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ABSTRACT Endophytic strains of Pseudomonas were isolated from grapevine tissues
and exhibited antagonistic activity against several grapevine trunk disease patho-
gens. The draft genome sequences of the four strains revealed the presence of puta-
tive gene clusters that may impart biocontrol activity against plant pathogens.

Species within Pseudomonas may be beneficial or detrimental to plant production
systems. Efficacy has been established for Pseudomonas spp. as biocontrol agents

against late blight and scab of potato (1, 2), Rhizoctonia root rot on bean (3), damping-
off and root rot in tomato (4), black root rot of tobacco, and take-all disease of wheat
(5, 6). In grapevines, Pseudomonas spp. are found in the phyllosphere (7–9) and inner
tissues (10–12) and are known to suppress Botrytis cinerea (13, 14) and Rhizobium vitis
(15).

Pseudomonas isolates BCA13, BCA14, and BCA17 were obtained from grapevine
canes exhibiting Botryosphaeria dieback (BD) in Wagga Wagga, New South Wales
(NSW), Australia. The canes were stripped of bark, surface sterilized, and placed on
nutrient agar. Emerging bacteria were streaked onto King’s B medium to obtain single
colonies. All isolates inhibited BD and Eutypa dieback (ED) pathogens in culture and
reduced BD infection in planta (our unpublished data). A fourth isolate, JMN1, was
obtained from an asymptomatic vine in Harden (NSW, Australia) by suspending internal
trunk wood shavings in Ringer’s solution. Single colonies were selected by streaking on
King’s B medium at 25°C. JMN1 was not antagonistic to BD and ED pathogens. The four
isolates were identified by amplification and sequencing of the 16S rRNA and rpoD
genes. Gene sequences were subjected to BLASTn searches of the NCBI database, and
reference sequences were selected for phylogenetic analyses. Sequence alignment was
completed with Clustal W, and a neighbor-joining tree was constructed within MEGA 7
(16). The four isolates were found to be closely related to Pseudomonas poae.

Each isolate was grown in nutrient broth for 24 h at 25°C and then harvested for
DNA extraction using the Gentra Puregene bacterial DNA extraction kit (Qiagen),
following the manufacturer’s specifications. Shotgun library preparation and Illumina
sequencing (HiSeq 2500 platform) were conducted by the Australian Genome Research
Facility, resulting in 12,569,718 reads (150-bp paired ends; Table 1). Data were gener-
ated with the Illumina bcl2fastq pipeline version 2.20.0.422. Draft genomes were
assembled using the Unicycler assembler, implementing an optimizer for SPAdes 3.13.0
(17). k-mer lengths between 0.2 and 0.95 of total read length were examined, and
contigs of �200 bases were removed. Annotation was completed with the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) 4.7 (18) and the Rapid Annotations
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using Subsystems Technology server, implementing RASTtk (19). Default parameters for
all software programs were used, unless otherwise specified.

Gene clusters which may play a role in the control of plant pathogens were
identified. Queries of the Plant-bacteria Interaction Factors Resource (PIFAR) (20) found
that each strain of Pseudomonas contains a remarkable number of putative biocontrol
gene clusters, including those responsible for lipopeptide antibiotics, siderophores,
proteases, detoxification, lipopolysaccharides, multidrug resistance, microbe-associated
molecular proteins (MAMPs), and biofilms. antiSMASH 4.0 (21) was implemented to
detect gene clusters responsible for the biosynthesis of secondary metabolites,
resulting in the identification of clusters containing nonribosomal peptide synthe-
tases with known activity as antimicrobial agents, including poaeamide, rhizomide,
and rhizoxins.

Data availability. The genome sequences for BCA13, BCA14, BCA17, and JMN1 are
available under NCBI BioProject number PRJNA522029, with annotated assemblies
available under accession numbers SGWK00000000, SGWJ00000000, SGWI00000000,
and SGWH00000000, respectively. The Sequence Read Archive (SRA) accession num-
bers are listed in Table 1. Sequence reads were deposited in the NCBI SRA under the
accession numbers SRR8667294 to SRR8667297.
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