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Susceptibility to ankylosing spondylitis (AS) is polygenic with more than 100 genes

identified to date. These include HLA-B27 and the aminopeptidases (ERAP1, ERAP2,

and LNPEPS), which are involved in antigen processing and presentation to T-cells, and

several genes (IL23R, IL6R, STAT3, JAK2, IL1R1/2, IL12B, and IL7R) involved in IL23

driven pathways of inflammation. AS is also strongly associated with polymorphisms in

two transcription factors, RUNX3 and T-bet (encoded by TBX21), which are important in

T-cell development and function. The influence of these genes on the pathogenesis of

AS and their potential for identifying drug targets is discussed here.
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INTRODUCTION: AS GENETICS

Ankylosing Spondylitis (AS) is a chronic inflammatory enthesitis predominantly affecting the axial
skeleton (1). It is often associated with other conditions, such as uveitis, psoriasis, and inflammatory
bowel disease (IBD), with which it has significant genetic overlap (2–5). The strongest genetic
association of AS is with the HLA-B27 immune response gene (6). About 85% of British AS cases
carry HLA-B27 (odds ratio ∼60) but probably no more than ∼5% of those who are HLA-B27
positive actually develop the condition, suggesting that other genes are also involved. Twin studies
also support polygenic susceptibility (7) and this has been amply confirmed by genome-wide
association studies (GWAS) (8–10). More than 100 loci have already been implicated in AS but
for most the mechanisms underlying the associations are unknown. One exception appears to be
the multiple “hits” in genes involved in interleukin (IL)-23 driven pro-inflammatory pathways
(e.g., IL23R, IL12B, IL6R, TYK2, IL27R, IL1R2, IL1R1, and STAT3) (9–11). In murine models of
the disease, resident IL23R-expressing cells can be demonstrated at the entheses (stress-bearing
fibrous or fibro cartilaginous attachment of connective tissues, such as tendons or ligaments to
bone). Further, the main features of the disease can be recapitulated simply by inducing hepatic
overexpression of IL-23 without any evidence of recruitment of additional cell types to the entheses
(12).
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HLA-B27 AND AMINOPEPTIDASES

Because HLA-B27 plays a key role in antigen presentation to
CD8+ cytotoxic T-cells (13), it is plausible that the inflammation
in ASmight be mediated by HLA-B27-restricted CD8+ cytotoxic
T-cells, perhaps generated in response tomicrobial infection (14).
However, it is also possible that depressed CD8+ T-cell function
might be responsible, which could account for certain animal
models of spondyloarthropathy (SpA) that develop in the absence
of CD8+ T-cells (15). Further, in some models of autoimmune
demyelinating disease, such as multiple sclerosis, CD8+ T-cells
can act as either effector or suppressor cells (16). Specifically,
the absence of CD8+ T-cells can be associated with more
severe chronic disease or with increased susceptibility to relapses
(17).

One of the earliest and most exciting GWAS findings
indicated strong association between AS and certain
aminopeptidases, initially with ERAP1 (endoplasmic reticulum
aminopeptidase 1) but subsequently also with ERAP2 and the
related LNPEP (leucyl/cystinyl aminopeptidase) (9). Further,
some of these associations were replicated in related conditions,
including psoriasis and IBD (18, 19). ERAP1 has the second
strongest association with AS and displays a synergistic
interaction with HLA-B27 (18–21); the ERAP1 association is lost
in HLA-B27 negative cases but a weaker association with ERAP2
can be seen both in HLA-B27 negative and positive cases (22).
ERAP1 and other aminopeptidases appear to play a significant
role in trimming peptides transported from the cytosol to the
endoplasmic reticulum to optimal length (8 or 9 amino acids)
for loading on HLA class I molecules (23, 24). We and others
have shown that AS-associated ERAP1 variants are involved
in dysregulated peptide trimming that profoundly affects the
range of peptide antigens presented to the immune system
(25–27).

The protective allele of the ERAP1 rs30187 polymorphism is
associated with reduced peptidase activity resulting in alterations
in the HLA-interacting peptidome (24, 28) of both pathogen-
derived and host-derived antigens compared to the high-risk
allele. Theoretically small molecule inhibitors of ERAP1 might
therefore be of interest in the treatment of AS.

THE CONTRIBUTION OF IL23R

IL23R (encoding the specific portion of the heterodimeric
interleukin 23 receptor) was the first non-MHC gene to be
associated with AS (29, 30). The primary IL23R association with
AS (also psoriasis and IBD) is with rs11209026, a coding SNP
in the cytoplasmic tail, which alters IL-23R signaling (31, 32).
In addition, a second independent association signal has been
identified in the intergenic region downstream of IL23R and
upstream of IL12RB2 (encoding the 130kd β2 chain of the IL-12
receptor) (10). Our group recently identified a putative enhancer
in this region of independent association, where the rs11209032
SNP it is likely to be the candidate causal SNP in this region.
Allelic variation of rs11209032 may influence Th1-cell numbers
(33). Further work is necessary to explain the mechanisms for
these important observations.

IL-23 has critical roles in the pathogenesis of autoimmunity:
it induces the Th17 cell population with a unique inflammatory
gene signature (IL17A, IL17F, IL6, CSF2, TNF, CCL20, CCL22,
IL1R1, and IL23R) (34).

The multiple associations (IL23R, IL6R, STAT3, JAK2,
IL1R1/2, IL12B, and IL7R) with AS in the IL-23-driven pathways
played a prominent role in promoting the successful targeting
of the pro-inflammatory cytokine IL17A with the therapeutic
monoclonal antibody secukinumab (35). Recently it has also been
demonstrated that it is possible to use epigenetic approaches to
inhibit Th17 cell maturation (integral to the pathogenesis of SpA)
by targeting the bromodomains of transcriptional co-activators
(such as CBP and p300) that recognize acetylated lysine residues
in the regulatory elements associated with pro-inflammatory
genes (36). However, the precise mechanisms involved in these
therapeutic approaches are not entirely straightforward. Thus,
although secukinumab is highly effective in AS (37), recent
clinical trials of risankizumab, which targets the p19 subunit
of IL-23 have proved ineffective (38). It is possible that there
is a pharmacokinetic reason for this failure but this seems
relatively unlikely given that the drug seems to be effective
in similar doses in psoriasis and IBD (39, 40). It would
seem more likely that there are alternative pathways through
which IL17 production is sustained other than purely through
IL23-driven mechanisms. Analogous therapeutic differences
have been noted previously in the failure of secukinumab
to benefit those with IBD despite its obvious immunogenetic
similarities to AS (41). Further studies, both basic and
clinical, are needed to unpick the mechanistic differences
between the outcomes of the secukinumab and risankizumab
trials.

GM-CSF: A NOVEL TARGET IN AS

GM-CSF, a cytokine involved in hematopoiesis and in immune
responses, has been recently identified as a promising target
in AS therapy. GM-CSF and its receptor are overexpressed
in the synovial joints of patients with immune-mediated
inflammatory SpA (42–44). A unique subset of GM-CSF+ CD4
T-cells has been identified by transcriptomics that represents
an effector population distinct from Th1 and Th17 cells (45).
GM-CSF promotes joint damage by recruiting granulocyte and
macrophage precursors from activated bone marrow adjacent
to synovial joints and causes the release of pro-inflammatory
chemokines such as CCL17 (46). These processes, which are
expanded in the synovial fluid of patients with axial SpA,
led by GM-CSF, also induce the destruction of the cartilage
and the resorption of the bone, inducing several matrix
metalloproteinases and the osteoclast activating factor—RANKL
(Receptor Activator of Nuclear Factor Kappa-B Ligand) (47, 48).

The use of monoclonal antibodies to neutralize GM-CSF have
been very effective in preventing the progression of joint damage
and inflammation in arthritic mice (49) and long-term phase
II studies in RA are very encouraging (50). Furthermore, based
on the evidences discussed above, a clinical trial with antibody
targeting GM-CSF has recently started in AS patients.
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TRANSCRIPTION FACTORS ASSOCIATED
WITH AS

Most DNA single nucleotide polymorphisms (SNP) associated
with complex diseases like AS do not cause protein coding
changes; the R381N polymorphism in the cytoplasmic tail of the
IL23 receptor associated with susceptibility to AS and IBD is the
exception rather than the rule in this regard (32). On the contrary,
most genetic associations in such multifactorial conditions are in
non-coding regions of the genome where they exert epigenetic
regulatory effects (51). Such associations in intergenic regions are
well described in AS, and in at least some cases, probably alter
susceptibility to the disease by influencing gene expression levels.
Disease associated polymorphisms might influence regulatory
elements (enhancers, silencers, promoters) through changes in
chromatin remodeling or transcription factor binding. SNPs in
regulatory regions could affect gene expression through changes
in transcription factors (TFs) recruitment, DNA methylation,
histone modification or miRNA expression or binding.

RUNX3
The AS association at the RUNX3 locus (Runt-related
transcription factor 3) provides a good example of this
type of genetic regulatory influence (10). There is convincing
evidence that RUNX3 is associated with AS and other forms of
SpA, including psoriatic arthritis (52). RUNX3 plays a prominent
role in the development and differentiation of CD8+ T-cells,
which have been implicated in the pathogenesis of AS (53, 54).
Three other AS–associated genes (EOMES, IL7R, and ZMIZ1)
impacting on variation in CD8+ lymphocyte counts were
also identified by the International Genetics of Ankylosing
Spondylitis (IGAS) consortium (10). The robust genetic
associations with RUNX3, IL7R, and EOMES (eomesodermin),
all of which impact on CD8+ T-cells differentiation, support the
involvement of CD8 T-cell pathology in AS. However, the precise
mechanisms involved are likely to be more complex than simple
effects on T-cell numbers. Thus, although the risk haplotype at
RUNX3 (rs6600247) is associated with lower CD8+ T cell counts

the opposite is seen with the risk haplotype at IL7R (rs991570),
suggesting involvement of an unknown mechanism related to
the IL7R/RUNX3 pathway.

RUNX3 also has other fundamental roles in many other cell
types. Its deletion leads to the dysregulation of cells including
neurons, chondrocytes, Th1 helper cells, dendritic cells and NK
cells (55).

In particular, RUNX3 is downstream of the TGF-β signaling
pathway and may play a key role in CD4+ T-cell differentiation,
potentially driving the imbalance of Th17/Treg cell in AS (56).
RUNX3 is also a pivotal TF for the function of Innate Lymphoid
Cells 3 (ILC3) via driving the expression of RORγt and its
downstream target aryl hydrocarbon receptor (AHR), in ILC3
cells. RUNX3 deletion increases the susceptibility of ILCs to
infection with Citrobacter rodentium (57).

Previously we have shown that an AS-associated SNP
(rs4648889), located upstream of the RUNX3 promoter affects
RUNX3 gene expression in CD8+ T-cells through changes in
transcription factor binding (58). These findings implicate CD8+
T-cells in the pathophysiology of AS, and raise the possibility
that reduced CD8+ T-cell numbers and/or altered function may
be contribute to its pathogenesis (Figure 1). Subsequently, we
described another SNP (rs4265380) also upstream of RUNX3
and only 500 bp from rs4648889, which has potential regulatory
functions in monocytes rather than T-cells (59). The role of
RUNX3 in the myeloid compartment has not been extensively
studied in immune biology (60, 61), but clearly could be very
important in our understanding of the pathophysiology of AS.
Similar genetic associations at the RUNX3 locus have been also
described in psoriatic arthritis, thereby revealing an unsurprising
degree of genetic overlap between these two related forms of SpA
(52).

Further evidence from Al-Mossawi and colleagues supports
the plausible role of monocytes in AS pathogenesis. Their study
showed that monocytes upregulate IL7R expression and soluble
IL7R secretion after LPS treatment in a functional, genotype-
and TNFα-dependant manner. These data draw attention to an
unappreciated key myeloid role for AS risk variants at IL7R (62).

FIGURE 1 | Epigenetic regulation at the RUNX3 AS-associated locus. In CD8+ T-cells the regulatory region upstream the promoter of RUNX3 is characterized by

binding of several TFs, included p300 and IRF4, and enhancer histone marks (H3K4Me1). RUNX3 AS-risk allele has an epigenetic effect to reduce RUNX3 expression

that might affect CD8+ T-cell numbers and function. The contribution of other genes associated with AS, like T-bet, Eomes and IL7R strengthen the involvement of

CD8+ T-cells development pathway in AS pathogenesis.

Frontiers in Immunology | www.frontiersin.org 3 January 2019 | Volume 9 | Article 3132

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vecellio et al. Transcription Factors in AS

These findings suggest that the IL7R/RUNX3 axismight have a
plausible role in monocyte biology and in the pathogenic process
of AS, which up to now has been poorly investigated.

TBX21
AS is associated with rs11657479, a SNP in the 3

′

untranslated
region (UTR) of TBX21 (encoding the transcription factor T-
bet) (10). Although the causal variant has not yet been defined
since the locus has not been fine mapped. Expression of TBX21
and T-bet is increased in patients with AS and homozygosity for
the rs11657479 risk allele increases T-bet expression. In the SKG
mouse model of SpA, loss of T-bet expression protects against
disease (63) suggesting that T-bet is an important regulator of
immune responses in SpA. Genetic associations have also been
reported at TBX21 in AS and IBD (64), suggesting that T-bet may
play an important role in these diseases, most likely involving
control of mucosal barrier defenses.

T-bet was first described in CD4 T-cells as the key Th1
lineage-defining transcription factor controlling expression of
IFN-γ and CXCR3 (65). It is now clear, however, that T-bet is
widely expressed in immune cell subsets and controls functional
differentiation of many cell types including CD8T cells, NK cells,
B cells.

Enhanced T-bet expression in AS is predominantly seen in
CD8 T-cells and NK cells where it influences function of these
cell types (63), both of which are strongly implicated in AS
pathogenesis (66). The development and terminal maturation
of immature NK cells, characterized by the expression of
TNF-related apoptosis-inducing ligand (TRAIL) (67, 68), are
dependent on T-bet (69). However, the importance of T-bet in
defining NK cell biology may be tissue or context specific. For
example in mice, liver resident NK cells (or ILC1 cells) depend
on T-bet while conventional NK cells are strictly dependent on
eomesodermin (67, 68).

T-bet regulation of CD8 T-cells responses is similarly context
dependent. T-bet promotes differentiation of short-lived effector
CD8 T-cells but does not influence long-lived memory CD8 T-
cells (70). Importantly, T-bet cooperates with eomesodermin and
other transcription factors to fine tune CD8 T-cell functions.
For example, cooperative effects of T-bet and eomesodermin
induce IFN-γ production by CD8T cells (71). Indeed, in mice
much is known about cooperation between T-bet and several
transcription factors such as ZEB2 (72) and Blimp-1 (73). Yet our
knowledge of cooperation between T-bet and other transcription
factors in humans and in disease settings is limited. Given
the genetic associations with TBX21, EOMES, and RUNX3 in
AS (10) further investigation of transcription factor biology in
AS is warranted. More broadly, a better understanding of T-
bet regulation of CD8T cell responses in humans would be
beneficial.

While studies in Tbx21−/− mice have highlighted some
important T-bet functions the regulation of immune cell
responses by T-bet is nuanced. For example, graded expression
of T-bet in CD4 T-cells responding to Listeria monocytogenes
infections determines which cells produce IFN-γ (T-bethi) and
which ones do not mount a protective IFN- γ response (T-betlo)
(74). Of direct relevance to AS, IL-12 induces graded expression
of T-bet in mouse CD8 T-cells which in turn controls functional
potential of those CD8 T-cells (70) while T-bet expression CD4
Th17 cells stabilizes pathogenic Th17 cells (75). In mice at
least, T-bet plays a role in controlling transcription of Il23r (76)
and expression of Cxcr3 in multiple immune cells (77), thereby
shaping their tissue migratory potential. It is therefore clear that
T-bet, alone and in concert with other transcription factors, fine
tunes functions of multiple immune cell types but the relevance
of this to chronic immune-mediated diseases in humans is yet
to be investigated. Since T-bet also play important roles in gut
barrier function (78, 79) dissecting the role T-bet plays in host-
microbiome responses in chronic immune-mediated diseases is

FIGURE 2 | Microbial dysbiosis or viral infection drives IL-23 production. T-bet expression in T cells promotes IL-23R expression licensing IL-23-mediated

inflammation. Carriage of rs11657479 enhances T-bet expression in CD8T cells and NK cells and enhances pro-inflammatory functions in those cell types.
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also likely to be of value to understanding disease- and tissue-
specific immunopathogenesis processes (Figure 2).

COORDINATED EFFECTS OF
AS-ASSOCIATED TRANSCRIPTION
FACTORS

There is still much to do to define all the functional consequences
of AS-associated genetic variations in transcription factors like T-
bet, eomesodermin and RUNX3. This is made more complicated
by the fact that their effects are likely to be cell type specific.

It has been demonstrated that together with T-bet, RUNX3
regulates interferon-γ and interleukin 4 expression in T-helper
Th1 cells. Moreover, in Th1 cells the Runx3 expression is induced
in a T-bet-dependent manner (80). This fact implies a plausible
synergy between these two factors and a plausible role in AS
pathogenesis.

Although AS is highly heritable, the contribution of
individual genes (or biological pathways) has been relatively
poorly explored, with the notable exception of IL23-driven
inflammation and a few other examples. The RUNX3/T-
bet/eomesodermin axis could represent a key pathway for
exploring the differentiation of many key immune cells relevant
to AS (66).

The different examples we have here reported clearly
illustrated how genetic associations can provide useful
information about the finding and the development of potential
drug targets.

Of note, the interplay between chromatin state, TF occupancy
and tissue-specific gene expression is critical (81), and an
integrative approach is needed in order to increase the power
of the analysis and fully understand the AS-associated regulatory
mechanism, of which the RUNX3/T-bet axis is not exempt.

NEXT STEPS IN RUNX3 AND T-BET
BIOLOGY IN AS

Current data support the importance of RUNX3+ CD8 T-cells,
T-bet+ CD8 T-cells, and T-bet+ NK cells in the pathogenesis of
AS. These data in turn validate the need to study these immune
cell populations in further detail in AS cases. The functional
properties of RUNX3+ CD8 T-cells and T-bet+ CD8 T-cells and
NK cells are still largely unresolved. The effects of manipulating
these cell populations in mice and humans requires further
investigation. A detailed functional genomic approach, such as
cell-type specific ChIP-Seq and RNA-seq, will help to identify
the downstream targets of RUNX3 and T-bet in these cells. Only
through these more comprehensive studies will we be able to
define useful therapeutic targets more accurately.

CONCLUSIONS AND PERSPECTIVES

GWAS have the potential to provide key insights into the
pathogenesis of complex polygenic disorders even where the

strength of individual associations seem weak. Even modest
genetic associationsmay reveal therapeutic targets with profound
biological effects. Thus, the relatively modest but robust
association of the R381N SNP in the cytoplasmic tail of IL-
23R, which has functional consequences, clearly implicates IL-
23 pathways in AS; targeting the main effector cytokine IL-17A
in this pathway with the therapeutic antibody secukinumab has
proved highly effective (35).

Nevertheless, considerable work will be required to finely
dissect the biological mechanisms at play to elucidate why, for
example, anti-IL-23 antibodies work in IBD and psoriasis but
not in AS (38–40). It will be also vital to see the results of the
ongoing trials targeting GPR65, a G-protein coupled receptor
overexpressed in AS patients, with an antibody against GM-CSF:
a positive outcome will open new ways for future investigations.

In general, such coding polymorphisms are unusual in the
context of polygenic diseases and more subtle genetic influences,
arising from polymorphisms in regulatory elements influencing
gene expression, are more likely to be implicated in complex
diseases like AS (82). For example, additive influences have
been described between the various genes in the IL-23 signaling
pathway on the effector functions of Th1 and Th17 cells in
patients with SpA (83), but the full range of factors involved
in the regulation of Th17 cells is only just beginning to be
appreciated (84). This is the goal also for the RUNX3/T-
bet/eomesodermin axis. Targeting these transcription factors,
such as RUNX3, directly will not only be technically challenging
but may prove harmful due to their broad effects on cell biology
and human immunity. However, determining the interplay
between them and defining their targets, both individual and
collective, in the context of AS will advance our understanding
of the pathogenesis of AS. Ultimately this may identify novel
cell-specific therapeutic targets with acceptable risk benefit
profiles.
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