dehydrated in 95%
ethanol and embedded in a Leica Historesin Embedding
Kits (Leica Biosystems, Germany). The 5-mm-thick sec-
tions were stained with hematoxylin and eosin. Digital
photomicrographs were obtained using the Olympus Cell
Sens image capture software (Olympus Corp., Japan).
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Morphometric-stereological analyses
For each soleus and cardiac muscle, 10 histological

fields at 1000� magnification were randomly captured to
measure the diameter (mm) of muscle cells, using Olympus
CellSens software. From the same histological field, the
number of muscle cells and capillaries was counted in a
fixed total area of 14226.51 mm2. Capillary and fiber densi-
ties consisted of the average number of capillaries and
fibers, respectively, per histological fields captured in each
studied soleus muscle.

The number of arterioles was also determined at 400�
magnification from digital images of intentional histological
fields of the soleus and cardiac muscles per rat in a fixed
total area of 88741.73 mm2, using the same Olympus
software.

The ratio of capillary density to muscle cell density was
determined for the soleus and heart muscles, according to
the equation:

Capillary=fiber ratio ¼ Capillary density
Fiber density

Statistical analysis
The parametric distribution of the data was verified by

the Shapiro-Wilk test. If parametric distribution was found,
the comparisons between the groups were made by one-
way analysis of variance (one-way ANOVA), followed by
Tukey’s post-test. In these cases, data are reported as
means±SE. Differences were considered statistically
significant if Pp0.05.

When parametric distribution was found to be violated,
comparisons between the groups were made using the
non-parametric Kruskal-Wallis test. In these cases, the
Mann-Whitney test was used, with P values adjusted by
Holm-Sidak (Pp0.017), for peer-to-peer comparison.
Non-parametric data are reported as median and inter-
quartile ranges (25–75%).

All data analyses were performed using SPSSs

software (IBM, USA), version 19.0.

Results

Paw diameter
The AIA induced a time-dependent increase in the

animals’ hind paw diameter. In the right hind paw, this
diameter increase was statistically significant in relation to
the control group from the 4th day, reaching fullness at
15 days after AIA induction (Figure 1A). On the other hand,
in the left hind paw, the increase in diameter reached
statistical significance on the 15th day and continued to
increase until the 40th day after AIA induction (Figure 1B).

Body composition
Unlike the CTRL animals, the AIA animals showed no

gain of body mass throughout the evolution of the disease
(Figure 2A). In this manner, the mean body mass of AIA
animals was significantly lower in relation to their controls,
both 15 and 40 days after AIA induction. There was no
significant difference in fat mass between the groups
(Figure 2B). On the other hand, AIA induced a time-
dependent lean mass reduction in the studied animals.
Consequently, mass values were significantly lower in
AIA15 compared to the CTRL and AIA4 groups, as well as
in the AIA40, compared to all other studied groups
(Figure 2C).

Food intake
AIA reduced food consumption, but only on the 40th

day after induction. Food consumption in the AIA40 group
(37.90; 26.70–43.30 g) was significantly lower (Po0.017;
Kruskal-Wallis test followed by Mann-Whitney for peer-to-
peer comparison) than both CTRL (57.65; 51.25–62.35 g)
and AIA15 groups (59.0; 43.75–63.33 g), but not the AIA4
group (52.50; 42.50–62.50 g).

Histopathological analysis
In the histopathological analysis, fibers of the soleus

muscles taken from CRTL animals presented normal
and classic histological organization (Figure 3A). On the
other hand, AIA-induced alterations occurred at all studied

Figure 1. Right (A) and left (B) hind paw diameter
determined in control (CTRL) animals or in those
submitted to adjuvant-induced arthritis (AIA),
4 days (AIA4), 15 days (AIA15), and 40 days
(AIA40) after induction. Data are reported as
means±SE. The number of independent samples
is reported in parentheses. *Po0.0001 vs CTRL;
#Po0.05 vs AIA4; @Pp0.05 vs AIA15 (one-way
ANOVA, followed Tukey’s post-test).
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times. In the AIA4 group, bundles of muscle fibers were
composed of both atrophic and normal fibers. The mas-
sive presence of leukocytes inside blood vessels with a
predominance of neutrophils was also observed. Some
muscle fibers had nuclear aggregation in the peripheral
region (Figure 3B–B2). On the 15th day after induction,
the muscle bundles had fibers with greater atrophy and
edema in the interstitial area. The presence of leukocytes
remained, characterizing intense inflammatory infiltration.
Some muscle fibers also exhibited an irregular shape
and dilation. Fibers with nuclear aggregation were also
observed (Figure 3C–C2). Atrophied fibers, inflammatory
edema in the perimysium, and the presence of neutro-
phils also occurred in the soleus muscles taken from
AIA40 animals, but with smaller intensity and frequency.
However, these animals showed a greater presence of
mononuclear cells in the inflammatory infiltrate. In addi-
tion, several muscle bundles exhibited a normal pattern
(Figure 3D–D2).

The AIA-induced morphological alterations were later
observed in cardiomyocytes. The cardiomyocytes taken
from AIA rats 4 days after induction and CTRL animals
had a normal and classic pattern (Figure 3E and F).
On the 15th day after induction, in spite of inflammatory
infiltrate areas among the cardiomyocytes, these cells
exhibited a normal structure (Figure 3G, G-inset). On the
40th day after induction, the majority of the cardiac muscle
regions presented a normal organization, but in some
areas, the cardiomyocytes exhibited an apparent atrophic
shape (Figure 3H).

Biometric and morphometric-stereological analyses
AIA reduced the wet mass of the soleus muscle in a

time-dependent manner. This reduction in wet mass was
significant on the 4th day, but was more evident on the
40th day after AIA induction. Moreover, the number of
arterioles in the soleus muscle was significantly increased
15 days after AIA induction. This increase was no longer
observed 40 days after AIA induction. Thus, AIA15 animals
had more arterioles compared to CTRL and AIA40 animals.
In parallel, increased capillary density was observed in
the soleus muscle of AIA15, compared to CTRL animals.
In addition, soleus muscles taken from AIA15 and AIA40
animals had an increased fiber density, in parallel with a
significant reduction of diameter. Actually, the reduction in
the diameter preceded the increase in fiber density, being
observed from the 4th day after AIA induction. Moreover, the
capillary/fiber ratio in the soleus muscle was reduced on
the 15th day, reaching statistical significance compared to the
control group on the 40th day after AIA induction (Table 1).

In parallel, AIA did not promote significant changes in
the wet mass of the heart in any of the studied groups.
Modifications in both arteriole number and capillary density
were not observed in the cardiac muscle. In addition,
although the cardiomyocyte density was slightly higher in
the AIA40 group, compared to the other groups, this differ-
ence was not significant. The diameter of the cardiomyo-
cytes in the AIA40 animals, however, was less than the
AIA4 animals but not the CTRL group. Finally, no difference
between groups was found in the capillary/fiber ratio in
cardiac muscle (Table 1).

Figure 2. Values of body weight (A), fat mass (B),
and lean mass (C) determined in control (CTRL)
animals or in those submitted to adjuvant-induced
arthritis (AIA) 4 days (AIA4), 15 days (AIA15), and
40 days (AIA40) after induction. Data are reported
as means±SE. The number of independent
samples is reported in parentheses. aPo0.01 vs
CTRL assessed on the 4th day after false-
immunized; bPp0.05 vs CTRL assessed on the
15th day after false-immunized; cPo0.01 vs CTRL
assessed on the 40th day after false-immunized.
*Po0.01 vs CTRL; #Pp0.05 vs AIA4; @Po0.01
vs AIA15 (one-way ANOVA, followed Tukey’s
post-test).
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Discussion

The presented data reinforce the concept that arthritis
is a systemic disease, with repercussions that go far
beyond the joints (4,29). In addition to the already well-
characterized joint inflammatory process, AIA animals
exhibited a loss of wet mass, atrophy of cardiomyocytes
as well as atrophy of muscle fibers and microvascular
changes in soleus muscle.

To understand the temporal evolution of AIA, we
observed the animals at three specific times. The first
observation was made 4 days after AIA induction, a period
considered pre-clinical by some authors (6,18). At this
time, the inflammatory joint process existed, although it
was still monoarticular, without inflammatory signs in the
hind paw contralateral to the immunization. Not even the
inflammatory process of the ipsilateral hind paw was
complete at this time, since the volume of these paws

Figure 3. Photomicrographs of soleus (A–D) and cardiac (E–H) muscles taken from control (CTRL) animals or those submitted to
adjuvant-induced arthritis (AIA) 4 days (AIA4), 15 days (AIA15), and 40 days (AIA40) after induction. In the control groups, the soleus
and cardiac muscles exhibited normal morphology (A, E). In the AIA groups, at all times after induction, the soleus muscle showed signs
of damage (B–B2, C–C2, D–D2). In the cardiac muscle, AIA promoted inflammatory infiltrate 15 days after induction (G, G-inset) and
apparent atrophy in cardiomyocytes 40 days (H) after induction compared with AIA4 (F). BV: blood vessels; star: normal muscle fibers;
non-filled arrowhead: leukocyte migration; asterisk: atrophied fibers; arrowhead: nuclear aggregation; arrow: inflammatory infiltrate.
Staining: hematoxylin and eosin. Magnification bars: A, B, D–H, 50 mm; C, B1–D1, B2–D2, 20 mm; G-inset, 50 mm.
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reached its peak on the 15th day, remaining equally high
until the 40th day after AIA induction.

Animals were also examined 15 days after AIA
induction, when arthritis becomes polyarticular. The articu-
lar inflammatory process is active at this time, with evident
edema and increased blood flow in the joints of these
animals (6). Also around the 15th day, AIA becomes a
systemic disease. Febrile peaks are reported in the AIA
animals between the 13th and 17th day after induction (30),
when the animals begin to develop severe bone deformities
and edema worsens in their joints. To characterize this later
stage of the model, the animals were also studied 40 days
after AIA induction.

Unlike the CTRL, all AIA animals presented positive
CRP (data not shown), which indicates the presence of an
inflammatory process (25,31–33). This also indicates
that the AIA-induced inflammatory process was already
present on the 4th day, although this is considered a pre-
clinical phase (6). Moreover, although the AIA-induced
inflammatory process is still monoarticular on the 4th day,
its systemic repercussions are already present.

The AIA animals had less body mass gain than the
CTRL animals over the 40 days of the experimental
protocol. Less body weight gain as a consequence of AIA
has also been reported in previous studies performed in
rats (10,11,27). Reductions in body mass may be asso-
ciated with decreased locomotion, reduced food intake,
metabolic changes, and increased skeletal muscle pro-
teolysis (10,11,27).

A lower food intake should be considered when
analyzing weight losses in experimental models or clinical
situations characterized by discomfort and/or motor

limitations. A reduction in food intake was detected only
at 40 days after AIA induction, when the animals present-
ed generalized edema and deformation in their paws.
This may have led to a loss of mobility (11), with conse-
quent reduction in the search for food. A reduction in food
intake has also been observed in rats 21 days after AIA
induction (10,27,34). This indicates that the reduction in
food intake observed on the 40th day after AIA induction
started earlier, sometime after the 15th day. In the present
study, however, no reduction in food intake occurred on
the 15th day after AIA induction, although there was
already reduced body mass. Thus, at least at 15 days
after AIA induction, the animals were not in an anorexia or
malnutrition condition. Indeed, there was also no reduction
in fat mass 15 days after AIA induction.

Our results reinforce the hypothesis of a greater
proteolysis in the AIA animals, at least on the 15th day
after induction. These animals had a significant reduction
in lean mass, along with reduced wet mass and diameter
of the soleus muscle fibers. This process seems to worsen
in the later phase of the model when the animals also
reduced food intake. A previous study found AIA-induced
reduction in rat gastrocnemius muscle mass, concomi-
tantly with a decrease in the cross-sectional area of both
fast and slow fibers (10). According to these authors, this
muscle mass reduction may involve an increase in the pro-
duction of pro-inflammatory cytokines and is more intense
around the 22nd day after AIA induction, although some
ubiquitin ligases, such as muscle RING-finger protein-1
(MuRF-1) and atrogin-1, are more expressed around
the 16th day. Reduction of soleus and rectus femoris
muscle mass was also observed in rats submitted to AIA

Table 1. Morphometric-stereological analyses of the soleus and heart muscles after AIA (adjuvant-induced arthritis) induction at 4, 15,
and 40 days.

Parameters CTRL AIA4 AIA15 AIA40

Soleus muscle
Wet mass (g) 0.10±0.002 (21) 0.08±0.006* (10) 0.07±0.005* (10) 0.05±0.004**#+ (15)
Arteriole number (n) 12.67±3.3 (9) 24.27±4.4 (11) 32.14±6.8*+ (7) 12.00±2.9 (7)

Capillary density 115.5 (109.3–125.5) (8) 137.5 (119.3–158.3) (10) 213** (142–241) (7) 148 (122–169) (7)
Fiber density 57±5.42 (7) 68±4.56 (7) 127±16.7*# (7) 137±15.7*# (7)
Fiber diameter (mm) 45.75±1.57 (7) 37.65±1.50* (7) 26.14±1.69*# (7) 25.36±1.49*# (6)
Capillary/fiber ratio 2.22±0.14 (9) 2.26±0.14 (10) 1.68±0.17# (7) 1.11±0.09*# (7)

Heart
Wet mass (g) 3.63±0.09 (21) 3.51±0.11 (10) 3.61±0.17 (10) 3.94±0.13 (15)
Arteriole number (n) 20.11±2.9 (9) 18.11±2.7 (9) 16.17±4.2 (6) 27.63±5.9 (8)

Capillary density 159 (130.5–321.5) (9) 164 (128.5–183) (9) 258.5 (224.5–337.3) (6) 169 (117.5–213.8) (8)
Cardiomyocyte density 345±36.1 (5) 280±30.6 (5) 285±35.3 (5) 410±52.7 (5)
Cardiomyocyte diameter (mm) 15.71±0.62 (5) 17.53±1.78 (5) 13.61±0.62 (5) 12.68±1.26# (5)

Capillary/cardiomyocyte ratio 0.84±0.20 (5) 0.69±0.10 (5) 0.92±0.02 (5) 0.46±0.07 (5)

Data are reported as means±SE. The number of independent samples is reported in parentheses. Comparisons by one-way ANOVA,
followed by Tukey’s post-test. Data of capillary density are reported as median and interquartile ranges (25–75%). Comparisons by non-
parametric Kruskall-Wallis test, followed by peer comparisons by the Mann-Whitney test. *Po0.05 vs CTRL; **Po0.017 vs CTRL;
#Po0.05 vs AIA4; +Po0.05 vs AIA40.
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(Mycobacterium tuberculosis)-induced monoarticular arthri-
tis. This muscle mass reduction, which involved a decrease
in the cross-sectional area of both fast and slow fibers,
was already seen around the 7th day after AIA induction
(35). Loss of mass in both the gastrocnemius and tibialis
anterior muscles and reduced mobility have also been
reported in mice submitted to collagen-induced arthritis
(CIA), but from the 45th day after the first immunization
(10–12,35).

In soleus muscles, induced AIA reduced the diameter
of fibers, as well as the increment of their density. These
data suggest that the AIA-induced reduction of skeletal
muscle mass was mainly due to atrophy of muscle fibers
and not so much to a reduction in their number. Notably,
the reduction of both soleus wet mass and the diameter of
its fibers was significant on the 4th day after AIA induction.
The animals’ lean mass reduction, however, was sig-
nificant only from the 15th day after AIA induction. This
suggests that AIA effects on the soleus muscle preceded
its effects on the gastrocnemius and/or extensor digitorum
longus muscles, both taken into account in the calculation
of lean mass.

The histopathological analysis of the soleus muscle
reinforced that atrophy of at least part of the muscle fibers
already occurred 4 days after AIA induction. This atrophy
was accompanied by massive infiltration of polymorpho-
nuclear cells, thereby suggesting the participation of an
acute inflammatory process. Some muscle fibers also
presented nuclear aggregation in peripheral regions. This
modification may indicate cytoskeletal proteolysis (36)
perhaps related to the muscle atrophy that was ongoing.
On the 15th day after AIA induction, the atrophy becomes
even more evident, corroborating the histomorphometric
and stereological findings. At this stage, both intense
inflammatory infiltrate and edema persisted. In addition,
some fibers had irregular shape and/or nuclear aggregation.
In the later phase of the model, at 40 days after AIA
induction, the inflammatory infiltrate was less intense.
Moreover, mononuclear cells could also be observed,
which corroborated the resolution of the inflammatory
process in this model (6,37).

AIA also increased the number of arterioles and the
capillary density in the soleus muscles. These changes
occurred 15 days after AIA induction, but disappeared in
the later phase of the model. These vascular changes
may reflect a body response to mitigate the AIA-induced
muscle mass loss. In fact, increased microcirculation may
be a mechanism to attenuate muscle atrophy by disuse,
since it improves tissue perfusion (38). In this regard, the
observed muscle mass loss could have been potentiated
by the reduction of locomotion, since decreased mobility
has already been described in animals affected by AIA
(39,40).

Nevertheless, AIA induced a reduction in the capillary/
fiber ratio in the soleus muscle of these animals, begin-
ning 15 days after induction. This indicated that AIA did

not increase the number of capillaries in the muscle, but
only increased the number of capillary-fiber ensembles
per field as a consequence of the reduced diameter of
the fibers. This may also explain the observed increase in
the number of arterioles. Thus, in the muscle as a whole,
there was no increase in vascularization. Moreover, the
increase in the number of arterioles and capillary density,
observed on the 15th day, was reverted on the 40th day
after AIA induction. Interestingly, the capillary/fiber ratio
decreased even more in soleus muscles collected on the
40th day after AIA induction. This suggests that, instead of
augmentation, there was a reduction of vascularization in
the later phase of the model. More specifically, atrophy
of the fibers occurred first, and then the vascularization
of the fibers was reduced.

In hearts, no significant AIA-induced changes of wet
mass occurred at any of the times studied. However, the
heart wet mass assessment was not always able to detect
subtle structural modifications of the cardiac musculature.
On the other hand, the diameter of cardiomyocytes in
the AIA40 animals was slightly smaller than in the AIA4
animals. Notably, no significant difference was observed
between AIA40 and CTRL animals. Possibly, because this
difference was within the limits of statistical significance,
it was only detected in relation to the AIA4 group that pre-
sented mean values slightly higher than the CTRL group.
This reduction did not imply an increase of the density
of cardiomyocytes within the muscle. The number of
arterioles, capillary density, and capillary/fiber ratio in this
musculature also did not significantly change. Never-
theless, AIA-induced injuries in the heart muscles were
confirmed by slight histopathological changes, character-
ized mainly by the presence of inflammatory infiltrate
among cardiomyocytes that were evident mainly 15 days
after the induction of AIA. These data suggest that the
cardiac musculature, although less sensitive than the
skeletal muscles, is not completely free from AIA effects.

Finally, the data presented here reinforced the hypoth-
esis that the manifestations of arthritis may have different
temporal evolutions in various organs and systems. There-
fore, the presented data have great therapeutic interest,
since they may support future studies that seek ways to
approach in advance the manifestations of RA that develop
over the course of the disease.

The present study showed that the AIA-related system-
ic inflammatory process began within the first few days
after its induction, even before arthritis becomes poly-
articular. The AIA-induced changes in the body composi-
tion were more evident from the 15th day after induction
and tended to aggravate over time. Histopathological
modifications could be observed in the soleus muscles
by the 4th day and were more evident 15 days after AIA
induction. By the 15th day, AIA-induced structural changes
characterized by muscle fibers atrophy and vascular den-
sification became evident. In addition, cardiac muscle also
exhibited slight AIA-induced histopathological changes.

Braz J Med Biol Res | doi: 10.1590/1414-431X20198969

Arthritis and body composition changes 7/9

http://dx.doi.org/10.1590/1414-431X20198969


This suggested that the heart may be a target organ of
AIA, although less sensitive than skeletal muscles.
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