
cancers

Review

Small Ones to Fight a Big Problem—Intervention of
Cancer Metastasis by Small Molecules

Dennis Kobelt 1,2, Mathias Dahlmann 1,2 , Malti Dumbani 1, Nazli Güllü 1, Benedikt Kortüm 1,
Miguel E. Alberto Vílchez 1, Ulrike Stein 1,2,† and Wolfgang Walther 1,†,*

1 Department Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité
University Medicine Berlin and Max-Delbrück-Center for Moelcular Medicine in the Helmholtz Association,
Robert-Rössle-Straße 10, 13125 Berlin, Germany; dennis.kobelt@mdc-berlin.de (D.K.);
mathias.dahlmann@mdc-berlin.de (M.D.); malti.dumbani@mdc-berlin.de (M.D.);
nazli.guellue@mdc-berlin.de (N.G.); benedikt.kortuem@mdc-berlin.de (B.K.);
miguel.alberto@mdc-berlin.de (M.E.A.V.); ustein@mdc-berlin.de (U.S.)

2 German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
* Correspondence: wowalt@mdc-berlin.de; Tel.: +49-30-9406-3432
† Contributed equally.

Received: 11 May 2020; Accepted: 28 May 2020; Published: 3 June 2020
����������
�������

Abstract: Metastasis represents the most lethal attribute of cancer and critically limits successful
therapies in many tumor entities. The clinical need is defined by the fact that all cancer patients, who
have or who will develop distant metastasis, will experience shorter survival. Thus, the ultimate goal
in cancer therapy is the restriction of solid cancer metastasis by novel molecularly targeted small
molecule based therapies. Biomarkers identifying cancer patients at high risk for metastasis and
simultaneously acting as key drivers for metastasis are extremely desired. Clinical interventions
targeting these key molecules will result in high efficiency in metastasis intervention. In result of this,
personalized tailored interventions for restriction and prevention of cancer progression and metastasis
will improve patient survival. This review defines crucial biological steps of the metastatic cascade,
such as cell dissemination, migration and invasion as well as the action of metastasis suppressors.
Targeting these biological steps with tailored therapeutic strategies of intervention or even prevention
of metastasis using a wide range of small molecules will be discussed.
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1. Introduction

1.1. The Demanding Clinical Need for Metastasis Intervention

Despite the progress for treatment of solid cancers, metastasis remains the key issue impacting
failure or success of cancer therapies. Metastatic dissemination of primary tumors is directly linked to
patient survival. Metastasis is not an inherent property of all neoplastic cells [1]. Some cancers are
highly aggressive forming metastases with high frequency, while others are rarely metastatic despite
being locally invasive. But, metastasis is the most lethal attribute for cancer patients and counts for
about 90% of all cancer deaths [2,3].

Further, metastatic spread critically limits successful therapies in many tumor entities [4].
The limited therapeutic success defines the clinical need for novel metastasis-inhibiting treatment
strategies aiming at key events and drivers of metastasis formation by using small molecule drugs.
We are focusing here on biomarkers acting as causal key drivers for metastasis, being involved in
signaling pathways, promoting and driving the metastatic phenotype of cancer cells, which may serve
as useful targets for small molecule-based restriction of metastasis formation.
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1.2. Exploiting the Metastatic Cascade to Find Vulnerabilities for Metastasis Intervention

Here we dissect the metastatic cascade for novel approaches to combat metastasis formation,
which arise upon reviewing the metastatic cascade [5,6]. The main steps of this cascade start with
cellular transformation and tumor growth. This necessarily includes progressive growth of neoplastic
cells and the availability of nutrients for the expanding tumor mass, initially supplied by simple
diffusion. The second step is proliferation and angiogenesis. Here, the extensive vascularization must
occur if a tumor mass is to exceed 1–2 mm in diameter. Angiogenic factors must be synthesized and
secreted, thereby building a capillary network from the surrounding host tissue. The third step is
detachment and invasion. Tumor cell detachment from the primary tumor mass is caused by loss of
adhesion programs and invasion in the adjacent tissue is mainly characterized by degradation of the
matrix using a variety of proteinases, both leading to increase in cell motility. This local invasion of the
tumor cells into the host stroma paves the way of the detached and invasive tumor cell into circulation.
The next step—intravasation, when tumor cells enter the blood vessel and circulation—is performed
by single tumor cells or tumor cell aggregates. Although the majority of these circulating tumor cells
are rapidly destroyed, some cells survive the circulation, staying dormant and are trapped in the
capillary beds of distant organs. In the circulation, tumor cells interact with for example, platelets and
lymphocytes. Then, circulating tumor cells arrest at distant organ sites by binding the endothelium
of the vessels there [7]. During the extravasation step, educated tumor cells leave the circulation by
rupture of the walls surrounding the vessel and penetration of the circulating tumor cells into adjacent
tissue. The last step, completing metastasis formation, is the proliferation and the re-organization
of the extracellular matrix (ECM) of the arrested tumor cells in the organs of the secondary site,
essentially supported by an appropriate microenvironment. A newly generated vascular network
of the micrometastases will help to evade destruction by host defenses. Metastases then grow into
metastatic colonies, with about 50 cells will constitute a colony and continue to grow until macroscopic
metastases are clinically detectable.

Thus, metastasis development is only possible when the “seed,” the tumor cells as the secondary
site and the “soil,” the new surrounding organ, are compatible—the “seed and soil model” [8]. Further,
since each of the steps of the metastatic cascade is dependent on clearly defined molecular pathways
and networks, key targets of these signaling cascades can be identified and used for step-specific
treatment [9]. Various interference opportunities have been developed using small molecules [10].

Here we will review single key steps of the metastatic cascade in the context of signaling pathways,
key biomarkers thereof and targeting by small molecule drugs aiming specifically at these metastatic
steps, which finally lead to metastasis restriction (Figure 1 and Table 1).
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Figure 1. Schematic representation of the key events leading to metastasis. For the different metastatic 
steps important genes are listed, which represent drivers of the metastatic process. They enable cancer 
cell migration, invasion intra- and extravasation as well as metastasis outgrowth. Such genes 
represent promising targets for therapeutic interventions. In this regard, small molecule inhibitors are 
listed, which target particular steps in the metastatic process. 

 

Figure 1. Schematic representation of the key events leading to metastasis. For the different metastatic
steps important genes are listed, which represent drivers of the metastatic process. They enable cancer
cell migration, invasion intra- and extravasation as well as metastasis outgrowth. Such genes represent
promising targets for therapeutic interventions. In this regard, small molecule inhibitors are listed,
which target particular steps in the metastatic process.
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Table 1. The table summarizes the small molecule drugs and their targets discussed in this review.

Biologic Process, Pathway or Biological Function Direct Target Drug Ref.

Proliferation and detachment

Cadherin signaling N-cadherin ADH1 (exherin) [11]
Integrin signaling αvβ3 and αvβ5 integrin Cilengitide [12–14]

FAK/TGF-beta signaling, MMPs MEK4 Genistein [15–18]
Integrin signaling, anoikis Integrin β1 DZ-50 [19]
Anoikis, caspase 8 activity FLIP Anisomycin [20]

Migration, invasion, intravasation, circulation and attachment

Focal Adhesions, cytoskeletal remodeling FAK GSK2256098, TAE-226 [21,22]
Stress fiber formation ROCK Fasudil [23]

Actomyosin contraction Cdc42 ML-141/CID2950007, CID44216842 [24]

Actomyosin contraction Rac, Cdc42 EHT-1864, NSC23766, Ehop-016, MBQ-167, AZA1,
AZA197, Ketorolac [25–31]

Actomyosin contraction Rho ZCL278 [32]
cytoskeleton turnover PAK IPA3, KPT-9274, PF3758309 [33–35]

extravasation of circulating tumor cells αvβ3 integrin, fascin MK-0429, NP-G2-029, NP-G2-044 [35–37]
EGFR mediated signaling EGFR Erlotinib, Gefitinib [38–40]

VEGFR signaling VEGFR Sorafenib, Pazopanib, Sunitinib [41]
FGFR and VEGFR signaling; ATP competitor FGFR, VEGFR Brivanib [42]

PDGFR and FGFR1 signaling; ATP competitor FGFR Orantinib [43]
SRC signaling SRC Dasatinib, Bosutinib [44–46]

SRC signaling, invadopodia formation FAK, CAS Saracatinib [44,47]
SRC signaling, tubulin polymerization SRC/tubulin KX02, KX2-391 [44]

MMP activity, invasion MMP Hydroxamates, thiol-based inhibitors, S3304,
cis-ACCP, Ro-28-2653, B-428, WX-671 [48–50]

TIMP expression for MMP interference TIMP3 Arctigenin, diallyl-disulfide, MPT0-G013 [51]
uPA mediated growth factor activation uPA ameloride derivatives [52–54]

Extravasation and metastasis outgrowth

Notch signaling γ-secretase PF-03084014 [55–59]
Wnt signaling; transcriptional activity of β-catenin β-catenin CWP232228 [60]

Wnt signaling; downstream apoptotic cell death pathway β-catenin CWP232291 [61]
TAM signaling; oncogenesis and anti-apoptotic activity Mer UNC1062 [62]

TAM signaling; prosurvival and anti-apoptotic pathways Mer/FTL3 UNC2025 [63]
TAM signaling; prosurvival, proinflammatory, EMT pathways AXL R428 (BGB324) [64]

Angiogenesis; FGF signaling FGF2-FGFRR1-HSPGs SM27 [65,66]
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Table 1. Cont.

Biologic Process, Pathway or Biological Function Direct Target Drug Ref.

Metastasis Suppressors

epigenetic regulation of gene expression: DNA methylation DNA methyltransferases 5-aza-2’-deoxycytidine (decitabine) [67]
epigenetic regulation of gene expression: histone methylation EZH2 3-deazaneplanocin A (DZNep) [68]
epigenetic regulation of gene expression: histone acetylation histone deacetylases suberanilohydroxamic acid (SAHA) [69]

NFκB signaling pathway NFκB dehydroxymethylepoxyquinomicin [70]
steroid hormone signal transduction progesterone receptor aedroxyprogesterone acetate (MPA) [71]

prostaglandin signal transduction Cox-2 non-steroidal anti-inflammatory drugs (NSAIDs) [72]



Cancers 2020, 12, 1454 6 of 25

2. Targets for Therapeutic Intervention during Metastasis Formation

2.1. Tumor Cell Detachment—Principiis Obsta

Cell detachment from the primary tumor has been considered as initial step of metastasis [73].
The adhesion between cells but also to the ECM, is mediated through cell adhesion molecules
(CAMs) [74]. Among them, calcium-dependent receptors such as cadherins and integrins play crucial
roles. Their dysregulation causes the impairment of tissue integrity [74–76].

Cadherins are one group of the CAMs, which are crucial for proper cell-cell contact. Their
dysregulation leads to loose cell-cell contacts allowing tumor cells to detach from the primary tumor
and disseminate to a distant site [77,78]. For example, the expression of N-cadherin is elevated in many
cancer cells and aberrant regulation of this molecule allows them to migrate and form metastases [79,80].

Integrins are further essential CAMs providing cell-ECM interactions [78,81]. While the
extracellular domain of integrins binds to ECM molecules, the intracellular domain facilitates the
attachment to the cytoskeleton via intracellular focal adhesions [82]. This binding not only regulates
the cell adhesion but also provides the signal transduction between the cell and ECM via integrin
activated signal molecules such as focal adhesion kinases (FAKs) and phosphatidylinositol 3-kinase
(PI3K) [83]. The aberrant regulation of integrin increases cancer invasiveness via the dysregulation of
these signal molecules. It also leads to the activation of matrix metalloproteinases (MMPs) responsible
for ECM degradation [84,85]. MMPs are endopeptidases playing an essential role in physiological
processes such as organogenesis, apoptosis and cell proliferation [86,87]. Their aberrant regulation
leads to tissue damages, enables cancer cell motility and correspondingly causes spread of cell from
primary tumors to distant sites [86–88].

Physiologically, when cells lost their cell-cell and ECM connection, an apoptotic process called
anoikis is activated [89,90]. This process prevents survival and anchorage-independent growth of
detached cells and thus hinders dissemination to distant sites. However, some cancer cells develop
resistance mechanisms against this control mechanism.

The resistance to anoikis, together with changes in cell adhesion and cell polarity, is conjointly
known as epithelial to mesenchymal transition (EMT). This process induces mesenchymal properties
of cancer cells leading to increased motility and invasiveness.

These briefly described processes have prompted efforts to therapeutically target the detachment of
cells from the primary tumors. They are focusing on three levels, to intervene in the cell detachment and
survival of detached cells—(i) targeting CAMs, (ii) activating anoikis and (iii) breaking anoikis resistance.

CAMs represent one of the prominent targets to prevent metastasis initiation. ADH1 (exherin)
inhibits the invasion and proliferation of some cancer types through binding and blocking the essential
CAM component N-cadherin. It was tested in phase II clinical trials as monotherapy of different
N-cadherin positive neoplasms. In clinical phase I settings the combination with cisplatin and
gemcitabine for treatment of metastatic pancreatic or biliary tract cancer was tested, which in part led
to stable disease [11].

Integrins are another prominent class of targets to prevent distant dissemination of tumor
cells. The inhibition of integrin–ligand interaction not only decreases cellular growth but also
induces apoptotic cell death. The integrin antagonist cilengitide, a cyclic pentapeptide, binds RGD
(Arg-Gly-Asp)-dependent integrins, inhibits the ECM ligand-integrin interaction and thus induces
apoptosis. The efficacy of this drug was tested in a clinical phase III trial for glioblastoma. In combination
with the alkylating agent temozolomide and chemoradiotherapy the application of cilengitide however
did not improve patient outcome [12]. By contrast, in a clinical phase I study cilengitide treatment
showed an antitumor activity in combination with paclitaxel [13]. In a clinical phase II trial treating
non-small lung cancer patients, cilengitide monotherapy was as effective as docetaxel [14].

Detachment of cancer cells from the ECM leads to conformational changes of integrin, followed
by the transmission of outside-to-inside signals through pathways involving FAK. In particular cancer
cells, which have high anoikis resistance show an elevated level of FAK expression [91]. Its inhibition by
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the isoflavanoid genistein reduced detachment of tumor cells and inhibited MMPs [15–18]. Genistein
is tested in different clinical trials, including phase III [NCT00584532] clinical trial for prostate cancer.

Anoikis prevents survival of cells that lost their cell-matrix or cell-cell interactions [89,90].
Therefore, inducing anoikis by drug therapy is another promising approach to reduce the survival of
detached cells. DZ-50 is a quinazoline-based compound that inhibits the epithelial and endothelial cell
survival through inhibition of surface integrin β1. It reduces the tumor cell adhesion to the ECM by
promoting anoikis and thus inhibits tumor growth in vivo [19].

One of the main pathways leading to the induction of anoikis is the death receptor pathway.
This pathway is activated through binding of FAS Cell Surface Death Receptor (FAS) or TNF-Related
Apoptosis-Inducing Ligand (TRAIL) to the extracellular domain of the death receptor. This leads to
the activation of caspase 8, which cleaves downstream effectors, such as caspase 3 and 7 to finally
induce cell death. Caspase 8 and FLICE inhibitory protein (FLIP) are structurally similar proteins.
FLIP binds to the DISC complex and inhibits caspase 8 activation [92]. In malignant cells with metastatic
potential, FLIP expression is increased, protecting cells from apoptosis. The antibiotic anisomycin
(flagecidin) was identified as FLIP inhibitor in a compound library screen [20]. Thus, targeting FLIP
with anisomycin leads to anoikis sensitization. The anoikis activating effect of this small molecule was
not only shown in vitro for prostate cancer cells but its anti-metastatic effect was also corroborated
in mouse studies [20,92]. Recently, a novel, first-in-class FLIP inhibitor was identified by molecular
modelling. The respective lead compounds entered preclinical validation and characterization [93].

Cell detachment and survival of the detached cells are the initial steps of metastatic dissemination.
Therefore, it is crucial to target these pathways to prevent dissemination of cells to distant sites.

2.2. Migration of Tumor Cells—Stop Moving

During malignant progression, tumor cells polarize towards chemoattractant gradients and
engage in remodeling of the cytoskeleton to physically move away from the primary tumor [94]. This
requires directed interaction with the ECM via transmembrane receptors (integrins, discoidin domain
receptors) for ECM proteins (fibronectin, fibrinogen, collagen, etc.) [95,96]. Upon contact with ECM
these receptors form focal adhesions, which in turn activate FAK with assistance by adapter proteins
(talin, paxillin). FAK is an important hub of intracellular signaling and integrates integrin and growth
hormone receptor signals to various target proteins. In cell migration, FAK orchestrates PI3K/AKT and
Rho-GTPase signaling to exert polarized cell motility [97–99].

Rho, Rac and cell division cycle 42 (Cdc42) initiate and catalyze the polymerization of actin
filaments during lamellipodia and filopodia formation [100,101]. RhoA recruits formin mDia, while Rac
and Cdc42 recruit WASP proteins and the Arp2/3 complex [102,103]. The Rock proteins are effectors for
Rho, while Cdc42 acts via myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) to foster
actomyosin contractility for effective locomotion of the migrating cell [104]. Downstream of Rac/Cdc42,
the family of p21-activated kinases (PAK) increases focal adhesion turnover and LIMK1-dependent
actin depolymerization, resulting in cytoskeleton remodeling and migration [105,106].

Another druggable target involved in actomyosin remodeling, Fascin, ties up actin filaments during
filopodia formation and crucially contributes to tumor cell motility in vitro and in vivo [107–110].
Fascin is a negative prognostic marker of cancer patient survival [111,112]. Certain members of
small calcium-binding S100 proteins, most notably S100A4, have emerged as accomplice of cancer
progression. S100A4 induces cell migration as a catalyst of interaction with F-actin and of myosin-IIa
disassembly [113–116].

Due to its prominent position in cancer progression, FAK has been experimentally targeted with
various inhibitors [117]. GSK2256098 intercepts the phosphorylation of FAK at tyrosine residue Y397
and delays pancreatic cancer cell wound closure in vitro [21]. This compound was recently tested
clinically in glioblastoma [NCT01138033] and mesothelioma. It prolonged survival of patients with
merlin-negative tumors [NCT01938443] [118].
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The ATP-competitive FAK inhibitor TAE-226 also exerts efficacy against IGFR1 and was found to
restrict glioma cell viability and motility in vitro [22]. Only recently, TAE-226 was able to prevent lung
metastasis of orthotopically injected murine breast cancer cells in syngeneic mice [119].

Fasudil (HA1077) directly inhibits ROCK as an effector of RhoA and is already clinically approved
in Japan for vasospasms due to its capability to suppress actin stress fiber formation and vascular
muscle cell migration [23]. This finding was successfully recapitulated in cancer cells [120–122].
However, no clinical trial on cancer has considered fasudil so far.

Multiple novel Rho-GTPase inhibitors prevent pro-migratory cytoskeletal rearrangement and
cell motility [123]. While RhoA inhibitors have not been promoted beyond biochemical analyses,
Rac1 and Cdc42 inhibitors were promising in restricting cell migration in vitro [124]. Several molecules
have been designed to compete with the nucleotide-binding pocket of Rac1 and Cdc42. EHT-1864 is
particularly effective in preventing estrogen- and androgen-dependent Rac activation in breast and
prostate cancer but might only serve as a prototype due to its adverse effect of platelet apoptosis in
mice [25,125–127]. CID2950007 (ML141) and CID44216842 specifically target Cdc42 and restrict the
motility of ovarian cancer cells [24].

Other compounds interfere with guanine nucleotide exchange factor (GEF) binding to Rac/Cdc42
directly. NSC23766 was designed to occupy Rac1’s binding pocket for the GEFs Trio and Tiam [26]
and inhibited lamellipodia formation in lung cancer cells [128]. Its unacceptable toxicity, however,
stimulated several optimizations leading to EHop-016, MBQ-167 and AZA1 [27–29,129].

Therefore, PAK1 as a major executor of Rac1-mediated migration, was targeted in an extensive
in silico screen. Two compounds structurally unrelated to NSC23766 emerged as potent targeting
pancreatic cancer cell migration while non-toxic towards normal pancreatic cells [130].

A variety of Cdc42 inhibitors have been established. ZCL278 intercepts activation of Cdc42 by
Intersectin. It was effective in blocking actin-dependent migration of prostate cancer cells in vitro while
having no effect on cell viability [32]. AZA197, derived from AZA1, occupies the nucleotide binding
pocket of Cdc42 and prevented colon cancer cell motility and xenograft implantation in vivo [30].

Despite promising effects in preclinical studies, none of the small molecules discussed have
successfully advanced to testing in humans [124,130]. Nevertheless, the R-enantiomer of the common
NSAID ketorolac was repurposed in ovarian cancer cells to decrease Cdc42 dependent filopodia
formation and cell migration. In a clinical phase III trial the drug was tested for high risk breast cancer
patient treatment [31].

Extensive effort has also been put in the deployment of PAK inhibitors, particularly targeting
PAK1 and PAK4 [131]. IPA-3, the only isoform-selective, allosteric inhibitor of PAK1, stabilizes PAK1
in its autoinhibitory state. Thereby, PAK1-dependent cell membrane ruffling is blocked [33,132].
IPA-3 prevents PAK1 dependent recruitment of WAVE2 and lamellipodia formation. This results in
reduced migration and metastasis of i.v.-injected esophageal cancer cells [133,134]. KPT-9274 and
KPT-8752 can reduce PAK4 expression, resulting in inhibition of growth and migration of renal cancer
cells [34]. A clinical study gauging the safety of KPT-9274 is currently recruiting (NCT02702492).
Another PAK4-inhibitor, PF3758309, was shown to restrict lung cancer cell motility. It was prematurely
terminated in a clinical trial due to intolerable adverse effects. This indicates the need for further
optimization of this compound (NCT00932126) [35,36].

Treatments with fascin inhibitors NP-G2-029 and NP-G2-044, which prevent interaction with
actin filaments, resulted in reduced migration, invasion and metastasis of breast cancer cells [135,136].
NP-G2-044 is currently in a phase I trial in patients with metastatic disease [NCT03199586].

Integrins as mediators of cell migration also support tumor cells in circulation (CTCs) and
metastatic settlement in distant organs. Integrin αvβ3 is instrumental for the extravasation of breast
cancer cells. Tumor cells recruit platelets within the capillary system of the metastatic site, which in
turn release a wide variety of tissue-remodeling factors and facilitate trans-endothelial migration [137].
MK-0429, an orally bioavailable small molecule, prevents lung metastasis of i.v. injected melanoma
cells and is a major contestant against mainly antibody-based integrin inhibition [37,138].
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Despite improvements in surgical techniques, that seem to obviate any use of migration inhibition
of primary tumors, the consideration of the molecules listed above could have merit in the treatment
of unresectable malignancies or in for example, neo-adjuvant settings.

2.3. Invasion Intervention—Stop the Invaders

Invasion through ECM, intravasation to vasculature and extravasation at the distant site of tumor
cells is regulated by complex signaling. It involves formation of invadopodia, secretion of proteases as
well as factors that attract tumor cells to the metastatic site. In this context, factors that constitute the
metastatic niche and the proper environment are essential to promote tumor cell invasion [78,139].

An important event in tumor cell invasion is the formation of F-actin-rich invadopodia as
membrane protrusions. This ensures cellular movement and invasion through the ECM [78,140–142].
Invadopodia are important to clear the tumor cell path by degradation of cell-cell junctions and of
the ECM. Formation of invadopodia is triggered by growth factors such as EGF, PDGF, basic FGF
and also by integrins [78]. These extracellular stimuli activate PI3K and Src signaling leading to actin
re-modeling. This is essential to provide the mechanical forces of cell movements [140,141]. Particularly
Src signaling has been identified as key event in this process. This is further supported by adhesion
domains, which bind to the ECM and provide the anchor promoting directed movement. Further,
activity of invadopodia is associated with the action of MMPs and of serine proteases for effective
invasion [143,144]. Serine proteases such as uPA not only degrade the ECM but are also known to
proteolytically activate growth factors, for example, HGF, TGF-alpha or basic FGF [78].

These briefly introduced processes of tumor cell invasion are targets for therapeutic intervention.
Considering the sequence of events impacting tumor cell invasion, three levels are useful for
invasion intervention, which also affect invadopodia formation—(i) stimulation by growth factors,
(ii) invasion-promoting signaling and (iii) protease activation.

Growth factors play a decisive role in inducing invasive properties of tumor cells [145–147].
Growth factor receptors, such as EGFR, PDGFR, basic FGFR and VEGFR are in focus. Apart from
antibody-based interventions, small molecule inhibitors are in clinical use or under development.
For EGFR-signaling erlotinib and gefitinib are known tyrosine kinase inhibitors, whereas sorafenib,
sunitinib and pazopanib are inhibitors of the VEGF receptor [38–41]. Further, FGFR and also the VEGFR
function is antagonized by brivanib (BMS-582664), a prodrug, which is converted to the ATP-competitor
BMS-450215 [42]. PDGFR autophosphorylation and therefore receptor activation can be inhibited by
the adenine mimetic drug orantinib (SU6668), which also acts on FGF-1, due to structural similarities
of the ATP binding sites of the two receptors as target motive for the drug [43]. For all these, mostly
multitarget inhibitors, anti-metastatic and anti-invasion activity has been demonstrated.

As mentioned, Src and Src-signaling play an important role in invasion. Its inhibition was shown
to intervene in invasion and metastasis. Small molecule inhibitors, which interfere with Src activity
and signaling, are the clinically used drugs dasatinib and bosutinib (SKI-606), the dual kinase inhibitor
saracatinib (AZD-0530) and the dual Src/tubulin inhibitors KX02, KX2-391 [44]. Among those, dasatinib
has been shown to inhibit tumor growth and metastasis formation of an orthotopic prostate cancer
model [45,46]. This was associated with drug-mediated reduction in cancer cell migration and invasion.
Saracatinib inhibits the invadopodia regulatory proteins FAK, p130 Crk-associated substrate (CAS)
and contactin in HNSCC [47]. Such small molecule inhibitors of pathways, which are essential for
invadopodia formation and function, indicate the effectiveness of intervention strategies at this driving
step of cancer metastasis.

The main function of invadopodia for cancer cells is promotion of matrix degradation to support
cancer cell invasion. In this regard targeting proteases is an additional level for effective intervention
and prevention of metastasis. In this context, MMPs (e.g., MMP-2, MMP-9) are valuable targets.
MMPs are members of zinc-endopeptidases with proteolytic activity against a broad spectrum of
ECM substrates to support tumor cell invasion [148,149]. Tumor cells express MMPs at their leading
edges to degrade collagen fibers to open the invasion path. Based on this, inhibition of invasion by
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MMP interference might contribute to inhibition of the entire metastatic process [48–50]. For such
an approach, numerous small molecule inhibitors have been developed. They belong to the group
of hydroxamates (batimastat, marimastat, prinomastat, solimastat etc.), thiol-based MMP inhibitors
(e.g., rebimastat, tanomastat) and other MMP inhibitors, such as carbamoylphosphonate cis-ACCP,
pyrimidine-trione-like Ro28-2653 or the sulfonamide derivative S-3304. Clinical testing of such
inhibitors however revealed low efficacy of MMP intervention. This is potentially due to low selectivity
of the drugs or due to emergence of resistance mechanisms in treated tumors. Another resistance
mechanism is the switch of tumor cells from protease-dependent to protease-independent invasion to
circumvent the inhibitory activity of applied small molecule drugs. This is the rational, by which the
tissue inhibitors of metalloproteases (TIMPs) came into focus. Here, small molecules are of increasing
interest, which stimulate TIMP expression to inhibit the malicious action of MMPs in tumor invasion
and metastasis [51]. Such activity has been tested for compounds like the organo-sulfur compound
diallyl-disulfide, the lignan arctigenin or the arylsulfonamide derivative MPT0G013 and many others,
which all increased TIMP-3 expression and inhibited tumor cell migration and invasion.

Due to the migration, invasion and metastasis promoting function of the serine protease uPA,
numerous approaches are aiming at inhibition of its proteolytic activity [150]. Small molecule inhibitors,
such as the ameloride derivatives B-428 and B-623 were shown to inhibit prostate and also breast
cancer growth and metastasis in vivo [52]. Similarly, encouraging results have been obtained by testing
WX-671 and its prodrug WX-UK1 in clinical trials for treatment of solid tumors [53,54]. Such uPA
targeting approaches indicate the therapeutic value for tumor suppression and metastasis reduction.

In summary, there is a plethora of small molecules available, which act on processes of invadopodia
action, cell migration and invasion. Their use for intervention in signaling processes of migration
and invasion and combination with other drugs that interfere in other essential steps of metastasis
formation will contribute to improved anti-metastatic therapy of cancer.

2.4. Metastasis Outgrowth—Intervention of Settlement

Tumor cells, which enter the circulation must survive various challenges before they can form
clinically manifest metastases. A small percentage of cancer cells will survive after leaving the primary
tumor and infiltrate distant organs. These tumor cells can reside in niches and remain dormant for
years until receiving cues to proliferate [151–154]. As these cells are in a dormant state, it is assumed
that they are unaffected by conventional chemotherapy targeting actively dividing cells [155]. Studies
have shown that cell’s fate to remain dormant or proliferate depends on the cues from the tumor
microenvironment, for example, Notch, Wnt, p38 signaling pathways or growth factor effects.

Notch signaling, pivotal for cell-cell communication, is often deregulated and mutated in cancer.
Following ligand binding, the Notch receptor is cleaved by proteolytic activities of ADAM10 and
γ-secretase [156,157]. This releases the Notch extra- and intracellular domains (NECD, NICD). Cleaved
NICD translocates to the nucleus and forms complexes with the recombination signal binding protein
for immunoglobulin kappa J region (RBPJ, former CSL) and mastermind-like (MAML). This complex
induces transcription of Notch target genes. The C-terminus of NICD contains a PEST domain
targeting NICD for rapid degradation. The PEST domain is often mutated in cancer, thus impairing
the degradation of Notch [158]. Activation of Notch promotes STAT3 phosphorylation resulting in
activation of cancer stemness pathways [159]. Various strategies to intervene in Notch signaling
(cleaving enzymes, nuclear translocation and intracellular complex formation of NICD) have been
explored [158,160,161]. PF-03084014 (PF-4014/nirogacestat) is a potent γ-secretase inhibitor hindering
STAT3-Notch1 interaction [159]. It acts by inhibiting the Ser/Thr phosphorylation of STAT3, crucial
for Notch1 interaction. This reduces survival signals mediated by for example, MEK/ERK and PI3K
pathways. Due to activation of BAK, BAX and Caspase 3 apoptosis is increased [55]. When used in
combination with glucocorticoids to treat T-cell acute lymphoblastic leukemia (T-ALL) in in vivo models,
the anti-tumor response is enhanced compared to monotherapy [56,57]. Interestingly, PDX models with
mutations in the PEST domain of Notch were also sensitive to PF-03084014 [58]. Currently, PF-03084014
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is in a phase III randomized double-blind clinical trial for treatment of aggressive fibromatosis/desmoid
tumors (NCT03785964) [59]. Another targeted small molecule inhibitor intervening in Notch pathway
is RBPJ Inhibitor-1 (RIN1). RIN1 is an inhibitor disrupting the interaction between NICD and its
transcriptional effector, RBPJ. Targeting with RIN1 allows to selectively modulate Notch signaling
avoiding off-target effects observed for other inhibitors targeting this pathway [162].

In addition to the signaling pathways involved in proliferation as exemplified above, the niches
harboring dormant cells also serve as attractive targets. Dormant cells reside in niches that are highly
similar to hematopoietic stem cell (HSC) niches [163]. Signals like CXCL4/CXCL12 or TGF-beta that
prompt the production of stem cells, also activate dormant cells. One such example is granulocyte-colony
stimulating factor (G-CSF), a glycoprotein that is commonly supplemented with chemotherapy to
stimulate the release of stem cells from bone marrow, also releases dormant cancer stem cells [164,165].
Aberrant activation of Wnt/ β-catenin pathway is usually observed in metastatic tumors [166].
CWP232228 is a highly potent small molecule inhibitor identified in a high-throughput screen.
CWP232228 prevents binding of β-catenin to TCF proteins in the nucleus thereby reducing tumor
formation and metastasis. In vivo CWP232228 suppressed tumor growth in colon cancer models [60].
CWP232291, closely related to CWP232228, completed a phase I trial. This trial resulted in defining the
safe and tolerable dose of CWP232291 alone and in combination therapy for phase II studies. Currently,
CWP232291 is in a phase IIa clinical trial for leukemia (NCT03055286) [61]. IC2, another derivative of
CWP232228, has demonstrated effective suppression of liver cancer stem cells and cancer stem cell
marker positive population in vitro and in vivo [167]. Future research developing small molecules
capable to modulate stem cells and hematopoietic cell lineage, may also eliminate cancer stem cells
and serve as promising therapeutic approach.

Another key molecule involved in the regulation of hematopoietic stem cells is growth arrest
specific 6 (Gas6) [168]. Gas6 is a ligand for TRYO3, AXL and MER (TAM) family of receptor tyrosine
kinases [169,170]. Studies have indicated that GAS6 is involved in cell invasion and migration through
the GAS6/AXL axis. Importantly, Gas6 is involved in dissemination of tumor cells to the bone marrow.
There, these cells enter cell arrest and survive for long periods undetected [171,172]. As tyrosine kinase
receptors are structurally and functionally similar to a certain extent, it is challenging to develop
selective inhibitors [173]. Nevertheless, with the recent advances selective inhibitors that target Gas6
receptors such as UNC1062 (Mer) and UNC2025 (Mer/FTL3) have been developed [62,63]. R428
(BGB324) is the first Axl inhibitor that is in phase II clinical trial for multiple cancers (NCT02488408,
NCT03824080) [64]. In summary, these novel selective compounds not only establish the integral
role of GAS6 and TAM receptors in regulating tumor dormancy but also serve as tools for further
development of selective TAM inhibitors.

Angiogenesis is a fundamental process not only during tumor growth but also for organ
colonization [174]. VEGF and FGF are key pro-angiogenic growth factors, known to induce angiogenesis
and cell proliferation [175–177]. Thrombospondin 1 (TSP1), a protein belonging to the family of ECM
proteins, plays a key role in regulating angiogenesis. TSP1 is capable of inhibiting angiogenesis
by binding and sequestering FGF2 and thus prevents its activity. By exploring the FGF2 binding
sequences of TSP1 novel anti-angiogenic molecules are designed [65]. One such example is SM27
(naphtalenosulfonic acid derivative) developed by Colombo et al. SM27 inhibits the interaction of
FGF2 with its receptors FGFR1 and HSPGs thus hindering the formation of ternary complex required
for FGF2 signal transduction [65,66].

In summary, there is a need to improve our understanding of the signaling pathways that regulate
cancer cell dormancy and the niches homing the dormant tumor cells in order to develop small
molecule inhibitors to successfully eliminate seeds of future metastasis.

2.5. Metastasis Suppressors—Natural Borne Inhibitors

Instead inhibiting pro-metastatic factors, small molecules are also applied to induce factors
inhibiting steps in the metastatic process, the metastasis-suppressor genes (MSG). A literature-based
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resource summarizes 194 experimentally verified MSGs, including functional annotations, gene
expression and methylation data [178].

MSGs act in several cellular pathways linked to metastasis, for example, signaling pathways,
apoptosis, modulation of the cytoskeleton and altered cell adhesion, comprehensively reviewed in
Reference [179]. The first identified metastasis suppressor in mouse models for metastasis formation
was nucleoside diphosphate kinase Nm23 [180–182]. Nm23 represses metastasis formation in part
by phosphorylating kinase suppressor of Ras (KSR), leading to decreased ERK activation [183]. Over
time, more MSGs were identified which affect MAPK signaling, like Ras kinase inhibitory protein
(RKIP) and MAPK kinases 4, 6 and 7 [184–187]. Other signaling-related MSGs include the secreted
G-protein-coupled receptor (GPR) ligand precursor KiSS-1 and Src-suppressed C kinase substrate
(SSeCKS), acting as a scaffold for signaling factors [188,189].

MSGs are also involved in cell adhesion and cytoskeleton regulation, leading to reduced migration.
E-cadherin, CD44 and CD82 are transmembrane glycoproteins. These proteins mediate cell-cell
interactions and modulate plasma membrane receptor activity or interaction of membrane proteins
with the cytoskeleton, respectively [190–192]. Rho-GTPase-activating protein 7, deleted in liver
cancer (DLC)-1 and Rho-GDP-dissociation inhibitor alpha (Rho-GDIα) are more directly involved
in cytoskeleton regulation [193–195]. But also repressors of gene transcription have been identified
as MSGs, like breast cancer metastasis suppressor (BRMS) 1, associated with histone deacetylation
(HDAC) complexes and surprisingly the proto-oncogene MYC [196–198].

Clinically, MSG expression resulted in favorable prognosis for the majority of solid cancers [199,200].
Less clear is the value of MSGs as predictive biomarkers. Preclinical data link Nm23 expression
with increased sensitivity to cisplatin treatment [201]. A retrospective clinical analysis reports better
chemotherapy treatment response in Nm23-expressing tumors [202]. A recent study links a higher
promoter methylation status of the metastasis suppressor NK6 homeobox 1 (NKX6.1) resulting
in reduced expression, with a less favorable prognosis of stage II CRC patients after receiving
adjuvant chemotherapy [203]. This points to a promising strategy to re-express MSGs in cancer cells.
Focusing on epigenetic regulation mechanisms in metastasis formation, inhibitors of DNA-methylation,
histone-methylation or -deacetylation are reported to increase MSG expression [204].

Screening for cancer-related genes downregulated by DNA-methylation in gastric cancer
identified the induced expression of KiSS-1 along with its receptor GPR54 upon treatment with
5-aza-2’-deoxycytidine/decitabine [67]. The induction of KiSS-1/GPR54 upon DNA-demethylation
was confirmed in endometrial cancer and might serve as therapeutic strategy to inhibit metastasis
formation in additional cancers [205]. Methylated CpG-islands were also found in the promoter region
of Nm23. Treatment with decitabine increased Nm23 expression but also BRMS1 or RKIP in breast
cancer cells, resulting in reduced cell migration and invasion [70,206,207].

Histone methylation can silence gene expression in cancer cells, mediated by histone
methyltransferases (HMT) like enhancer of zeste homolog (EZH) 2. EZH2 is frequently upregulated in
cancer. Its inhibition by 3-deazaneplanocin A (DZNep) reduces metastasis formation by re-expression
of E-cadherin and DLC-1 [68,208]. EZH2 is also involved in transcriptional repression of RKIP in breast
and prostate cancer, supporting a potential anti-metastatic treatment by targeting HMTs [209,210].

Similarly, expression of silenced MSGs can be restored by inhibition of histone deacetylases
(HDACs) using drugs like suberanilohydroxamic acid (SAHA). SAHA treatment re-induced the
expression of E-cadherin, decreasing EMT and cell motility [69,211]. HDAC inhibition by SAHA
also increased the expression of RKIP, SSeCKS and Nm23 in various cancer types [70,212–214]. Thus,
upregulating MSG expression by remodeling the epigenetic landscape in cancer cells represents a
promising anti-metastatic treatment strategy for high-risk patients, either in mono- or combination
therapies [215–217].

MSGs can also be induced by non-steroidal anti-inflammatory drugs (NSAIDs). Generally,
pre- or post-diagnostic use of NSAIDS correlates with reduced distant metastasis [72,218]. Their
anti-metastatic effect was identified by the upregulation of MSGs like Nm23 in different cancer
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cells [219–221]. Similarly, COX-2 inhibition by NSAIDs upregulates E-cadherin, partially by decreasing
its promoter methylation [222–224].

Many MSG promoters are reported to be repressed through NF-κB binding sites. This mechanism
is supported by the upregulation of RKIP expression in breast cancer cells upon inhibition of NF-κB
signaling by dehydroxymethylepoxyquinomicin in breast cancer [70]. Also CD82-expression is
regulated by active NF-κB signaling but its repression or induction strongly depends on the cell type
or at least the mutation status of p53 [225,226]. NF-κB signaling also decreases Rho-GDIα on protein
level by upregulating its E3 ubiquitin ligase, triggering proteasomal degradation of ubiquitinylated
Rho-GDIα [227].

Targeting NF-κB signaling is promising to therapeutically inhibit metastasis formation. It was
proven to decrease the metastatic potential of different cancer cells [228–230]. Specific inhibitors of
NF-κB signaling in solid cancers are currently tested in animal models (reviewed in Reference [231]).
Interestingly, BRMS1 and KiSS-1 can decrease NF-κB-mediated target gene expression and thus
suppress cancer cell motility and invasiveness [232–237].

Re-activation of MSG expression can be achieved by repositioning drugs from various classes
(summarized in Reference [223]). Preclinical reports link the application of individual drugs to a
decrease in cancer progression or metastasis formation but only little literature is available for clinical
trials with focus on metastasis-suppressors. The promising preclinical strategy of upregulating Nm23
expression in breast cancer by progestines was evaluated in a prospective clinical phase II trial but
with only limited success [71,238].

The main obstacle in the translation of MSG-expression by small molecules is the range of affected
cellular mechanisms, raising the danger to induce severe side effects. This rather discourages the strategy
of systemic MSG-induction in anti-cancer therapy. But the emerging concept of personalized/precision
medicine, combined with deeper insight into molecular mechanisms of metastasis formation, might
circumvent this issue.

3. Conclusion and Future Prospects of Anti-Metastatic Therapy

Cancer cell migration, invasion and metastasis belong to the hallmarks of cancer, which severely
limit therapeutic options and in result of this, also limit patient survival. For example, colorectal cancer
patients have a good prognosis if diagnosed before metastases have formed. If metastases are already
present, long-term survival is reduced and therapeutic options are restricted by the systemic spread of
the disease. This situation has not substantially changed for metastasized patients in the past decades.
Therefore, profound knowledge of processes leading to metastasis formation is of crucial importance.
If we understand, how and when cancer cells migrate, invade, circulate and colonize distant sites,
the successful treatment for long-term survival of patients becomes a realistic option. To reach this
goal, patients at high risk need to be identified by strong biomarkers, which are in the best scenario
also causative molecules for metastasis formation. For these patients, tailored treatments targeting cells
at specific steps in the metastatic cascade will allow to disrupt the aberrantly regulated processes for
efficiently inhibiting the metastasis formation and progression. Use of specific inhibitors will interfere
in the best scenario in early events of the metastatic process, hindering metastasis formation as early as
possible. Since cancer cells activate different mechanisms for effective migration, invasion, apoptosis
prevention and so forth, the combination of small molecule drugs targeting such different signaling
pathways of the metastatic process will assure improved treatment of metastatic cancer. The knowledge
on how such pathways complement or replace each other to ensure cancer cell metastasis will be
the basis for more effective combination therapies using small molecules. For this, research has to
find inhibitors, which specifically interfere with metastasis drivers. In addition, search for novel and
powerful regulators of metastasis, knowledge of aberrantly regulated signaling pathways and use of
new or repositioned drugs for these targets opens new therapeutic options.
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