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Abstract

Spontaneous retinal activity (known as ‘‘waves’’) remodels synaptic connectivity to the lateral geniculate nucleus (LGN)
during development. Analysis of retinal waves recorded with multielectrode arrays in mouse suggested that a cue for the
segregation of functionally distinct (ON and OFF) retinal ganglion cells (RGCs) in the LGN may be a desynchronization in
their firing, where ON cells precede OFF cells by one second. Using the recorded retinal waves as input, with two different
modeling approaches we explore timing-based plasticity rules for the evolution of synaptic weights to identify key features
underlying ON/OFF segregation. First, we analytically derive a linear model for the evolution of ON and OFF weights, to
understand how synaptic plasticity rules extract input firing properties to guide segregation. Second, we simulate
postsynaptic activity with a nonlinear integrate-and-fire model to compare findings with the linear model. We find that
spike-time-dependent plasticity, which modifies synaptic weights based on millisecond-long timing and order of pre- and
postsynaptic spikes, fails to segregate ON and OFF retinal inputs in the absence of normalization. Implementing
homeostatic mechanisms results in segregation, but only with carefully-tuned parameters. Furthermore, extending spike
integration timescales to match the second-long input correlation timescales always leads to ON segregation because ON
cells fire before OFF cells. We show that burst-time-dependent plasticity can robustly guide ON/OFF segregation in the LGN
without normalization, by integrating pre- and postsynaptic bursts irrespective of their firing order and over second-long
timescales. We predict that an LGN neuron will become ON- or OFF-responsive based on a local competition of the firing
patterns of neighboring RGCs connecting to it. Finally, we demonstrate consistency with ON/OFF segregation in ferret,
despite differences in the firing properties of retinal waves. Our model suggests that diverse input statistics of retinal waves
can be robustly interpreted by a burst-based rule, which underlies retinogeniculate plasticity across different species.
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Introduction

During the development of the visual system, connections

between neurons form and refine in a self-organized manner

governed by various mechanisms. Initially, target neurons are

contacted by multiple RGCs following gradients of molecular cues

[1–3]. As circuits mature, visually-evoked activity maintains these

connections; however, in early development when photoreceptors

are functionally inactive, activity is spontaneously generated within

the retina. This spontaneous activity spreads across the retina in

the form of waves, and is believed to encode different cues for

synapse maturation in the visual system [4]: as inappropriate

connections are eliminated, appropriate connections are strength-

ened following Hebbian-like coincidence detection mechanisms

[5,6]. There is a long-standing, and still active, debate about the

relative importance of activity-dependent mechanisms in develop-

ment [7,8]. Theoretical models can help inform this debate by

evaluating hypotheses about the role of neural activity in the

remodeling of connections.

One possible mechanism of coincidence detection of pre- and

postsynaptic activity is that of spike-time-dependent plasticity

(STDP): synaptic change is induced from pairing multiple pre- and

postsynaptic spikes, firing within tens of milliseconds of each other

[9,10]. Various extensions which include triplets, quadruplets and

other nonlinearities in spike integration have also been studied

[11–13], but they commonly predict synaptic potentiation if

presynaptic activity shortly precedes postsynaptic activity, and

synaptic depression otherwise. One may argue that in developing

systems, immature synapses are incapable of encoding information

using precisely-timed spikes, but use bursts over coarser timescales

[14,15]. Butts et al. [16] recently proposed burst-time-dependent

plasticity (BTDP), based on recordings at the developing

retinogeniculate synapse, as an alternative to STDP. In BTDP,

synaptic change is induced according to the timing of bursts over

longer timescales of a second, and irrespective of the firing order of

pre- and postsynaptic bursts.

To compare spike- and burst-based mechanisms in the

remodeling of synaptic connections in a realistic developmental

scenario, we examine the segregation of ON and OFF RGCs

(which respond to light increments and decrements, respectively)

onto postsynaptic neurons in the LGN. Early in development,

individual LGN neurons receive inputs from w20 mixed ON and
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OFF RGCs; these inputs segregate such that eventually LGN

neurons receive inputs from 1–3 RGCs of the same type (ON or

OFF) [6,17]. Blocking spontaneous activity inhibits this segrega-

tion [18,19]. Recent experiments in mouse identified a difference

in the firing patterns of RGCs that might instruct ON/OFF

segregation: at P12, cells of the same type fire together, but OFF

RGCs fire about a second after ON RGCs [20]. This asynchrony

differs from that found in ferret, where OFF cells fire more often

than ON cells [21,22].

Here, we report results from a modeling study of the properties

of experimentally-proposed synaptic plasticity rules and modifica-

tions to these rules necessary to capture the segregation of ON and

OFF retinal inputs to a postsynaptic LGN neuron driven by

recorded RGC spike trains [20]. We take two approaches to

investigate this problem: (i) by making various assumptions, we

reduce the system to one that is analytically tractable, to allow us

to use eigenvalue theory to predict synaptic weight development

[22–24]; (ii) computational simulations allow us to test a larger

system with less-restrictive assumptions. Combining these ap-

proaches gives us insight into why the models perform as they do.

Unsurprisingly, we find that a naively-implemented (additive) pair-

based STDP [25] cannot segregate ON and OFF inputs using

experimental values for the balance between synaptic potentiation

and depression [9,10,26]. Since STDP integrates spikes over tens

of milliseconds, on this timescale ON/OFF correlations are much

smaller than ON/ON and OFF/OFF correlations, and both ON

and OFF RGCs successfully drive the postsynaptic neuron leading

to potentiation of both cell types. Therefore, homeostatic

mechanisms must be implemented to induce synaptic weight

competition [27,28]. However, for biological ratios of depression

to potentiation close to unity, the segregation outcome is highly

sensitive to the choice of parameters. This sensitivity aries since

STDP with approximately balanced potentiation and depression

does not utilize the correlations between cells but rather the cells’

time-averaged firing rates. Within the millisecond-long integration

timescales, the second-long RGC correlations appear noisy and

essentially constant. Due to the asymmetry of STDP potentiation

and depression effects cancel each other, such that the signaling

component of STDP for segregation is diminished. Since longer

integration timescales are more appropriate for capturing the

firing patterns of the two input types, when we extend these

timescales of STDP to half a second, segregation is always biased

towards the cell that fires first, ON. We find that BTDP can

robustly drive ON/OFF segregation in the LGN without requiring

normalization, because in addition to the second-long timescales, it

integrates pre- and postsynaptic activity irrespective of temporal

order. The segregation outcome results from a trade-off between

the shorter high-frequency bursts of ON cells, and the more

strongly correlated OFF cells. Despite differences in firing

patterns, our model can also reproduce ON/OFF segregation in

ferret [22], suggesting a universality of the rule which governs

ON/OFF segregation across species.

Results

In Figure 1A we illustrate the model used in this study,

consisting of multiple ON and OFF RGC inputs projecting in a

feedforward manner to a postsynaptic neuron in the LGN. Inputs

to the model were experimentally-recorded activity patterns in the

form of spike trains from P12 mouse retina by Kerschensteiner

and Wong [20], with 0:1 ms precision and duration of *1 hour.

Six experimental data sets were used (all recordings available

online as Dataset S1), each consisting of 5–8 mixed (ON and OFF)

RGC inputs recorded by one field of the multielectrode array used

by Kerschensteiner and Wong [20]. Due to the high density of

electrodes within one recording field (30 mm between electrodes),

differences in distance-dependent correlation among RGCs within

the same data set were not relevant at this age [29]. RGCs were

previously identified by Kerschensteiner and Wong as ON or OFF

by light modulation; at the age studied, 93% of the total recorded

RGCs showed a response exclusively to light onset or offset [20].

This suggests that relatively few RGCs at this stage display mixed

ON and OFF responses. We report input statistics (firing rates,

numbers of ON and OFF inputs in each data set) in Table 1.

Given these inputs, the activity of the postsynaptic LGN neuron

was generated using two different models (Materials and Methods):

in a biologically-realistic model we simulated the postsynaptic

neuron with nonlinear integrate-and-fire dynamics and used as

inputs the spike trains of all ON and OFF RGCs in each data set;

in a reduced model we based postsynaptic activity on a linear

Poisson neuron, and derived a linear equation for the dynamics of

two synaptic weights, one ON and one OFF, using input statistics

fits of the most correlated ON/ON and OFF/OFF cell pairs

(Figure 1B). Change in synaptic strength was governed by STDP

(Figure 2A) or BTDP (Figure 2B), where Figure 2C illustrates how

bursts were detected. The two modeling approaches (linear

Poisson and nonlinear integrate-and-fire models) complement

each other in identifying which plasticity rule can read out key

retinal wave properties for ON/OFF segregation.

Standard STDP with 20 ms timescales for spike
integration fails to guide ON/OFF segregation in realistic
parameter regimes

First, we studied a standard pair-based STDP rule with additive

synaptic change (Figure 2A) [25] under the reduced linear model

framework (Materials and Methods) [24]. Comparing typical input

correlation timescales used by the linear model (for example, data

set 1 in Figure 1B) with the timescales of spike integration in STDP

(Figure 2A), suggested that the resulting weight dynamics would be

determined by the relative strength of the correlation between

ON/ON and OFF/OFF pairs for a small time lag around 0 ms

(Figure 1B, top and middle panels), because the millisecond-long

correlation window of STDP would ignore the +1 second offset

in the ON/OFF and OFF/ON correlation pairs (Figure 1B,

Author Summary

Many central targets in the brain are involved in the
processing of information from the outside world. Before
information about the visual scene reaches the visual
cortex, it is preprocessed in the retina and the lateral
geniculate nucleus. Connections which relay this informa-
tion between the different brain targets are not deter-
mined at birth, but undergo a developmental period
during which they are guided by molecular cues to the
correct locations, and refined by activity to the appropriate
numbers and strengths. Before the onset of vision,
spontaneous activity generated within the retina plays
an important role in the remodeling of these connections.
In a computational and theoretical model, we used
recorded spontaneous retinal activity patterns with several
plasticity rules at the retinogeniculate synapse to identify
the key properties underlying the selective refinement of
connections. Our model shows robust behavior when
applied to both mouse and ferret data, demonstrating that
a common plasticity rule across species may underlie
synaptic refinements in the visual system driven by
spontaneous retinal activity.

ON/OFF Segregation in the LGN
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bottom panel). We explored segregation outcome as a function of

the balance between depression and potentiation effects in the

plasticity rule, denoted by the ratio of the negative and positive

integrals of STDP, A{t{=Aztz (Figure 2A). Most experimental

data have reported similar integration timescales for depression

and potentiation, and approximately equal amplitudes [30], or

Figure 1. Model description and input correlation functions. (A, left) An LGN neuron receives feedforward weak synaptic input from
neighboring ON (red) and OFF (blue) RGC inputs early in development. (A, right) Spontaneous retinal waves selectively refine RGC inputs, such that
synaptic weights of one RGC type (ON) strengthen, while weights of the other RGC type (OFF) decay to 0, resulting in an ON-responsive LGN neuron.
Sample P12 spike rasters in the middle demonstrate that ON cells fire shorter bursts of higher spike frequency, while OFF cells fire longer bursts of
lower spike frequency, *1 second after ON [20]. Also shown are spike rasters for a developing LGN neuron receiving weak mixed ON and OFF inputs,
and for a refined LGN neuron, receiving selective input solely from ON RGCs. LGN spiking activity was generated using the integrate-and-fire model in
Equations 12–13. (B) Correlation functions for the input spike trains shown in (A) (mouse data set 1). The input correlation function for RGCs of the
same type (ON/ON and OFF/OFF) peaks at *0 seconds, while for RGCs of different type peaks at *{1 second for ON/OFF and *z1 second for
OFF/ON pairs. Symmetric decaying exponentials were fit to the pairwise input correlations using Equation 11. Peak amplitudes and decay time
constants for pairs with maximal peaks are reported in Table 1.
doi:10.1371/journal.pcbi.1000618.g001

Table 1. Peak amplitudes and decay time constants of the symmetric fall-off exponential fits to the correlation functions of the
most-correlated input pair from spontaneous retinal wave recordings by Kerschensteiner and Wong [20] (values given as
estimate+standard error). SSON=ONT(t) and SSOFF=OFFT(t) denote the average firing rates of the two most correlated ON and OFF
cells in each data set; other parameters are illustrated in Figure 1B.

Set 1 2 3 4 5 6

# ON cells 3 6 3 5 4 3

# OFF cells 3 2 2 2 2 5

SSON=ONT(t) (Hz) 1.51 0.40 0.70 1.01 0.34 1.04

AON=ON (Hz2) 14:025+0:104 1:723+0:014 3:633+0:050 4:306+0:053 1:950+0:016 6:791+0:051

tON=ON (s) 0:235+0:002 0:492+0:006 0:440+0:009 0:327+0:006 0:354+0:004 0:475+0:005

dON=ON (s) {0:016+0:001 0:046+0:003 {0:022+0:004 0:073+0:003 0:026+0:002 0:008+0:002

SSOFF=OFFT(t) (Hz) 2.94 0.63 0.80 2.44 2.06 2.48

AOFF=OFF (Hz2) 14:409+0:172 1:808+0:021 3:082+0:050 14:154+0:158 8:641+0:081 21:463+0:138

tOFF=OFF (s) 0:726+0:012 0:729+0:012 0:501+0:011 0:491+0:008 0:798+0:010 0:452+0:004

dOFF=OFF (s) {0:353+0:006 0:069+0:006 {0:362+0:006 0:162+0:004 {0:136+0:005 0:052+0:002

AON=OFF (Hz2) 11:620+0:140 1:561+0:022 6:106+0:091 9:767+0:156 2:638+0:033 10:185+0:084

tON=OFF (s) 0:489+0:008 0:747+0:015 0:428+0:009 0:456+0:010 0:578+0:010 0:556+0:006

dON=OFF (s) {1:200+0:004 {1:405+0:007 {0:765+0:004 {1:238+0:005 {1:143+0:005 {0:890+0:003

The number of ON and OFF cells used in the simulated integrate-and-fire model are also listed for each data set. The OFF/ON correlation function is a reflection about 0
of the ON/OFF correlation function, such that AOFF=ON~AON=OFF , tOFF=ON~tON=OFF and dOFF=ON~{dON=OFF .
doi:10.1371/journal.pcbi.1000618.t001

ON/OFF Segregation in the LGN
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even a slight dominance of potentiation, thus, suggesting a

depression-to-potentiation ratio less than or equal to 1 (for

example, 0:80 [10], and 0:38 [9]). Under these limitations, we

studied STDP with equal potentiation and depression timescales of

tz~t{~20 ms, which simplifies the depression-to-potentiation

ratio to the ratio between amplitudes, R~A{=Az. Fixing the

maximum potentiation amplitude Az, we varied R through the

maximum depression amplitude A{.

In Figure 3A (theory) we show the weight dynamics for data set

1 for different values of R. The vector fields and example

trajectories demonstrate the segregation outcome for any initial

condition in the range ½0,wmax� for the ON and OFF weights. For

experimentally-observed ratios of R&1:0, any initial condition led

to the maximal weight potentiation of both cell types (top panel).

Increasing R replaced the region where all weights grow, with

regions where depending on initial conditions either ON or OFF

segregation occurred (two middle panels). Many initial condition

combinations (even those giving a prominent bias to ON) resulted

in OFF segregation (bottom panel). We confirmed segregation

results from the reduced linear model by simulating spikes for the

postsynaptic LGN neuron with an integrate-and-fire model in

Figure 3A (simulation), where all ON (3) and OFF (3) spike trains

from data set 1 were used as inputs. The space of all initial

conditions for the ON and OFF weights in ½0,wmax� was explored

in discrete steps, such that a separate simulation was run for each

combination of initial conditions. Both theory and simulation

demonstrated a similar trend for increasing R (corresponding

panels in Figure 3A, theory and simulation), though not

surprisingly the ratios did not closely match.

Comparing results from the reduced linear Poisson model and

the simulated integrate-and-fire model for the other data sets (data

not shown), however, did not produce consistent results as for data

set 1. To simultaneously demonstrate the difference in outcomes

between the two models, and the absence of segregation across all

data sets, we computed a segregation index (Equation 16,

Materials and Methods). While a detailed presentation of the

segregation results using each modeling approach and for the

whole range of initial conditions in ½0,wmax� can be made for all

data sets as for data set 1 in Figure 3A, for the sake of brevity we

present only the segregation index with fixed unbiased initial

weights of 4:0 for both ON and OFF in Figure 4A,B. The

segregation index was, in fact, the same for all unbiased initial

conditions (uniformly distributed along the main diagonal of the

two-dimensional weight space) for all data sets as for data set 1 in

Figure 3A. The reduced linear model is two-dimensional, thus, by

design segregation occurs when one weight wins and the other

loses; this always happens if R is sufficiently large. Figure 4A shows

the segregation index under the reduced linear model framework,

where the numbers in each bar denote the minimum R required

for the selected unbiased initial conditions to give segregation. A

common requirement for segregation across all the data sets was a

depression-to-potentiation ratio R much larger than observed

experimentally [9,10], and in theoretical work with synthetically-

generated Poisson inputs [24,25]. This was needed to account for

the large pairwise correlations of the real spike recordings, in

contrast to the small cross-correlations between independent

Poisson inputs which need R slightly larger than one (for example,

R~1:05) [25].

Unlike the reduced linear model, segregation in simulations

with the integrate-and-fire model is harder to achieve, since it

requires a subset of all weights of one cell type to potentiate

maximally, while all weights of the other cell type to depress. Only

in data sets 1 (Figure 3A) and 2 (data not shown) we found that

increasing R beyond 3.0 resulted in segregation for a range of

initial conditions, consistent with the reduced linear model in

Figure 4A. Segregation was not achieved in the other data sets for

any studied R. Though it is possible that we did not sample the

range of R finely enough, a value of R which could lead to

Figure 2. STDP versus BTDP and burst detection. (A) STDP modifies synaptic strength based on the timing, Dt~tpost{tpre (indicated by
horizontal arrows), and firing order of pairs of pre- and postsynaptic spikes [10]. Synaptic change occurs in a time window on the order of tens of
milliseconds determined by tz and t{, with maximum change at Dt&0 given by Az and A{(%) in EPSC (evoked postsynaptic current) size. (B)
BTDP governs synaptic change based on the timing (but not order) of pre- and postsynaptic bursts over a second-long time window, tz [16]. We fit
the blue symmetric exponential curve to the linear experimental fit, where Az and I denote the amounts of maximum synaptic potentiation and
depression in % of EPSC size, respectively. (C) We detected ON (top) and OFF (bottom) bursts by accumulating burst detection variables DON

pre and
DOFF

pre . At the arrival of a spike, D increases by 1, and otherwise decays exponentially with a time constant 100 ms. A burst was detected once D
reached a fixed threshold (here 1.5) denoted with an asterisk; D was not allowed to exceed the threshold value. The location of the asterisk (instead
of the start time of the burst) was used to evaluate the burst latency for synaptic change. Parameters for STDP and BTDP are listed in Table 3. Figure
modified from [68] with permission from the HFSP journal.
doi:10.1371/journal.pcbi.1000618.g002
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segregation would require careful tuning because of two

observations: (i) increasing R beyond some value eventually led

to depression of all weights, and (ii) for smaller values of R for

which we did observe potentiation of some weights, the result was

always potentiation of both ON and OFF weights as these tightly

correlated RGCs of different cell type reliably drove postsynaptic

spikes within 5–10 ms. A summary of the segregation index

simultaneously showing the absence of segregation for all data sets

is given in Figure 4B for a sample ratio of R~2:0 and unbiased

initial conditions of 4:0 for both ON and OFF weights.

We also explored an STDP rule with a longer temporal window

for synaptic depression than for potentiation corresponding to

experiments from somatosensory cortex, tz~10 ms and

t{~60 ms [26]. Now the ratio of the negative to positive areas of

the STDP integral, A{t{=Aztz, took larger values by considering

smaller ratios of the depression and potentiation amplitudes,

R~A{=Az. However, only data set 1 resulted in OFF segregation

for this choice of STDP parameters (data not shown).

In conclusion, our modeling showed that a temporally-

asymmetric plasticity rule like STDP, integrating pre- and

postsynaptic spikes over short timescales on the order of tens of

milliseconds which ignore the correlation timescales between

inputs of different cell type, failed to segregate these ON and OFF

RGC inputs in a model of a developing LGN over a wide range of

parameters and in the absence of synaptic competition. Under

STDP, the growth of synaptic weights of one cell type did not

prevent the growth of weights of the other cell type, because ON

and OFF cells fire independently within the timescale of STDP.

Figure 3. STDP without normalization does not result in segregation. (A) STDP with spike integration time windows of 20 ms results in ON/
OFF segregation only for two data sets out of six (data set 1 shown here; data set 2 not shown), assuming a depression-to-potentiation ratio,
R~A{=Az, much larger than experimentally-observed. Theory and simulation show similar trends, although actual values of R differ. (Theory)
Vector fields and example trajectories of the ON-OFF weight dynamics illustrate results from the linear model. The direction of two eigenvectors of
the plasticity matrix Q (pointing out of the origin for a positive eigenvalue, and into the origin for a negative eigenvalue) determine how R affects
segregation: as R increases, regions of initial conditions where both weights potentiate (trajectories in black) become areas where segregation occurs
(trajectories in red for ON and blue for OFF). (Simulation) In the simulated integrate-and-fire model (here, data set 1 with 3 ON and 3 OFF inputs), a
separate simulation was run for each initial condition uniformly sampled between 0 and the maximum weight value, wmax, for the ON and the OFF
weights. Here wmax~5:0 and the discrete steps for the initial weights were 0:5. The colored symbol indicates the segregation outcome according to
the legend, matching the color of the trajectories in the linear model. The size of the colored circles denotes the percentage of synaptic weights of a
particular RGC type which potentiated maximally out of all RGCs of the same type initially wired to the LGN neuron (the three dots denote 33, 66 and
100%, respectively), while all weights of the other RGC type depressed to 0. Initial weights too small to generate postsynaptic activity result in no
synaptic change (dots in the bottom left region of each plot). (B) Extending the spike integration window to match the timescale of the input
correlations to 500 ms, results in pure dominance of the ON cells, both under the theoretical and the simulated model and for any value of the ratio R
(data set 1 shown here, but all others show the same behavior).
doi:10.1371/journal.pcbi.1000618.g003
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Therefore, tightly correlated groups of ON and OFF cells which

effectively drive the postsynaptic neuron, required physiologically-

unrealistic, carefully-tuned values of the depression-to-potentiation

ratio, R, for segregation. In the integrate-and-fire model even large

R could not rescue segregation, because multiple ON and OFF

inputs caused reliable spiking of the LGN neuron, and large R

resulted in nonselective competition between all ON and OFF

cells, rather than between groups of ON and OFF cells. These

results are not too surprising given recent theoretical work on

STDP [31]. Introducing dependence of weight change on the

current weight, choosing a different spike-pairing scheme or

implementing dendritic and axonal synaptic delays may differently

affect the behavior of the modeled system [31]. Furthermore,

existing correlation-based models of ocular dominance require

some form of synaptic competition to segregate inputs from the left

and the right eye [32], which we considered next.

Figure 4. A summary of segregation under STDP and BTDP. (A) Segregation indices using Equation 16 for all data sets following the linear
modeling approach with STDP using unbiased initial conditions of 4.0 for both ON and OFF weights. By design the theoretical model always results in
segregation for large enough R; the minimum R for segregation is written in each bar. (B) Segregation indices from numerically implementing STDP
for all data sets illustrate the absence of segregation. A high R~2:0 was used here; increasing R beyond 3.0 results in segregation only for data sets 1
(Figure 2A) and 2 (data not shown), inconsistent with linear model predictions in (A). (C) Segregation indices from the theoretical and numerical
implementation of BTDP show consistent segregation across all data sets using the experimentally-observed ratio R~I=Az~0:42 [16]. (D) STDP
with subtractive normalization can induce weight competition and segregation in the linear model. For realistic depression-to-potentiation values of
R, the outcome is always OFF segregation. Increasing R to the values which generated segregation in (A) (denoted by the black vertical lines) results
in ON segregation for sets 4 and 6, matching results from (A). Note that in the linear model wmax simply scales the weights and thus, it does not affect
segregation outcome. (E) STDP with subtractive normalization also results in segregation in the simulated integrate-and-fire model for realistic values
of R. However, results depend on parameters: for instance, changes in R (horizontal axis) sometimes result in a switch from ON to OFF segregation
(data set 2), and sometimes from ON to no segregation (data set 3). Also, the amount of total synaptic weight maintained by the postsynaptic neuron
(top bar for each set wmax~5 and bottom bar wmax~10) affects segregation outcome (for example, data sets 4 and 5). While subtractive
normalization rescues segregation for the STDP rule, results are inconsistent across the two different modeling approaches (compare to D).
Uncolored sections in each bar denote no segregation.
doi:10.1371/journal.pcbi.1000618.g004

ON/OFF Segregation in the LGN
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STDP with homeostatic mechanisms can rescue
segregation in carefully-tuned regimes

It is likely that synaptic plasticity rules work together with

homeostatic mechanisms during formation and refinement of

developing circuits [33]. While most work has examined

developing cortical neurons where synaptic scaling is induced in

response to changes in global activity levels [34,35], there is recent

evidence of response homeostasis at the developing retinocollicular

system maintained at the level of synapses [36]. We considered the

implications of this second type of homeostasis together with

STDP on segregation. Chandrasekaran et al. [36] found that at

the level of a single postsynaptic neuron in the superior colliculus,

the total number and strength of individual synapses is preserved

during development. We implemented this as subtractive normal-

ization, because it has been shown to induce weight competition

(in contrast to divisive normalization) in traditional forms of

Hebbian learning [27,37]. For each data set, we chose a number

of synaptic weights N that the postsynaptic LGN neuron would

maintain at adulthood with maximal strength wmax, such that the

total synaptic input to the LGN neuron maintained at all time

during the simulation was Nwmax. In addition to STDP, synaptic

weights were modified by adding/subtracting the synaptic deficit/

excess towards maintaining the target synaptic strength (Materials

and Methods). As in STDP with large R (Figure 4A), STDP with

subtractive normalization for the reduced linear model where a

single ON and a single OFF weight competed, also resulted in

segregation but for biologically-plausible values of R (Figure 4D).

However, the segregation outcome for R&1:0 in Figure 4D did

not match results from STDP without normalization in Figure 4A,

and in particular the outcome was always OFF segregation

(Table 2). While same cell type correlations are higher than

opposite cell type correlations, when considered within the

millisecond-long window of STDP these second-long correlations

are noisy and essentially constant. Then for biologically-plausible

ratios of depression-to-potentation near unity (R&1) the effect of

the correlations is diminished, because the contributions from the

potentiating and from the depressing part of temporally-asym-

metric STDP cancel. In this case, the evolution of the weights is

entirely determined by single neuron properties, and in particular,

by the time-averaged firing rate of each cell. The OFF cells for all

data sets have larger firing rates than the ON cells (Table 1),

leading to a bias for OFF segregation in Figure 4D. As R increases,

the correlations start to become more relevant. The product of the

correlations with STDP in Equation 8 (Materials and Methods) is

significantly negative for large R for all cell pairs, and moreover, it

is more negative for same cell types due to their larger correlations

in comparison to opposite cell types. Therefore, for some data sets

where the negative contribution of the correlations dominated the

positive contribution of the average firing rates (data sets 4 and 6),

the ON cell with lower firing rate won for sufficiently large R. In

particular, for R equal to the values which resulted in segregation

without normalization in Figure 4A (indicated by the short vertical

lines in Figure 4D), data sets 4 and 6 produced ON segregation

consistent with Figure 4A.

In the nonlinear integrate-and-fire model where multiple ON

and OFF inputs were used, implementation of homeostasis also

rescued segregation for biologically-plausible values of R (Figure 4E).

However, even with subtractive normalization the final outcome in

simulations depended on parameter choice (depression-to-potenti-

ation ratio R and maximum synaptic strength wmax) and differed

from the outcome of the reduced linear model (Figure 4D,E and

Table 2). To understand whether the dependence of the segregation

outcome was the result of variable input statistics, or the

nonlinearity of the integrate-and-fire model, we simulated the full

linear model using all RGCs in each data set. In Table 2 we

summarize the segregation outcome for a realistic depression-to-

potentiation ratio R between 0.8 and 1.0, under the three different

models: the reduced linear model (Figure 4D), the full linear model,

and the integrate-and-fire model, for a range of different wmax

values (Figure 4E). Both the reduced and the full linear model had a

preference for OFF segregation for all data sets. Above, we

explained that the reason for this OFF bias is due to the diminishing

effect of the correlations under STDP and the dominance of firing

rates (which are generally higher for the OFF cells) for R&1. As an

exception, the full linear model for data set 3 failed to capture OFF

segregation because the multiple ON and OFF cells had more

variable firing rates than the consistently larger OFF firing rates in

the other data sets. With the output nonlinearity of the integrate-

and-fire model, we observed two regimes: (1) for a small wmax, the

ON cells won in all data sets (Table 2) unlike the linear model,

probably because the short timescales of STDP captured the high

instantaneous firing rates of ON cells within a burst (as indicated by

the smaller decay timescales for ON/ON than OFF/OFF RGC

pair correlations in Table 1). The OFF cells most likely failed to

drive the postsynaptic neuron as efficiently as the ON cells, due their

lower instantaneous firing rates within a burst; (2) for a large wmax,

the OFF cells won in most data sets in agreement with the linear

model. The exact transition point from (1) to (2) depended on the

data set (Table 2). Thus, fine-tuning of wmax is necessary to develop

similar numbers of ON-selective and OFF-selective LGN neurons.

Again, the sensitivity to wmax arises because STDP does not exploit

the correlations between cells, but rather the time-averaged firing

rates. In the regime of R&1, the contributions of the potentiation

and depression regions of STDP cancel with each other yielding

dominance of the time-averaged firing rates and OFF segregation.

In the less-relevant regime of Rw2, STDP suppresses cooperation

between same type cells. While in the reduced linear model this

increase in R resulted in a switch from OFF to ON segregation for

data sets 4 and 6, in the full linear model and in the simulated

integrate-and-fire model, it introduced stronger competition

between same type than between opposite type RGCs, eventually

eliminating segregation (Figure 4E, large R).

In summary, we showed that adding subtractive normalization

to STDP resulted in ON/OFF segregation but the outcome was

highly sensitive to the choice of parameters. For biologically-

realistic depression-to-potentiation values of R&1, temporally-

asymmetric STDP with normalization consistently favored one cell

Table 2. Parameter sensitivity of STDP with subtractive
normalization.

Model set 1 set 2 set 3 set 4 set 5 set 6

2D linear OFF OFF OFF OFF OFF OFF

full linear OFF OFF — OFF OFF OFF

I&F with wmax~5 ON ON ON ON ON ON

I&F with wmax~8 OFF ON ON ON OFF ON

I&F with wmax~10 OFF ON ON OFF OFF —

I&F with wmax~15 OFF OFF ON OFF OFF —

I&F with wmax~20 — OFF — OFF OFF —

Segregation results are shown for the reduced two-dimensional linear model,
the full linear model with all RGC inputs, and the nonlinear integrate-and-fire
model with all RGC inputs for a biologically-plausible range of the depression-
to-potentiation ratio R[½0:8,1�. ON denotes ON segregation, OFF denotes OFF
segregation, and a dash denotes no segregation.
doi:10.1371/journal.pcbi.1000618.t002
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type over the other, depending on the model of the postsynaptic

neuron. We determined a parameter range for wmax where the

linear model can approximate the nonlinear model, but to obtain

an equal preference for ON or OFF segregation, fine-tuning of

wmax was critical. Even though it is plausible that the sensitivity of

the model to various parameters may be implemented by a

biological system during development, the model predicts that the

system will produce very different outcomes for any small

perturbation induced by environmental changes, stochastic events,

unreliable vesicle release, and so on, which seems unlikely. The

millisecond-long integration timescales of STDP are too short to

reliably sample the noisy correlation functions which naturally

extend over much longer timescales, thus making STDP

unsuitable to study segregation in this system. Later in the paper

we explore a more appropriate plasticity rule modulating synaptic

change and during development, which resulted in segregation

without the need for presynaptic homeostatic control or careful

parameter tuning (results summarized in Figure 4C).

Temporally-asymmetric STDP with second-long
timescales favors ON segregation

A spike-based rule like STDP cannot explain ON/OFF

segregation in the LGN without synaptic competition because

tightly correlated retinal inputs of different cell type reliably drive

postsynaptic activity within 5–10 ms. Even with subtractive

normalization, the short timescales of STDP are ineffective at

robustly driving ON/OFF segregation. Butts and Rokhsar [14]

found that most information content of spontaneous retinal waves

is contained over timescales of 100–1000 ms. Furthermore, Butts

et al. [16] recently proposed a burst-based rule for modifying

synaptic strength over second-long timescales in the developing

retinogeniculate system. We next asked if any plasticity rule

integrating pre- and postsynaptic activity over the relevant input

correlation timescales of ON and OFF RGCs can explain

segregation. Thus, we investigated a second plasticity rule, a

modified STDP with extended spike integration timescales.

Vector fields and example trajectories in Figure 3B (theory)

illustrate segregation scenarios produced with the reduced linear

model for data set 1 with tz~t{~500 ms in STDP. We

confirmed these in Figure 3B (simulation) with the integrate-and-

fire model where all ON (3) and OFF (3) inputs in data set 1 were

used with multiple (discretely-sampled) initial conditions in

½0,wmax� for the ON and OFF weights. As the depression-to-

potentiation ratio R increased, the region of initial conditions for

which weights of both cell types potentiated was gradually

replaced with a region of ON segregation. Segregation results

followed a similar qualitative trend for the other five data sets (data

not shown). In conclusion, modifying synaptic weights based on

STDP with second-long timescales for spike integration to match

input correlation timescales resulted in ON segregation for all data

sets and for any combination of initial conditions. This effect was

not only produced by the reduced linear model, but also by the

simulated integrate-and-fire model for the LGN neuron. Despite

different numbers of ON and OFF retinal inputs in each data set

(Table 1), a subset of ON synaptic weights always potentiated,

while all OFF weights were eliminated. Since LGN neurons can be

both either ON- or OFF-responsive [17,38,39], we conclude that

such a rule is implausible as it never results in OFF-responsive

LGN neurons.

These modeling studies demonstrate that a plasticity rule for

segregation does not only have to integrate pre- and postsynaptic

activity over timescales matching those of the input correlations,

but that other constraints are also required. Since the firing of ON

RGCs precedes that of OFF RGCs, any rule which integrates

activity over the second-long correlation timescales, must do so

without giving a naı̈ve advantage to the cell which fires first.

STDP, on the contrary, favors synaptic inputs that can serve as

‘earliest predictors’ of other spike events [25,40]. Now we turn to

BTDP which integrates pre- and postsynaptic bursts irrespective of

their firing order.

Temporally-symmetric BTDP with second-long timescales
robustly guides ON/OFF segregation

Can a temporally-symmetric burst-based rule integrating pre-

and postsynaptic bursts over second-long timescales guide ON/

OFF segregation in the LGN? Such a rule, BTDP, was

experimentally-proposed for the developing retinogeniculate

system and tested in a model for eye-specific segregation using

simulated retinal waves [16]. We found that BTDP robustly guides

ON/OFF segregation in all data sets (Figure 5), without requiring

homeostatic control of presynaptic connectivity to introduce

synaptic competition. BTDP resulted in segregation assuming a

realistic, experimentally-observed ratio of depression-to-potentia-

tion R~I=Az (Figure 2B). (Although R is defined differently for

STDP and BTDP, it has the same meaning in both rules.)

Segregation outcome fell under two qualitative trends: dominance

of ON segregation (data sets 1–3 in Dataset S1, Figure 5A) and

dominance of OFF segregation (data sets 4–6 in Dataset S1,

Figure 5B), where ‘dominance’ was defined as which cell type

normally won, averaged over all initial conditions.

In Figure 5A (theory) we show the segregation outcome under

the reduced linear model which used as inputs the correlation

functions (Table 1 and Figure 1B) for data set 1, as a representative

of data sets 1–3. Fixing the symmetric timescale of integration tz

and the maximum amplitude of potentiation Az according to

Table 3, we varied the depression-to-potentiation ratio R~I=Az

by changing the amount of depression I . As R increased towards

the experimentally-observed value of 0.42 [16], initial conditions

which originally led to the maximal potentiation of both weights

(top panel), now resulted in ON or OFF segregation (two middle

panels). ON segregation was the only outcome for large R (bottom

panel). Further increasing R led to overall depression of all weights

(data not shown). The results with the reduced linear model driven

by the correlation functions of the most correlated ON and OFF

cell pairs were confirmed when simulating spiking activity using a

nonlinear integrate-and-fire neuron for the LGN neuron driven by

all ON (3) and all OFF (3) spikes trains in data set 1 (Figure 5A,

simulation). For each combination of initial conditions of ON and

OFF weights and experimentally-observed ratio R&0:42 [16],

some weights of only one cell type potentiated, while all weights of

the other type depressed, indicating successful segregation

(Figure 5A, simulation, third panel). Since there were different

numbers of ON and OFF inputs in each data set (Table 1), our

results show that segregation is robust and is not biased by the

initial numbers of ON and OFF RGCs connecting to the LGN

neuron. Furthermore, the match between any R of the reduced

linear and the simulated integrate-and-fire model was remarkably

good. We called the trend illustrated in Figure 5A dominance of

ON segregation, because for the experimentally-observed ratio R
[16], more initial condition combinations resulted in ON

segregation than in OFF segregation (Figure 5A, third panels).

In particular, unbiased initial conditions for the ON and OFF

weights (located along the main diagonal), and even a small OFF

bias in initial conditions, resulted in ON segregation. Data sets 2

and 3 showed qualitatively similar dominance of ON segregation

(data not shown).

The segregation outcome under the reduced linear model for

data set 4, as a representative of data sets 4–6, is illustrated in

ON/OFF Segregation in the LGN
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Figure 5B (theory). As before, we increased R towards the

experimentally-observed value of 0:42 [16] and saw that initial

conditions which led to the maximal potentiation of both weights

for small R (top panel), now resulted in ON or OFF segregation

(two middle panels). To obtain OFF segregation as the only

outcome for R larger than experimentally-observed in the same

way we obtained ON segregation for data sets 1–3 in Figure 5A

(bottom panels), we had to extend the correlation timescale

(tON=ON) of ON RGC pairs in Figure 5B (theory, bottom panel).

Simulating spiking activity using a nonlinear integrate-and-fire

model for the LGN neuron driven by all ON (5) and all OFF (2)

spike trains in data set 4 matched the segregation results from the

reduced linear model, with a close correspondence of R (Figure 5B,

simulation). Later we discuss why for large R the simulated model,

but not the theoretical model, resulted in OFF segregation for all

initial conditions. As before, segregation was robust and did not

depend on the initial numbers of ON and OFF retinal inputs

(Table 1). Data sets 4–6 showed dominance of OFF segregation,

for the experimentally-observed ratio R [16] shown in Figure 5B

(third panels). Furthermore, unbiased initial conditions for the ON

and OFF weights (located along the main diagonal), and even a

small ON bias in initial conditions, resulted in OFF segregation.

Data sets 5 and 6 showed qualitatively similar dominance of OFF

segregation (data not shown).

To summarize, we found that not only the second-long

timescales of bursts integration are needed for segregation, but

also the temporally-symmetric feature of BTDP. In particular, the

negative and symmetric BTDP window at long temporal delays in

firing, mutually inhibited the simultaneous growth of ON and

OFF synaptic weights, thus providing the necessary synaptic

competition without implementing additional homeostatic mech-

anisms, in contrast to STDP. In Figure 4C, we summarize the

segregation results of BTDP for all the data sets using experimental

values of R [16], and unbiased initial conditions. Figures 4C and

Figure 5. BTDP results in robust segregation. (A) Segregation results using BTDP for data set 1, a representative spike train recording of data
sets 1–3 which have similar peaks of the pairwise input correlation for ON/ON and OFF/OFF pairs. Drawing conventions and legend as in Figure 2, and
as before wmax~5:0 with discrete steps for the initial weights of 0:5. As the depression-to-potentiation ratio in BTDP, R~I=Az, increases towards
the experimentally-observed ratio, R&0:42 [16], theory and simulation show the segregation of ON and OFF RGC inputs (red and blue trajectories),
emerging from a state where the weights of both cell types potentiate maximally for small R (black trajectories). The region of initial conditions
resulting in ON segregation is larger than the region resulting in OFF segregation, indicative of ON dominance (see main text). Similarly, unbiased
initial conditions located along the main diagonal in each plot show ON segregation. (B) Segregation results using BTDP for data set 4, a
representative spike train recording of data sets 4–6, which have higher OFF/OFF input correlation peaks than ON/ON peaks. As R increases, the
dominant segregation outcome for a larger set of initial conditions is OFF segregation, in contrast to (A). While the match between theory and
simulation is consistent for data sets 4–6 and experimentally-observed R [16], for data sets 4 and 5 a narrow range of large ratios (denoted by R�)
resulted in OFF segregation only in simulations (bottom panels). To match predictions of the two models for this larger than experimentally-observed
R, tOFF was made larger than tON in the theoretical model (from 0.327 to 0.500, Table 1).
doi:10.1371/journal.pcbi.1000618.g005
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5A,B demonstrate that the structure of the inputs, in combination

with initial conditions for the ON and OFF weights, determine the

segregation outcome such that data sets 1–3 showed dominance of

ON segregation, while data sets 4–6 dominance of OFF

segregation. Mathematical interpretation of the result based on

this simple model is explored later in this paper.

Upper bound for synaptic weights does not affect
segregation under BTDP

The ratio of final (wmax) to initial synaptic strength of the

winning cell type after segregation indicates the total amount of

synaptic strengthening during this stage of development. Chen and

Regehr [6] showed that in addition to the pruning of RGC inputs

converging to a single LGN neuron (from w20 inputs at birth, to

1–3 after eye-opening), synaptic weights strengthen *50-fold.

According to more recent estimates, 5–8 input RGCs before the

onset of glutamatergic waves refine to a few after eye-opening, but

these studies did not report the total amount of synaptic

strengthening during glutamatergic waves [41,42]. So far we

explored the segregation outcome with BTDP for initial conditions

uniformly distributed in the range ½0,wmax� for wmax~5. To study

the sensitivity to the upper weight bound wmax, we compared

simulations with BTDP using wmax~5 (Figure 6A) and wmax~20
(Figure 6B). We observed no differences in the segregation

outcome for initial conditions in the region ½0,5� when both ON

and OFF segregation occur, in contrast to STDP with subtractive

normalization (Figure 4E). The main effect of increasing wmax was

that simulations took longer to show segregation. Therefore,

segregation results with BTDP are robust under changes in the

scaling of synaptic weights. Note that the linear model is by design

independent of wmax, which supports its usefulness in predicting

segregation.

The one-second offset in the firing of ON and OFF RGCs
is necessary for segregation

Kerschensteiner and Wong [20] hypothesized that ON and

OFF RGCs segregate in the LGN because of the one-second

temporal offset in their precisely-ordered firing. We performed

simulations with BTDP with the integrate-and-fire model in which

we shifted the firing of the ON cells by one second such that it was

synchronous with the OFF cells, and found that this abolished

segregation (Figure 6C). Analyzing the reduced linear model

where the ON/OFF and OFF/ON correlation functions were

shifted such that the peak occurred at *0 ms, also eliminated

segregation (data not shown). This confirms that the temporal

asynchrony is a necessary activity cue for the segregation of RGCs

of different type, but not a sufficient cue. As we demonstrate next,

the correlation structure of the inputs also significantly affects the

segregation outcome.

Insights from the linear model: eigenvalue analysis
We showed that BTDP can explain ON/OFF segregation in

the developing LGN of mouse by integrating activity (i) over

timescales relevant to the inputs, and (ii) irrespective of the order of

pre- and postsynaptic activity. Furthermore, half of the studied

data sets (1–3) demonstrated dominance of ON segregation, and

the other half (sets 4–6) demonstrated dominance of OFF

segregation. To understand why BTDP successfully captured

segregation without additional homeostatic mechanisms (but not

standard STDP, nor STDP with extended timescales), and to

determine which features of the inputs specified ON versus OFF

dominance, we dissected the linear model of Equation 7 (Materials

and Methods).

For comparison, in STDP with subtractive normalization the

RGC firing rates dominated segregation due to the millisecond-

long integration timescales, while the contribution from the

correlations cancelled due to the temporal asymmetry of STDP.

In BTDP, however, we show that the RGC correlations dominate

segregation due to the matching second-long integration time-

scales, and are further intensified by the temporal symmetry of

BTDP. The entries in the plasticity matrix Q of Equation 8

(Materials and Methods) can be obtained by multiplying the area

under the input correlation functions (Figure 1B) and the area

under BTDP (Figure 2B). From the decaying exponential fits of

the input correlations (Figure 1B and Table 1), we extracted a

common feature among the six data sets to be a smaller decay

timescale for ON/ON pairs than for OFF/OFF pairs (for data set

6 they are approximately equal), suggesting that ON cells fire

shorter high-frequency bursts. On the other hand, after comparing

correlation peaks for pairs of different cell types, we found that the

six data sets form two groups, which coincide with the preference

for ON or OFF dominance (Figure 4C). Data sets 1–3 have similar

correlation peaks for ON/ON and OFF/OFF cell pairs

(Figure 7A, left), while data sets 4–6 have a higher correlation

peak for OFF/OFF pairs than for ON/ON pairs (Figure 7A,

middle). Correlation functions for different type RGC pairs are

Table 3. Model parameters for generation of LGN activity
using the linear model (theory) and the integrate-and-fire
model (simulation), and for synaptic modification induced by
STDP or BTDP.

Parameter Notation Value

Theory

EPSP kernel� t1 (ms) 10

100

t2 (ms) 5

50

STDP/BTDP Az 0.001

Simulation

Integrate-and-fire a 0.02

b 0.2

c 250

d 2

Vth 30

STDP/BTDP� Az 0.0005

0.0001

Common parameters

Upper synaptic bound� wmax 5

10

20

STDP� tz (ms) 20

10

500

t{ (ms) 20

60

500

BTDP� tz (ms) 500

Multiple values were tested for some parameters, marked by asterisks.
doi:10.1371/journal.pcbi.1000618.t003
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reflections of each other about 0 seconds and have a peak located

at +1 second (Figure 7A, right). Therefore, a significantly larger

area of the correlation function of different type RGC pairs falls

under the negative part (than under the positive part) of BTDP

(Figure 7A, right). This results in negative off-diagonal entries in

the plasticity matrix Q of Equation 8 (Materials and Methods),

which are equal due to the reflection about 0 seconds,

qON=OFF~qOFF=ON~xv0:

Q~
qON=ON x

x qOFF=OFF

" #
: ð1Þ

A matrix of this form has eigenvalues

l1,2~
1

2
qON=ONzqOFF=OFF

� �
+

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qON=ON{qOFF=OFF

� �2
{4x2

q
[ R

ð2Þ

where l1wl2 (l1 corresponds to the expression with ‘z’ and l2

with ‘{’ sign). The eigenvector, ½z,{�T, corresponding to the

larger eigenvalue l1 and segregation of the weights, is dominant;

the other eigenvector, ½z,z�T, corresponding to l2 and

potentiation of both weights, is suppressed (here, z and {
indicate positive and negative entries in each eigenvector, and T

denotes transpose). Segregation outcome depends on the relative

size of the main diagonal terms in Q. For data sets 1–3 where the

peaks for ON/ON and OFF/OFF cell pairs are similar, a larger

area of the OFF/OFF correlation (than of the ON/ON

correlation) falls under the negative part of BTDP (Figure 7A,

left). This gives qOFF=OFFvqON=ON and resulted in dominance of

ON segregation in our simulations (Figure 4C). For data sets 4–6,

with larger OFF/OFF correlation peaks compared to ON/ON

correlation peaks, a larger area of the OFF/OFF correlation (than

of the ON/ON correlation) falls under the positive part of BTDP

(Figure 7A, middle). This gives qOFF=OFFwqON=ON and resulted in

dominance of OFF segregation in our simulations (Figure 4C).

Even though this interpretation of the reduced linear model

does not directly use the recorded spike trains in each data set

(whereas the simulated integrate-and-fire model does), but instead

uses fitted estimates of the correlations computed from the most

correlated cell pairs, results from the linear and integrate-and-fire

models agree (Figure 5). We observed an inconsistency only in

data sets 4 and 5 for R larger than experimentally-observed, where

the original correlation peaks and timescales from Table 1 resulted

in dominance of ON segregation (data not shown). In this case, the

Figure 6. Features which guide segregation under BTDP. (A) Temporal evolution of synaptic weights with R~I=Az~0:30 for data set 1 (3
ON and 3 OFF cells), as in Figure 4A, for initial conditions when the ON (first column) or the OFF cells (second column) segregate. Similarly, sample
trajectories for data set 4 (5 ON and 2 OFF cells), as in Figure 4B, for initial conditions where the ON (third column) or the OFF cells (fourth column)
segregate. Upper bound on the weights wmax~5. Even though there are more ON than OFF inputs in data set 4, the outcome does not depend on
the number of ON and OFF inputs, but on the initial conditions of the synaptic weights. Furthermore, a simple bias in the initial conditions does not
always result in segregation towards the biased cell (see Figure 4 for the segregation outcome for all initial condition combinations). (B) Increasing
the upper bound of the weights to wmax~20 does not affect the segregation outcome; weights simply take longer to segregate. (C) Delaying the
time of the spikes of ON cells by 1 second, such that they are synchronous with OFF cells, eliminates segregation.
doi:10.1371/journal.pcbi.1000618.g006
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Figure 7. Insights into ON/OFF segregation from the linear model. (A) (left) ON dominance. Factors which determine segregation for data
sets 1–3 (data set 1 in Figure 4A) with similar correlation peaks of ON/ON and OFF/OFF pairs. Segregation is the result of a trade-off between the
relative areas of the input correlation functions for ON/ON (red) and OFF/OFF (dark blue) pairs integrated by the positive and negative parts of BTDP
(green). BTDP favors ON segregation because the smaller area of the ON/ON correlation under the negative part of BTDP (denoted by {) dominates
the larger area of the OFF/OFF correlation under the positive part of BTDP (denoted by z). Therefore, qON=ONwqOFF=OFF in the plasticity matrix Q
(Equation 1). (middle) OFF dominance. Factors which determine segregation for data sets 4–6 (data set 4 in Figure 4B) with larger correlation peaks of
OFF/OFF than ON/ON pairs. BTDP favors OFF segregation because the larger area of the OFF/OFF correlation under the positive part of BTDP
dominates the smaller area of the ON-ON correlation under the negative part of BTDP, such that qON=ONvqOFF=OFF in the plasticity matrix Q
(Equation 1). (right) The reflected (about 0 seconds) input correlations between cells of different type (light blue) have a larger part of their areas
under the negative part of BTDP, ensuring negative off-diagonal terms x in Q (Equation 1) and introducing competition. (B) (left) Input correlation
functions for two of the 15 ferret data sets illustrate dominance of ON segregation. (middle) Input correlation functions for the remaining 13 ferret
data sets illustrate dominance of OFF segregation. (right) The input correlation function between cells of different type peaks at 0 seconds for ferret,
however, the wide correlation timescale (wider than in mouse) still produces negative off-diagonal terms x in Q (Equation 1), and correspondingly,
competition between the ON and OFF weights. (C) STDP drawn to scale to compare its spike integration time window with the timescale of input
correlations shown in (A) and (B). The near-0 off-diagonal terms in Q (Equation 3) inhibit segregation.
doi:10.1371/journal.pcbi.1000618.g007
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larger area of the OFF/OFF correlation (than of the ON/ON

correlation) falling under the positive part of BTDP, is not large

enough to counteract the larger area of the OFF/OFF correlation

(than of the ON/ON correlation) falling under the negative part of

BTDP. To achieve the expected dominance of OFF segregation,

we had to increase the decay timescale of the ON/ON correlation

(Figure 5B, theory, bottom panel). The simulated integrate-and-

fire model using the recorded spike trains (instead of the ON/ON

correlations) successfully captured segregation with OFF domi-

nance (Figure 5B, simulation, bottom panel). This suggests that

real spike trains may contain higher-order moments which are not

always captured by the pairwise correlations of Figure 1B, or that

some nonlinear effects of the integrate-and-fire model dominate

segregation outcome. Note that this mismatch between the

reduced linear and the integrate-and-fire model occurred only

for a small range of R larger than experimentally-observed, and

for only two of the six data sets.

In Figure 7C we show a sketch of standard STDP to illustrate

the contrast in timescales of spike integration and input

correlations. STDP ignores the peaks of the ON/OFF and

OFF/ON correlation functions located at +1 second, and the

resulting plasticity matrix has off-diagonal entries close to 0 (for

R&1)

Q~
qON=ON 0

0 qOFF=OFF

" #
: ð3Þ

With eigenvectors equal to ½z,0�T and ½0,z�T, the reduced linear

model offers a simple explanation about why STDP failed to

capture segregation for R&1 and without normalization con-

straints. Note that the main diagonal entries are large and positive,

due to the contribution from the autocorrelations in Equation 8 for

Q (Materials and Methods), as discussed previously. Increasing R
introduced the required asymmetry for competition between the

two weights. This follows from the current analysis because large

R makes the off-diagonal entries in Q negative as in Equation 1.

Extending integration timescales of STDP to the relevant input

correlation timescales results in the plasticity matrix

Q~
qON=ON z

{ qOFF=OFF

" #
, ð4Þ

where qON=OFFw0 since the ON/OFF correlation peaks at

z1 second, while qOFF=ONv0 since the OFF/ON correlation

peaks at {1 second. This analysis of the modified STDP rule

explains why it always resulted in ON segregation in our

simulations.

In summary, we have shown that BTDP can explain ON/OFF

segregation in the developing mouse LGN driven by spontaneous

retinal waves. BTDP promoted cooperation between weights of

same type cells and competition between weights of different type

cells without additional homeostatic control. We predicted that the

LGN neuron will become ON- or OFF-responsive based on a

local competition of the firing patterns of neighboring RGCs

connecting to it, whose most relevant features for segregation are

contained in the pairwise temporal correlations. As ON bursts are

shorter than OFF bursts as suggested by the smaller correlation

timescales, under BTDP this would suggest dominance of ON

segregation. However, if OFF bursts are more highly correlated as

suggested by the higher correlation peaks, then the result is

dominance of OFF segregation. In particular, we saw that ON and

OFF RGCs with sufficiently-different firing properties to compete

for the wiring of the LGN neuron, are located close to each other

(within 50 mm). Thus, it is possible that RGC axons which lose the

competition at one LGN neuron because of stronger competitors,

win at another. This developmental mechanism is similar to that

seen in mouse neuromuscular junction where the fate of axonal

branches is dependent on the identity of the axons with which they

compete [43].

ON/OFF segregation in ferret
The BTDP model we just described suggests how spontaneous

retinal waves can instruct ON/OFF segregation in individual

LGN neurons in mouse. Is this result specific to mouse RGCs, or

might this model explain segregation in other systems? The firing

properties during retinal waves in ferret significantly differ from

those in mouse [22]. During the period of ON/OFF segregation in

ferret, RGCs of different type fire synchronously, with OFF cells

having a significantly higher firing rate than ON cells [21,22]. In

addition, we found that pairs of different type in ferret are

correlated over longer timescales than pairs of different type in

mouse. In a Hebbian covariance-based model with presynaptic

threshold, Lee et al. [22] showed how these patterns can instruct

ON/OFF segregation in ferret LGN. We demonstrate that our

model with BTDP can also explain ON/OFF segregation in ferret

and that it is consistent with the model of Lee et al. [22] (Text S1).

Using the recorded spike trains from the Lee at al. study (15 sets

in Dataset S1, each consisting of one ON and one OFF RGC spike

train recorded with single electrodes) [22], we simulated the spikes

of a postsynaptic LGN neuron using an integrate-and-fire model.

As before, synaptic modification was subject to STDP or BTDP,

and synaptic weights were bounded between 0 and wmax. In Table

S1, we list the segregation outcome using each plasticity rule.

Segregation was more easily achieved than in the mouse model as

we only used one ON and one OFF RGC. Thus, as in the reduced

linear model, we saw that standard STDP required large ratios of

depression-to-potentiation to capture segregation. In contrast,

BTDP successfully interpreted firing patterns into segregation for

experimental parameters ranges [16].

Earlier we showed that BTDP failed to induce ON/OFF

segregation in mice when the one-second firing offset between the

ON and OFF cells was eliminated. Although ON and OFF cells fire

synchronously in ferret, BTDP could still induce segregation

because the correlation between cells of different type in ferret falls

off much slower than the correlation between cells of different type

in mouse (Figure 7A,B, right and Table 1; also Table S2). We

applied a similar analysis to the linear model in Equation 7

(Materials and Methods) as in the previous section. The plasticity

matrix Q is similar to that for mice with BTDP (Equation 1), with

equal and negative off-diagonal entries because the long tails of the

ON/OFF correlation function of ferret fall under the negative part

of BTDP. As before, the relative sizes of the main diagonal terms in

the plasticity matrix Q, qON=ON and qOFF=OFF, determine the

dominance of ON or OFF segregation. Since we only have one ON

and one OFF RGCs in each data set, qON=ON and qOFF=OFF can be

computed from the ON and OFF autocorrelations. In two of the 15

data sets (the outliers) we saw a higher correlation peak of the ON

autocorrelation (Figure 7B, left), and in the rest of the sets a higher

correlation peak of the OFF autocorrelation function (Figure 7B,

middle), indicative of the higher firing rate of OFF RGCs (Table

S2). In Text S1 we show how our model with BTDP corresponds to

the covariance-based model used in Lee et al. [22]. In particular, we

make a correspondence between R (the depression-to-potentiation

ratio in our model with BTDP), and h (the presynaptic threshold in

[22]) which induced competition between the ON and OFF

weights. Due to the higher autocorrelations of OFF RGCs, our

ON/OFF Segregation in the LGN
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model similarly predicted dominance of OFF segregation in 13 of

the 15 data sets (and of ON segregation in the other two data sets).

To achieve ON segregation in the majority of the sets with OFF

dominance, Lee et al. [22] introduced an inhibition term C. As our

model of BTDP using realistic retinal input patterns succeeded in

capturing segregation in both mouse and ferret, we suggest that the

rules that govern ON/OFF segregation are likely shared between

species.

Discussion

We have used analytical methods and computational simula-

tions to test the hypothesis that spontaneous retinal activity guides

the segregation of ON and OFF RGCs in the developing mouse

LGN. We have compared two plasticity rules for the development

of synaptic weights: STDP and BTDP. Modifications to these rules

adapted to the characteristics of the input firing patterns have also

been considered. Our results show that STDP alone fails to

segregate ON and OFF inputs under realistic ratios of depression-

to-potentiation. STDP can segregate mixed inputs when combined

with a homeostatic mechanism such as subtractive normalization,

however the results are highly sensitive to parameters. By

comparison, the recently-proposed BTDP rule [16] robustly

segregates ON and OFF inputs in a model LGN neuron by a

local comparison of the firing properties of neighboring RGC

inputs without requiring normalization. Although ON cells are

normally favored to win the competition because they fire before

OFF cells, our analytical work indicates that the relative

magnitude of the peak correlation of inputs influences which

population (ON or OFF) wins the competition. Hence, if OFF

RGCs are more strongly correlated than the ON RGCs, they can

win the competition. Further, our model with BTDP can also

account for segregation of inputs in the developing ferret LGN.

Our work also highlights the importance of working with

experimentally-recorded spike trains, rather than using syntheti-

cally-generated Poisson inputs, as the nature of these correlations

can strongly influence developmental outcome.

Twenty years after the initial discovery of retinal waves, there is

still an ongoing debate on if, and how, spontaneous activity

influences the development of neural connections [7,8]. The

experimental report by Kerschensteiner and Wong [20], on which

we have based our modeling, suggests that retinal waves provide

an instructive signal during the developmental age addressed. The

specific firing patterns of functionally-distinct RGCs they observed

are only present during glutamatergic waves and coincide with the

period of ON/OFF segregation [44]. Before the switch to

glutamatergic waves which occurs as circuits in the developing

retina mature, cholinergic waves with different spatio-temporal

propagation properties are believed to instruct eye-specific (left-

eye/right-eye) segregation [7] (though see [8]). Theoretical models

have mostly studied the influence of cholinergic retinal waves upon

the development of neuronal connectivity in the context of the eye-

specific segregation [16,45]. As far as we know, our model is the

first to address refinements driven by the later-stage glutamatergic

waves. While eye-specific segregation in the LGN has been

suggested to be driven by summed activity over local regions in the

retina [16], our prediction is that more relevant for ON/OFF

segregation in the LGN is activity between RGC pairs (as in the

reduced linear model). This is likely due to the continued

decreased convergence of retinal afferents per LGN neuron

during development [6,41,42], and receptive field development

[39,46].

In this paper we have taken two complementary approaches to

studying segregation of ON and OFF inputs. With simulations, we

were able to use the experimentally observed RGC spike trains to

generate spiking behavior in a nonlinear integrate-and-fire model;

by contrast with a reduced linear model we used only the input

correlations of the most correlated cells. The broad similarity in

our results between simulation and theory under the more relevant

BTDP plasticity rule suggests that the mechanisms for synaptic

change guided by spontaneous retinal waves are robust and do not

require the precision of individual spikes. Thus, the effect of future

manipulations of activity on segregation would not need to be

tested with complex spiking models, but predictions can be made

with simpler models which use spike-spike correlations over the

relevant timescales. Detailed models of retinal wave activity could

also help investigate this question, however currently they only

model the early cholinergic waves [47–49].

Unsurprisingly, we found that a synaptic plasticity rule like

STDP, which integrates spikes on much shorter millisecond-long

timescales than the relevant timescales of the input correlations,

failed to segregate ON and OFF inputs. STDP usually resulted in

the strengthening of synaptic weights of both cell types, suggesting

a lack of competition. STDP induces competition among synaptic

weights when the depression area of the STDP window is slightly

larger than the potentiation area (R slightly larger than one) under

independent Poisson input statistics [25]. Compared to Poisson

statistics, real RGC spike trains are highly correlated and can

more efficiently drive a postsynaptic neuron. Hence, our model

showed that physiologically unrealistic, large depression-to-poten-

tiation ratios were necessary for segregation. When multiple retinal

spike trains were used as inputs to an integrate-and-fire model

LGN neuron, often even large ratios could not rescue segregation.

This was due to the independence in the firing of multiple ON and

OFF RGCs over the short timescales of STDP, which resulted in

nonselective (same cell type) competition. As an alternative to large

depression-to-potentiation ratios, subtractive normalization can

induce competition [27,45]. While this rescued segregation, it was

highly sensitive to parameter variation (Figure 4D,E and Table 2).

This sensitivity arises as the short integration timescales of STDP

fail to reliably sample the noisy (but approximately constant)

correlation functions which extend over much longer timescales.

Due to the temporal asymmetry of STDP and the mismatch of

timescales, potentiation and depression effects cancel, reducing the

signaling component of STDP for segregation. Thus, STDP does

not utilize the correlations between cells for segregation, but rather

the cells’ time-averaged firing rates.

In addition to normalization constraints, it is possible that

segregation might result from an alternative implementation of a

spike-based plasticity rule which involves higher-order spike

integration [11–13,50]. While an exhaustive exploration of all

forms of STDP is unfeasible, one spiking plasticity rule stands out

as promising: a simple spike-coincidence rule which modifies

synaptic strength based on the number of coincident pre- and

postsynaptic spikes in a 50-millisecond time window, proposed by

Butts et al. [16]. Butts et al. [16] showed that in their highly

constrained experimental protocol of pairing one-second-long

bursts to examine induced plasticity, this rule was equivalent to the

proposed BTDP. Implementing such a spike-coincidence rule in

our model with the recorded RGC spike trains, however, did not

produce segregation results consistent with BTDP (data not

shown), suggesting that real spike trains contain higher-order

spike dependencies that cannot be captured within a simple spike-

coincidence rule.

We believe a burst-based rule is most relevant for retinogen-

iculate development for several reasons. It reflects the firing

patterns of RGCs during spontaneous retinal waves; by contrast,

STDP rules have been proposed for mature sensory systems where

ON/OFF Segregation in the LGN
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single spikes can evoke postsynaptic activity [9,26], or in a

developing retinotectal system where activity is visually-evoked

[10]. Bursts are more reliable in transmitting information to

postsynaptic neurons through immature synapses because of slow

and uncertain vesicle release [51]. Additionally, the developmental

switch from the NR2B to NR2A subunit composition of NMDA

receptors may be responsible for a developmental transition from a

second-long burst-based to a millisecond-long spike-based rule

governing plasticity, since NR2B has slower kinetics than NR2A

[52]. A burst-based rule like BTDP is also consistent with a

detailed analysis of retinal wave characteristics, which suggested

that correlated high-frequency bursting of neighboring RGCs is

the driving factor for retinogeniculate refinements [15]. It is

possible, though, that BTDP is a phenomenological interpretation

of a spike-based mechanism which can capture second-long input

correlations. To investigate such issues further, a better under-

standing of the biophysical mechanisms which synapses employ to

detect bursts, and how they modulate synaptic strength, is needed.

To implement BTDP, we detected bursts using burst statistics

previously analyzed from the experimental recordings by Ker-

schensteiner and Wong [20]. Since burst statistics (firing rate,

duration, spike frequency) vary during retinal waves, and because

synapses cannot extract these statistics off-line, the biophysical

mechanisms would need to act as on-line burst detectors. Our

model suggests that a simple on-line spike accumulation method

(Figure 2C) can detect burst latencies. Although this method will

not find the true burst onset, the error is well within the 100 ms

limit that has been suggested to preserve information content of

retinal waves [14].

In contrast to STDP with subtractive normalization, BTDP

utilized the RGC correlations over the relevant second-long

timescales to generate segregation without parameter sensitivity

(for instance, to wmax). We found that matching the integration

timescales of the synaptic plasticity rule with the timescales of

input correlations was not the only requirement to achieve robust

segregation. When we increased the timescales in STDP, we found

that the plasticity rule always favored the cell that fired first, ON.

Satisfying both features of long timescales and temporal symmetry

of input integration, BTDP successfully accounted for the

development of both ON- and OFF-responsive LGN neurons in

mouse [39]. Furthermore, while STDP with normalization

required careful tuning to match results from the linear and

nonlinear postsynaptic models and to produce both ON- and

OFF-responsive LGN neurons, BTDP demonstrated consistent

segregation irrespective of the modeling approach. With the

reduced linear model we could pinpoint how BTDP was able to

interpret RGC correlations into robust segregation. The linear

model interpretation of BTDP relates to classic models of ocular

dominance, where competition was induced by anti-correlated

opposite-eye activity [32]. We found that the number of ON and

OFF RGCs initially connected to the LGN neuron did not bias the

segregation outcome, unlike previously shown [22]. In fact, which

cell type won in the LGN depended on a local competition of the

firing patterns of neighboring RGCs projecting to the LGN

neuron. Additionally, the simulated integrate-and-fire model

demonstrated further loss of same-type inputs to the LGN neuron

during development: after the segregation of ON and OFF inputs

(where all inputs of one type were eliminated), BTDP resulted in

additional pruning of the winning inputs to 1–3 as observed in

development (Figure 6A, B) [6,41].

Our model with BTDP also successfully explained ON/OFF

segregation in ferret where ON and OFF RGCs fire synchro-

nously, but with a higher firing rate for OFF RGCs than ON [22].

Consistent with a previous covariance-based model (Text S1),

segregation was generally in favor of the more active OFF cell. Lee

et al. [22] introduced inhibition to allow the less active ON cell to

win. Despite the different input firing properties in these two

species, our model suggests that ferret and mouse have a similar

form of retinogeniculate plasticity and that the synaptic plasticity

rules which govern ON/OFF segregation are shared between

species.

In addition to segregation of RGCs onto individual LGN

neurons, neighboring LGN neurons within a sublamina in ferret

respond to the same cell type [38]. By contrast, ON- and OFF-

responsive LGN neurons in mouse are distributed in a salt-and-

pepper pattern [39]. This difference could be due to molecular

cues [53], or more straightforwardly, lateral connectivity between

LGN neurons which we could test by modeling a population of

postsynaptic neurons. Future modeling would need to address the

role of visual activity through closed eyelids together with

spontaneous activity from retinal waves in ON/OFF segregation

in these species. Dark-rearing in ferrets prevented ON/OFF

segregation in the LGN [54]. Our results and those of Lee et al.

[22] found that spontaneous activity is sufficient to drive ON/OFF

segregation, suggesting that visual activity may accelerate ON/

OFF segregation. Thus, it is possible that segregation would still

occur in the absence of visually-evoked activity but it would take

longer. While the effect of dark-rearing on ON/OFF segregation

in the LGN has not been studied in mice, there are conflicting

reports on the development of ON/OFF segregation of RGC

dendrites [55,56]. It would be useful to manipulate spontaneous

retinal activity without manipulating visual experience, and to

examine ON/OFF segregation in dark-reared animals at later

ages. This would allow for an independent evaluation of the

significance of spontaneous and visually-evoked activity in the

retina on ON/OFF segregation.

Experiments which manipulate correlations between RGCs

without eliminating spontaneous activity itself have proven

extremely useful in answering the key question of whether retinal

waves influence development. Recent work reports that mice

lacking the b2 subunit of the acetylcholine receptor have

significantly altered retinal wave patterns [57,58], which affect

projections in the LGN and the superior colliculus [28,39,59]. In

addition to stronger correlations between RGCs located further

apart in these mutants which are not present in wild type, one

study has found a directional bias of wave propagation in wild type

animals [58]. The elimination of this bias in b2 mutants is

consistent with asymmetric refinement of retinal projections in

LGN and superior colliculus [28,39,59]. While these findings

represent a significant step forward towards understanding the role

of retinal activity patterns in development, along with theoretical

modeling, they mostly address cholinergic retinal waves [16,45]. It

would be also useful to construct a more complete model for the

development of the retinogeniculate pathway in two different

stages, at the retinal level capturing the varying spatio-temporal

properties of retinal waves, and at the retinogeniculate synapse. If

cholinergic and glutamatergic waves are indeed responsible for

different aspects of LGN development (eye-specific and ON/OFF

segregation, respectively), these studies may provide insights into

the mechanisms by which synaptic plasticity rules interpret

ongoing changes in the firing patterns of RGCs to explain changes

in the synaptic strength of developing connections.

Materials and Methods

A synaptic weight representing the strength of the connection

between the i-th RGC and the LGN neuron is denoted by the

dimensionless quantity wi, and maintained in the range ½0,wmax�.

ON/OFF Segregation in the LGN
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The lower bound ensures that all weights remain excitatory (in line

with Dale’s Law [60]), and the upper bound prevents the weights

from growing arbitrarily large [25,27]. Table 3 lists the key model

parameters used in the two different modeling approaches.

Theory: linear model. Instead of using the full set of ON

and OFF spike trains from each data set, we used pairwise spike-

spike correlations as inputs, and simulated postsynaptic activity

with a linear model, following the approach of Kempter et al.

[24,61]. Representing a presynaptic spike train S
pre
i with spikes at

times t
f
i as a sum of delta functions, the activity of a postsynaptic

neuron receiving inputs from all such presynaptic trains i, follows a

linear Poisson model with an instantaneous time-dependent firing

rate (given as an ensemble average), SSpostT

S
pre
i (t)~

X
f

d(t{t
f
i ) and

SSpostT(t)~
X

i

wi

ð?
{?

dt’e(t{t’)SS
pre
i T(t’),

ð5Þ

where wie(t) may be interpreted as an excitatory postsynaptic

potential (EPSP) representing the probability that the postsynaptic

neuron will fire a spike given a presynaptic spike at time t~0,

proportional to the weight wi. We used

e(t)~
K e{t=t1{e{t=t2
� �

, t§0,

0, tv0,

 
ð6Þ

where t1wt2, t1 denotes the decay time and t2 denotes the rise

time of the EPSP kernel, and K is a normalizing constant such thatÐ?
{? e(t)dt~1. Initially, we tested millisecond timescales for these

time constants as recorded in cortical neurons [62]. We also

extended these time constants to match recordings for developing

LGN neurons [63] (Table 3), but we found no effect on

segregation outcome.

Representing the output neuron with a linear Poisson model

allows us to write a linear system for the weight dynamics

_ww~Qw, ð7Þ

assuming that weight modification is slower than the firing of pre-

and postsynaptic spikes, where Q is the convolution of the input

correlation matrix C with the plasticity rule W , which we call a

‘plasticity’ matrix

Qik~

ð?
{?

dsW (s) dikSS
pre
i T(t)e(s)z

ð?
{?

dt’e(tzs{t’)Cik(t{t’)
� �

:ð8Þ

In particular, W denotes a functional representation of the

synaptic plasticity rule we studied, STDP or BTDP (presented

below), s is the timing between a pair of spikes of the inputs i and

k, dik is the Kronecker delta equal to 1 only if i~k, and 0

otherwise, SS
pre
i T(t) is the mean firing rate of presynaptic RGC i (�::

is the temporal average taken over the duration of the recording),

and Cik(t) is the input correlation function for the pair of inputs i
and k

Cik(t)~SS
pre
i (t) S

pre
k (tzt)T: ð9Þ

Note that this input correlation involves only presynaptic spike

trains, and can be derived by substituting S
pre
i into Spost in

Equation 5. The input correlation of Equation 9 was computed by

binning the number of spikes for the i-th and k-th spike trains into

bins of size Dt~10 ms and summing the bins over the given time

lag t.

Instead of studying the evolution of all ON and OFF weights for

each data set, we studied a reduced system with a two-dimensional

weight vector w~½wON,wOFF� (termed reduced linear model), such

that segregation occurred whenever one weight potentiated to

wmax and the other depressed to 0. For the entries of the 2|2
correlation matrix C used in Q in Equation 8, we took

C(t)~
CON=ON(t) CON=OFF(t)

COFF=ON(t) COFF=OFF(t)

" #
, ð10Þ

where the correlation functions with the largest peak amplitudes

for all pairs of each cell type were selected. We fitted a symmetric

decaying exponential to the input correlation function for each

RGC pair, h~fON/ON, ON/OFF, OFF/ON, OFF/OFFg:

Ch(t)~Ahe{jt{dhj=th ð11Þ

The parameters Ah,dh,th illustrated in Figure 1B were estimated

using a nonlinear least squares procedure in R [64], and are

reported in Table 1.

In the analysis of STDP, we observed a mismatch between the

results from the reduced linear and the nonlinear integrate-and-

fire models (Figure 4D, E). To determine the origin of this

disagreement, we also implemented a full linear model where we

used the raw correlations from Equation 9 to obtain the full

plasticity matrix Q in Equation 8. As we did not observe a

difference in the results (Table 2) between the reduced and the full

linear model with STDP, and the results of the reduced linear and

the nonlinear integrate-and-fire model with BTDP were consis-

tent, we examined only the reduced linear model under BTDP.

Simulation: integrate-and-fire model. The retinal wave

structure of the inputs manifests itself in LGN neurons as large

periodic barrages of postsynaptic currents which drive bursts of

action potentials [65]. To replicate realistic LGN firing patterns,

we generated postsynaptic activity of the LGN neuron according

to a nonlinear quadratic integrate-and-fire model by Izhikevich

[66] (though simulating postsynaptic activity with a leaky

integrate-and-fire model [25] did not affect our results)

v’~0:04v2z5vz140{uzwex, ð12Þ

u’~a(bv{u), ð13Þ

where v and u are dimensionless variables, representing

respectively, the postsynaptic membrane potential, and a

membrane recovery variable providing negative feedback to v.

When the membrane potential exceeds Vth, it is reset to c, and u is

increased by d; the variable u recovers with a timescale of a, and b
determines the resting potential (parameter values in Table 3). We

modeled the synaptic weights wi as synaptic conductances, and wex

represented the total synaptic conductance received by the

postsynaptic LGN neuron [25]. Equations were solved using a

forward Euler integration scheme with a fixed time step of

dt~0:1 ms, to generate postsynaptic spikes of the same precision

as the input spikes.

Unlike the linear model, here we studied the temporal evolution

of ON and OFF weights for all inputs in each data set. To

compare results with the reduced linear model where a single ON

ON/OFF Segregation in the LGN
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and a single OFF weight were studied, we assigned all ON weights

the same initial strength, and all OFF weights the same initial

strength (but different from the initial strength for ON). Testing

different initial conditions for all 5–8 weights per data set would

have required a representation of the weight dynamics in a 5–8-

dimensional space. Choosing the same initial condition for all ON

and for all OFF weights, we ran a separate simulation for each

initial condition combination. Segregation of the inputs was

interpreted as the depression of all weights of one cell type, and the

maximal potentiation of some weights of the other cell type. As we

simulated the dynamics in the full weight space with all available

spike trains in each data set, a succinct two-dimensional

representation as for the linear model was unfeasible. Note that

all ON and OFF inputs in each data were used when that

particular data set was explored; spike trains were not mixed

between data sets. Total number of retinal afferents in each data

set were 5–8 (Table 1), which agrees with data from mouse at P12

[42,67]. The data sets for both mouse and ferret are provided as

supporting material (Dataset S1) with permission from the authors.

Plasticity rules: STDP versus BTDP. According to pair-

based STDP, synaptic weights were modified based on pairings

between pre- and postsynaptic spikes separated by Dt~tpost{tpre,

where the order of the spikes determined the sign of synaptic

change. We implemented STDP assuming all-to-all interactions

such that every presynaptic spike interacted with all previous

postsynaptic spikes within the integration timescale, and vice versa

[25]. Each spike pair contribution was additive and independent

from all others, so the overall synaptic change was the cumulative

effect of multiple spike pairings [16,25] (though see [31] for a

review on STDP). STDP (Figure 2A) was formally modeled

according to the function

W (Dt)~
Az exp {Dt=tzð Þ, Dt§0,

{A{ exp Dt=t{ð Þ, Dtv0,

�
ð14Þ

where Az and A{ denote the maximum amount of potentiation

and depression for Dt&0, and tz and t{ denote the spike

integration timescales over which synaptic potentiation and

depression are effective. Original STDP experiments report

timescales on the order of tens of milliseconds [9,10,26], which

we tested and also extended (Table 3).

In contrast to STDP, BTDP is temporally-symmetric, such that

the timing but not the order of the bursts determines the sign of

synaptic change over second-long timescales [16] (Figure 2B). We

implemented BTDP following the same approach and assump-

tions as STDP, except that in Dt~tpost{tpre, the start times of the

pre- and postsynaptic bursts were used for tpre and tpost.

The function describing synaptic change according to BTDP

was experimentally fitted by Butts et al. [16] to a line with a

negative (positive) slope for 0vDtƒ1 ({1§Dtw0) second, and

constant depression I for jDtjw1 second. To implement BTDP

similarly to STDP, we used an exponential representation of

BTDP which preserves the timescales and temporal symmetry of

burst integration as in the original formulation of BTDP. The

exponential approximation is given by

W (Dt)~(AzzI) exp ({jDtj=tz){I : ð15Þ

Here, Az denotes the maximum amount of synaptic potentiation

given a pair of precisely synchronous pre- and postsynaptic bursts,

I the amount of depression for bursts separated by more than

1 second, and tz the time constant which controls the burst

latency over which potentiation and depression occur.

For the derivation of the linear system with BTDP, we used the

spike-spike input correlations as for STDP (statistics given in

Table 1), even though BTDP modifies synaptic weights based on a

burst latency computed from the start of bursts. This was justified

because postsynaptic activity was still generated on the level of

spikes (rise in EPSP magnitude at the arrival of a presynaptic

spike), and BTDP was robust as long as the timescales of input

correlation matched the second-long integration timescales of

BTDP (discussed in Results).

To ensure smooth synaptic weight dynamics over time, we used

relatively small values of maximum potentiation and depression

amplitudes in each rule (Table 3). The resulting slow accumulation

of synaptic change required a cyclic presentation of the input

spiking patterns (10–50 times) to achieve segregation of the inputs,

comparable to the 1–2 day duration of glutamatergic waves

corresponding to the period of the highest degree of retinogen-

iculate refinements. We studied the resulting segregation of inputs

as we varied the ratio of depression-to-potentiation, R~A{=Az

for STDP, and R~I=Az for BTDP (even though the definitions

are different, the meaning for R is the same in both rules).

Simulation code is available as supporting material (Protocol S1).

To quantify the degree of segregation, we used the following

measure [22]

segregation index~

#ON potentiate

#ON
{

#OFF potentiate

#OFF
#ON potentiate

#ON
z

#OFF potentiate

#OFF

[½{1,1� ð16Þ

such that index of {1 denotes OFF segregation and index of 1

denotes ON segregation. Indices in-between indicate that the

LGN neuron responds to mixed ON and OFF inputs.

Implementation of subtractive normalization. Subtractive

normalization was implemented at the level of individual neurons

following findings in superior colliculus, where the number and the

strength of retinal afferent synapses received by a postsynaptic neuron

was preserved during development [36]. For a total of K synaptic

weights determined by the number of ON and OFF spike trains in

each data set with initial conditions in ½0,wmax�, we set the total

number of weights maintained by the LGN neuron at maximal

strength wmax to be NvK . Thus, we made the postsynaptic LGN

neuron maintain a target total synaptic strength of Nwmax at all times

during simulated development. Low retinal convergence into the

LGN during adulthood has given estimates for the surviving number

of afferents, N, around 1–3 [6,41,42]. For each data set we set N to

the smaller number of total ON and OFF weights: we chose N~3 for

data set 1 and N~2 for data sets 2–6; note that for data set 6, N~2
resulted in more consistent segregation results than N~3. For

unbiased initial conditions, the subtractive normalization constraint

made all K weights start at initial strength of Nwmax=K .

Normalization was applied whenever the plasticity rule modified

synaptic strength by DS (positive if weights were potentiated, or

negative if weights were depressed) changing total synaptic strength

such that it deviated from the target Nwmax. The excess/deficit from

this target amount was removed/added to each weight equally. For

instance, for a total of K synaptic weights each weight was updated by

DS=K . Synaptic weights were still subjected to the hard bounds

keeping them within 0 and wmax.

Supporting Information

Text S1 A comparison between the model in Lee et al. (2002)

and BTDP.

Found at: doi:10.1371/journal.pcbi.1000618.s001 (0.06 MB PDF)
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Table S1 Segregation results for ferret using STDP and BTDP.

Found at: doi:10.1371/journal.pcbi.1000618.s002 (0.03 MB PDF)

Table S2 Correlation fits for ferret.

Found at: doi:10.1371/journal.pcbi.1000618.s003 (0.03 MB PDF)

Dataset S1 Spiking data from mouse and ferret.

Found at: doi:10.1371/journal.pcbi.1000618.s004 (0.70 MB ZIP)

Protocol S1 C code for implementing STDP and BTDP.

Found at: doi:10.1371/journal.pcbi.1000618.s005 (0.07 MB ZIP)
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