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Myopic reallocation of extraction 
improves collective outcomes 
in networked common‑pool 
resource games
Andrew Schauf* & Poong Oh

When individuals extract benefits from multiple resources, the decision they face is twofold: besides 
choosing how much total effort to exert for extraction, they must also decide how to allocate this 
effort. We focus on the allocation aspect of this choice in an iterated game played on bipartite 
networks of agents and common-pool resources (CPRs) that degrade linearly in quality as extraction 
increases. When CPR users attempt to reallocate their extraction efforts among resources to maximize 
their own payoffs in the very next round (that is, myopically), collective wealth is increased. Using a 
heterogeneous mean-field approach, we estimate how these reallocations affect the payoffs of CPR 
users of different degrees within networks having different levels of degree heterogeneity. Focusing 
specifically on Nash equilibrium initial conditions, which represent the patterns of over-exploitation 
that result from rational extraction, we find that networks with greater heterogeneity among CPR 
degrees show greater improvements over equilibrium due to reallocation. When the marginal utility 
of extraction diminishes, these reallocations also reduce wealth inequality. These findings emphasize 
that CPR users’ adaptive reallocations of effort—a behavior that previously-studied network 
evolutionary game models typically disallow by construction—can serve to direct individuals’ self-
interest toward the collective good.

A resource that is freely available to a community of users, but which provides reduced benefits as usage increases, 
is called a common-pool resource (CPR)1–5. Common-pool resources differ from public goods, which are non-
rivalrous, meaning that increased usage by one individual does not reduce the benefits that a public good provides 
to other users. While various mechanisms underlying the collective maintenance of public goods in networked 
populations have been thoroughly investigated6–8, those of common-pool resources have yet to be as extensively 
studied using the combined tools of network science and evolutionary game theory. An ability to sustainably 
make use of degradable natural resources—for example fisheries, pastures, forests, or water resources—is obvi-
ously crucial to human survival. In addition to these more tangible resources, though, human activities are also 
increasingly reliant upon resources that facilitate communication and the collective sharing of information; 
because many of these resources may suffer reduced performance if subjected to overuse9–11, their effective 
management may also benefit from a deeper understanding of the dilemmas faced by CPR users within complex, 
structured populations. Research into CPR management often stresses that there is no panacea for compre-
hensively framing and understanding all CPR dilemmas12. Nonetheless, network models provide a promising 
framework within which to study how the basic mechanisms involved in the use of rivalrous resources play out 
on complex structured populations, and so to help bridge the gap between the more abstract insights of network 
evolutionary game theory and the special-case issues faced in real-world CPR management.

Perhaps the most salient overarching theme of the study of CPRs has been that users often regulate their own 
usage in ways that avert resource degradation more effectively than can any regulation imposed by a central-
ized decision-maker3. Information sharing, cultural norms, and the negotiation of various ad hoc rules have 
all been observed to facilitate this self-regulation in real-world CPR systems3,13,14. But the observation of these 
common features begs a more fundamental question: how might these rules and norms have evolved in the first 
place? Evolutionary game theory provides a useful framework to study various mechanisms by which social 
individuals—despite being initially motivated only by short-sighted self-interest—may come to coordinate their 
actions in ways which avert the “tragedy of the commons” and benefit the collective good. In particular, network 
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models have been used to show that the structural properties of social networks can affect the extent to which 
cooperation can persist and spread within a population. This idea has most often been demonstrated within the 
context of network public goods game (PGG) models6–8. In these models, degree heterogeneity among agents 
(i.e. the numbers of distinct public goods among which agents diversify their investments) and group sizes (i.e. 
the numbers of users of each public good) have each been shown to play a role in shaping the prevalance of 
cooperation when strategies evolve under imitation, that is, when individuals adopt the strategies of their higher-
fitness neighbors. However, since these network models have typically dealt with public goods, they may fail to 
capture some fundamental aspects of the unique dilemmas faced by users of rivalrous common-pool resources. 
A variety of agent-based models have been developed to address more special-case CPR dilemmas15–20 and to 
investigate the evolution of rules governing CPR usage on lattice-structured populations21–24 or networks25. As 
in the aforementioned network PGG models, most of these CPR models presume that a specific, pre-defined 
cooperation rule is under consideration, which is designed to yield longer-term benefits if widely adopted. Some 
additional social mechanism may then prompt short-sighted individuals to voluntarily adopt this proposed rule 
despite the more immediate advantages that stand to be gained by defecting from it.

Fewer studies have examined the relationship of population structure to CPR self-regulation at a more fun-
damental level, however. İlkılıç considered a CPR extraction game in which a population of agents exert effort 
to extract benefits from multiple sources, and where agents’ access to these sources are described by bipartite 
networks26. In that model, CPR sources were assumed to degrade linearly with respect to the total extraction to 
which they were subjected. Agents’ payoff functions also included a quadratic cost term to incorporate diminish-
ing marginal utility. This work detailed methods for computing the extraction levels in the game’s unique Nash 
equilibrium state, wherein individuals seek to maximize their own individual payoffs, and Pareto efficient states, 
in which a population’s collective wealth is maximized, for any given bipartite network of agents and sources. 
These methods were then demonstrated on example networks having only a few nodes. In this article, we elabo-
rate upon İlkılıç’s model, aiming not only to compute certain extraction states of interest for specific networks, 
but rather to understand the patterns of over-exploitation and inequality that emerge in these states, and how 
they are shaped by population structure. More specifically, we wish to clarify how resource over-exploitation or 
agent payoffs depend on a node’s network degree, and how the degree distributions of the surrounding network 
determine this dependence.

While previous network PGG models typically presume that agents apply a single pre-defined strategy (i.e. 
either “cooperation” or “defection”) in a uniform way to all of their affiliated goods, this model allows agents 
to selectively allocate their efforts among multiple CPRs. We investigate the role of this allocation decision by 
introducing a CPR reallocation game in which agents adaptively shift their extraction efforts between CPRs, 
updating their allocations of effort without varying the overall magnitudes of effort that they exert. This update 
rule is myopic in the sense that it aims only to increase an agent’s payoffs in the next iteration of the game based 
on the resource conditions observed in the current round. Unlike the rational behavior that leads to Nash equil-
brium, this reallocation update rule models extraction dynamics when agents’ rationality is bounded by the 
restriction that agents do not vary their overall extraction levels over time, but rather view CPR extraction purely 
as an allocation problem. This premise allows us to explore the extent to which the “tragedy of the commons” 
can be alleviated by reallocations alone, moving the population closer to optimal states even in the absence of 
regulation by any centralized decision-maker.

We demonstrate that when network-structured populations overuse CPRs, these myopic reallocations will 
improve the population’s collective wealth, thus partially averting the “tragedy of the commons”. If individuals all 
unilaterally attempt to maximize their own payoffs, as in Nash equilibrium, then the extent to which each CPR is 
over-exploited depends on its number of users (i.e. its degree). A network’s degree distributions thus determine 
how inefficiently the system operates under this rational extraction behavior, and so also determine how much 
a population potentially stands to gain from reallocation by comparing Nash equilibria with the steady states 
that the system subsequently approaches under myopic reallocation dynamics. To estimate how these gains are 
distributed throughout a population, we use a heterogeneous mean-field perspective, which bins a network’s 
nodes by degree and estimates the mean properties of each degree class using degree distributions27. We show 
that in the absence of diminishing marginal utility, these gains tend to be distributed among agents of all degree 
classes in proportion to their extraction efforts, so that these collective gains are not necessarily at odds with any 
individual’s self-interest. However, when diminishing marginal utility acts to limit individuals’ extraction levels at 
equilibrium, these reallocations also tend to increase the equality of the resulting payoff distributions by partially 
levelling out degree-based payoff inequities that emerge under rational extraction. Our results emphasize that 
users’ decisions regarding their allocations of effort among multiple degradable resources—an aspect of agent 
choice which is typically excluded by construction from more widely-studied network PGG models, or even 
previous network CPR models—can potentially drive populations of self-interested individuals toward more 
collectively optimal states in ways that are shaped by network topology.

Methods
Agent‑resource affiliation networks.  We consider games played on bipartite networks of M agents and 
N sources in which the presence of an edge between an agent and a source indicates that the agent has access to 
that source. We assume that this network structure is predetermined exogenously, and remains static over the 
time scales of interest. The set of all sources is denoted as S , while the set of sources affiliated with a particular 
agent a is denoted as Sa and the agent’s degree (i.e. its number of affiliated sources) as m(a) . We denote the set 
of all agents as A , the set of agents affiliated with a particular source s as As , and this source’s degree (i.e. its 
number of affiliated agents) as n(s) . Mean values for quantities over the set of sources are denoted with brackets: 
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�x� =
[
∑

s∈Sx(s)
]

/N . The distribution of agent degrees within the population is denoted as PA(m) , and the 
distribution of source degrees is denoted as PS(n).

Results presented below are based on ensembles of 103 network realizations, each of which have M = 50 
agents, N = 50 sources, and share mean agent degree �m� = 5 and mean source degree �n� = 5 . We consider 9 
network ensembles, each generated to have a particular combination of one of three source degree heterogeneity 
types—delta-function (“D”), normal (“N”), or power-law (“PL”)—with one of three agent degree heterogeneity 
types—uniform (“U”), random (“R”), or scale-free-type28 (“SF”) (see Section S1.1 of the Supplementary Informa-
tion). We denote the ensemble of networks having normal (“N”) source degree distributions and random (“R”) 
agent degree distributions as “N-R”, for example. From each ensemble, we extract degree histograms to represent 
the distributions PA(m) and PS(n) (Fig. 1).

Common‑pool resource extraction game.  Following and generalizing upon the approach of İlkılıç26, 
we consider the extraction game in which each agent a exerts an extraction effort of magnitude q(a, s) toward 
extraction from an affiliated source s ; an agent’s strategy thus comprises its choices of q(a, s) for each source from 
its set of affiliated sources Sa . We denote the total extraction effort exerted by an agent as ←−q (a) , and the total 
extraction effort exerted upon a source by −→q (s) , which we will refer to as the extraction pressure on source s . 
We define the quality, b(s) , of a source s as the magnitude of the benefit it returns to a user in return for each unit 
of extraction pressure exerted upon it. The total fitness of an agent a is thus given by the payoff function 

where the constant coefficient γ ≥ 0 of the quadratic cost term quantifies the relative influence of diminishing 
marginal utility26. Extraction is non-excludable, and so is not regulated by any centralized decision-maker, nor 
does it involve any negotiations or transactions between agents1–3; this cost term represents only the inherent 
cost of the act of extraction itself, which is effectively increased at higher levels of extraction by diminishing 
marginal utility. In common-pool resources, an additional effective cost of extraction, shared by all users of a 
given CPR, comes from the property that extraction by one user reduces the benefits available to others1–3. This 
rivalrous (or subtractable) property of CPRs is modelled here by assuming that each source offers users some 
basic benefit per unit extraction effort, α > 0 , which is reduced by some amount β(s) > 0 for each unit of total 
extraction pressure that the source receives, so that

The dependence of the parameter β on source s allows the model to capture variability among the characteristics 
of individual sources (the Supplementary Information further considers a case where α and γ may also vary 
among nodes). Given our focus on the relationship of network degree to extraction, in the cases shown here we 
define β as a function of source degree n (as denoted by a subscript: βn ); we then follow previous network PGG 
literature6 by examining two “extreme cases”, each representing a distinct type of dependence of the parameter 

(1)f (a) =





�

s∈Sa

q(a, s) · b(s)



−
γ

2

←−q (a)2,

(2)b(s) = α − β(s)−→q (s).

Figure 1.   (a) CPR source degree distributions, and (b) agent degree distributions from 9 network ensembles, 
each representing a combination of a delta-function (D), normal (N), or power-law (PL) source degree 
distribution with a uniform (U), random (R), or scale-free-type (SF) agent degree distribution. Source degree 
distributions are identical for each of the 3 ensembles that share a common source degree distribution type, 
hence the overlapping curves.
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of interest upon degree. Here, the first of these is a uniform capacity scenario, where all sources degrade in an 
identical manner, such that β(s) ≡ β for some constant β > 0 . This corresponds to the game previously studied 
by İlkılıç26. In addition, we introduce a degree-proportional capacity scenario wherein β(s) = β0�n�/n(s) for 
some constant β0 , so that each source’s quality degrades in proportion to the mean extraction pressure per user 
that it receives. As we will show, the major results of this article are robust with respect to these changes in the 
assumptions made about the dependence of CPR degradation characteristics on degree.

Reallocation dynamics.  Within the context of the CPR extraction game described above, we consider the 
dynamics which occur if each agent a is free to adaptively reallocate their extraction efforts among their mul-
tiple affiliated sources without altering the overall magnitudes ←−q (a) of their extraction efforts. We assume that 
agents have access to accurate information about the current quality b(s) of each of their affiliated sources s at 
each iteration, and anticipate that extraction from currently higher-quality resources will lead to higher payoffs 
in the next round. Following each round of an iterated game, myopic agents thus compare the quality values of 
their affiliated sources, and attempt to maximize their payoffs in the subsequent round by shifting their efforts 
from lower- to higher-quality sources. Agents’ rates of performing these updates are assumed to be proportional 
to the increases in payoffs that they expect to achieve thereby, as in a discrete replicator rule6. That is, their rates 
of reallocation between any two sources are proportional to the differences in quality between these sources, so 
that each extraction level q(a, s) evolves according to

where k > 0 is some constant. These reallocation dynamics conserve each agent’s total extraction level ←−q (a) 
in time, as the system approaches steady states in which all sources sharing some affiliated agents in common 
also share a common quality value. These steady states are distinct from the unique Nash equilibria of the CPR 
extraction game; furthermore, even within this CPR reallocation game where agents are restricted to only per-
form reallocation moves that conserve the total magnitudes of their extraction efforts, there typically do exist 
reallocation moves whereby an agent could increase its own fitness if all other agents held their extraction levels 
constant (see Section S2.2 of the Supplementary Information).

We use a heterogeneous mean-field approach to estimate the dependence of the expected source extraction 
pressure �−→q �n on source degree n , and the dependence of expected agent payoff 〈f 〉m on agent degree m for Nash 
equilibrium and Pareto efficient states (as detailed in Section S3 of the Supplementary Information). We then 
estimate the shifts in CPR extraction pressure and agent payoffs that are brought about as the dynamics of Eq. (3) 
bring Nash equilibrium initial conditions toward steady states. For specific network realizations, steady states of 
these reallocation dynamics can be computed as solutions of a linear complementarity problem (see Section S5.1 
of the Supplementary Information). To validate these estimates, we also compute Nash equilibrium states, Pareto 
efficient states, and steady states of reallocation dynamics from equilibrium for each of the specific network 
realizations generated (as detailed in Sections S5 and S6 of the Supplemental Materials).

Results
Myopic reallocation improves collective wealth.  Beginning from some initial extraction state, agents 
within a networked population of multiple common-pool resources play an iterated game in which they observe 
current resource conditions at each round, and incrementally shift their extraction efforts from lower-quality 
sources toward higher-quality sources in order to maximize their payoffs in the following round (Eq. 3). Agents’ 
extraction efforts are thus redirected away from over-exploited sources toward less-exploited sources so that the 
system approaches a steady state in which all sources equally share the burden of over-extraction. In the process, 
some sources increase in quality, while others are further degraded; nonetheless, the overall result of these real-
locations is a net increase in collective wealth.

To show this, we consider an arbitrary initial extraction state, in which the population’s collective extraction 
effort is Q = N�−→q � . In this state, the initial collective payoff extracted by the population is F0 =

∑

s∈S
−→q (s) · b(s) 

(where we ignore cost terms, since these remain constant under reallocation), and so the population’s collective 
wealth per unit extraction effort is

Under reallocation dynamics (Eq. 3), this total extraction Q is conserved, and the system will approach a steady 
state in which all sources share a common quality value

The population’s collective wealth approaches the steady-state value

Collective wealth is increased (or at least conserved) if F0 ≤ Ff  , or equivalently, if F0Q ≤ bf  . Using Eqs. 4 and 5, 
this condition reduces to

(3)
d

dt
q(a, s) = k

∑

s′∈Sa

[

b(s)− b(s′)
]

,

(4)
F0

Q
=

∑

s∈S
−→q (s) ·

[

α − β(s)←−q (s)
]

∑

s∈S
−→q (s)

= α −
�β−→q 2�
�−→q �

.

(5)bf = α −
�−→q �
�β−1�

.

(6)Ff =
∑

s∈S

[−→q (s) · bf
]

= Qbf .
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The validity of this inequality is guaranteed by the Cauchy–Schwarz inequality29, �XY�2 ≤ �X2��Y2� for random 
variables X and Y  , with the identifications X =

√
β(s)−→q (s) and Y =

√

β(s)−1 . Furthermore, equality occurs 
if and only if the quantity β(s)−→q (s) shares the same value for all sources, that is, when initial conditions are 
already steady states where all sources share a common quality value. Reallocation dynamics thus increase col-
lective wealth for any initial condition where sources vary from one another in quality (see Section S2.1 of the 
Supplementary Information). This includes Nash equilibrium initial conditions, upon which we will now focus 
our attention.

CPR degree heterogeneity leads to greater improvements in efficiency under myopic realloca‑
tion.  In the unique Nash equilibrium state of a given network26, each agent sets its extraction at each source to 
the point beyond which further extraction would increase its costs more than it would increase its payoffs, given 
that all other agents are doing the same. In this state, no agent can increase its payoffs by unilaterally adjusting 
its extraction levels while other agents hold their extraction levels constant. However, when all agents simultane-
ously adapt their extraction levels according to the reallocation update rule (Eq. 3), under which each increase in 
extraction at one source is matched by an equal decrease at another source, then higher payoffs can be achieved. 
To quantify the extent to which reallocation alone can help alleviate the “tragedy of the commons” represented 
by Nash equilibrium, we now apply reallocation dynamics to Nash equilibrium initial conditions on a variety of 
network types, and compare the population’s collective wealth values before and after reallocation.

When network-structured populations of rational individuals extract benefits from multiple linearly-degrad-
ing CPRs, the burdens of over-exploitation tend to fall upon sources in a degree-dependent manner. Myopic 
reallocation tends to shift these burdens among sources of different degrees, and to distribute the resulting 
increases in collective wealth among individuals of different degree classes. In order to understand how these 
reallocations shift extraction pressure and agent payoffs among nodes of different degrees, we use a heterogeneous 
mean-field approach to derive estimates for these shifts. Under this perspective, the conditions defining Nash 
equilibrium ( ∂f (a)

∂q(a,s) = 0 ) lead us to estimate the expected values for extraction pressure on degree-n sources, 
�−→q �n , by solving a linear system defined by

with one such condition for each unique source degree n ∈ {1, . . . , nmax} represented in the network, where 
brackets subscripted by agent degree m indicate expected values �x�m =

∑nmax

n=1 PS(n)
n
�n� · xn and we have assumed 

no degree-degree correlations (see the Supplementary Information Section S3 for details). Solving this system 
numerically (here we use Python 3.7.3 with SciPy 1.2.130) for each of the 9 network types under consideration by 
inserting the corresponding ensemble degree distributions PA(m) and PS(n) (Fig. 1), we use the resulting values 
of �−→q �n to compute the expected total extraction by a degree-m agent �←−q �m at equilbrium as

from which 〈q〉m,n , the expected equilibrium extraction by a degree-m agent from a degree-n source, can be 
computed using the Nash equilbrium condition:

These values are then used to compute the corresponding estimated collective wealth (i.e. the sum of all agent 
payoffs, F =

∑

a∈A f (a) ) and wealth equality (as quantified by Gini index G ) attained at Nash equilibrium, as 
well as the subsequent shifts that are brought by myopic reallocation dynamics toward steady states. These values 
are shown in Fig. 2 for a range of values of the cost parameter γ , which quantifies the influence of diminish-
ing marginal utility. The expected changes in extraction pressure for sources of different degrees, as well as the 
changes in agent fitness expected for agents of each degree class, are illustrated for each network type for cost-free 
extraction ( γ = 0 ) in Fig. 3, and similarly for a representative case of costly extraction ( γ = 0.2 ) in Fig. 4. The 
estimates presented here correspond to a uniform capacity scenario where all CPRs degrade in proportion to 
the total amount of extraction exerted upon their users. However, we find that qualitatively similar results also 
hold for a degree-proportional capacity scenario in which sources degrade in proportion to the total extraction 
per user that they receive (see Section S4 in the Supplementary Information).

In Nash equilibrium states of the uniform capacity scenario, sources with fewer users (i.e. lower degree) 
experience lower extraction pressure. Since all networks under comparison here share an equal number of edges, 
networks having greater heterogeneity among source degrees—and thus a greater abundance of low-degree 
sources—suffer less over-exploitation overall, and so tend to operate more efficiently at equilibrium (Fig. 2). As 
agents then shift their extraction away from over-burdened, lower-quality sources toward higher-quality sources, 
these systems approach steady states where their multiple CPR sources all share a uniform quality value. In this 
way, steady states of reallocation dynamics qualitatively resemble Pareto efficient extraction states, which are 
characterized by uniform quality among all CPR sources (though, unlike these steady states, optimal efficiency 

(7)�−→q �2 ≤ �β←−q 2��β−1�.

(8)

�−→q �n =
1

βn

�

n
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�


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�
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m

�m�
·





γm

[γm�β−1�m + 1]


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�
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′
)
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′
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




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also requires uniform extraction levels among all agents regardless of degree; see Section S3.2 in the Supple-
mentary Information). The resulting shifts in efficiency (Fig. 2b), source extraction pressure (Figs. 3a and 4a), 
and agent payoffs (Figs. 3b and 4b) are more pronounced for networks having greater heterogeneity among CPR 
source degrees due to the greater initial discrepancies among source quality values that these networks support 
at Nash equilibrium. When simulations of reallocation dynamics from equilbrium are performed on individual 
networks (see Section S6 in the Supplementary Information), then the shifts in extraction pressure and agent 
payoffs observed are often more exaggerated than those estimated here. Since the heterogeneous mean-field 
perspective treats all sources of a common degree as a single class, it does not distinguish higher-order differences 
among nodes that share the same degree. As a result, the model predicts no shifts under reallocation dynamics 
for networks in which all sources share a common degree, i.e. delta-function (“D”) source degree distributions, 
for example. However, on actual networks of this type, reallocation dynamics nonetheless do increase collective 
wealth by equalizing differences in quality among sources.

When extraction is costly ( γ > 0 ), agent degree heterogeneity also plays a secondary role to source degree 
heterogeneity in determining equilibrium efficiency and the effects of reallocation dynamics (Figs. 2 and 4). 
Diminishing marginal utility motivates agents to moderate their overall extraction levels; all sources affiliated 
with any given agent will be affected by its tendency to reduce extraction, and the extent of this reduction will 
depend in turn on each source’s degree, the degrees of its other users, and so on. Higher agent degree hetero-
geneity is thus predicted to slightly increase equilibrium efficiency due to the presence of higher-degree agents 
that reduce their extraction per source by larger amounts than do lower-degree agents. While the overall gains 
in collective wealth expected to be achieved by way of reallocations are thus slightly reduced by the presence of 
these higher-degree agents, greater agent degree heterogeneity is also associated with faster times of convergence 
toward steady states, since high-degree agents are able to simultaneously shift efforts directly between a large 
number of sources, and so to more rapidly equalize source quality values (see Section S5.1 in the Supplementary 
Information).

Myopic reallocation from Nash equilibrium reduces wealth inequality.  Since reallocation dynam-
ics increase collective wealth, many—if not all—agents will attain improved payoffs under reallocation dynamics 
from suboptimal states like Nash equilibrium. We now turn our attention to how these increases in collective 
wealth are distributed throughout a population with respect to agent degree. Under the heterogeneous mean-
field approach, we estimate that the shift in expected payoffs due to reallocations from Nash equilibrium are 
given by

Figure 2.   Estimates of (a) Ratio of total collective wealth of equilibrium (“Eq”) states relative to efficient (“Ef ”) 
states, FEq/FEf ; (b) increase in efficiency from equilibrium to steady states (“SS”), (FSS − FEq)/FEf ; (c) Gini 
index of equilibrium states GEq ; and (d) decrease in Gini index from equilibrium to steady states, (GEq − GSS) , 
all as functions of cost parameter γ . Results shown correspond to a uniform capacity scenario with α = β = 1.



7

Vol.:(0123456789)

Scientific Reports |          (2021) 11:886  | https://doi.org/10.1038/s41598-020-79514-5

www.nature.com/scientificreports/

where bn = α − βn�−→q �n (see Section S3.1.3 in the Supplementary Information). When extraction is cost-free 
( γ = 0 ), the increased payoffs brought about by reallocation dynamics are expected to affect each edge in a uni-
form way, on average, and thus tend to be shared among agents of all degree classes in proportion to their degree 

(11)��f �m = m

[(

1

�n�

[

�
nbn

βn
�bf − �

nb2n
βn

�
])

− γ�←−q �m
(

1

�n�

[

�
n

βn
� − �

nb2n
βn

�
])]

,

Figure 3.   Estimated shifts in extraction patterns due to reallocation dynamics from Nash equilibrium 
(“Eq”) to steady states (“SS”) under cost-free extraction: (a) Change in total extraction pressure 
��−→q �n = �−→q �n,SS − �−→q �n,Eq , as a function of source degree n ; and (b) change in expected agent fitness, 
��f �m = �f �m,SS − �f �m,Eq as a function of agent degree m . Results shown correspond to a uniform capacity 
scenario with α = β = 1 and γ = 0 . Note that results for all network types sharing a common source degree 
distribution type (“D”, “N”, or “PL”) are overlapping.

Figure 4.   Estimated shifts in extraction patterns due to reallocation dynamics from Nash equilibrium 
(“Eq”) to steady states (“SS”) under costly extraction: (a) Change in total extraction pressure 
��−→q �n = �−→q �n,SS − �−→q �n,Eq , as a function of source degree n ; and (b) change in expected agent fitness, 
��f �m = �f �m,SS − �f �m,Eq as a function of agent degree m . Results shown correspond to a uniform capacity 
scenario with α = β = 1 and γ = 0.2.
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m . This is reflected in the linear increase of expected agent payoff with respect to degree (Fig. 3b), and also in 
the lack of change in the expected Gini index predicted for all network types under cost-free ( γ = 0 ) extraction 
(Fig. 2d). However, when extraction is costly ( γ > 0 ) and diminishing marginal utility acts to disincentivize 
increased extraction for higher-degree agents, the overall efficiency (Fig. 2a) and equality (Fig. 2c) of equilibrium 
states are increased from those observed under cost-free extraction. In these cases, reallocation dynamics also 
tend to increase the equality of the population’s wealth distribution, as reflected in the decreasing—and eventu-
ally negative—shifts in payoffs expected for agents of increasingly high degree (Fig. 4b), and also in the expected 
reductions in Gini index (Fig. 2d), caused by reallocation dynamics. This occurs because diminishing marginal 
utility motivates high-degree agents to exert less overall extraction effort per source at Nash equilibrium than do 
lower-degree agents. In the steady states subsequently reached under reallocation dynamics, all sources share 
a uniform quality value; each agent’s total extracted benefits then becomes strictly proportional to the overall 
magnitude of its extraction effort. Higher-degree agents end up receiving a smaller payoff per source than do their 
lower-degree counterparts in steady states. As Eq. (11) suggests, agents with higher initial extraction levels �←−q �m 
will experience a lower (and possibly even negative) shift in payoff per source �〈f 〉m/m as a result of realloca-
tions. This levelling-out of degree-based payoff inequities has its most pronounced effects at intermediate levels 
of the cost parameter (here, for values of γ ≈ .35 , as shown in Fig. 2d). In simulations performed on specific 
networks, we find that reallocation dynamics lead not only to increased collective wealth, but also to increased 
equality, even on networks with homogeneous, “delta-function” (“D”) source degree distributions, although the 
heterogeneous mean-field approach predicts no such shift. Networks of other types similarly tend to undergo 
greater increases in equality than those predicted here due to higher-order types of heterogeneity not captured 
by the model (see Section S6 in the Supplementary Information).

Discussion
We have shown that in an evolutionary game which models common-pool resource extraction by network-
structured populations, individuals’ myopic reallocations of CPR usage among their multiple affiliated sources 
tend to improve collective wealth. We show that the “price of anarchy” (as quantified, for example, by the inef-
ficiency of the outcomes reached under rational extraction, i.e. Nash equilibrium31,32) is primarily dependent 
on degree heterogeneity among the system’s multiple resources. This “price of anarchy” can be significantly 
reduced, however, if agents’ short-sighted self-interest is channeled through an allocation decision, as modelled 
by the reallocation update rule considered here, rather than through rational choice made in light of complete 
and perfect information under no such constraint. The extent of this improvement is greater in networks with 
higher heterogeneity among CPR degrees. In the case of cost-free extraction (or under a linear cost function; see 
Section S3.1.3 in the Supplementary Information), the improvements gained through these reallocation moves 
tend to be shared in an egalitarian way across all of a network’s edges. In the case that diminishing marginal 
utility acts to disincentivize high levels of extraction at Nash equilibrium, though, these reallocations tend to 
redistribute payoffs in ways that disproportionately benefit lower-degree agents, and so also increase the equality 
of the population’s wealth distribution. The results presented here emphasize the potential importance of these 
allocation-related decisions in guiding networked populations to overcome CPR dilemmas, and possibly even 
to achieve more egalitarian outcomes than those reached under rational extraction.

In the networks and conditions considered here, the improvements gained through these reallocations are 
relatively small with respect to a population’s overall wealth, and certainly smaller than the gains that could be 
achieved if agents were inclined to reduce the overall magnitudes of their extraction efforts. Nonetheless, this 
reallocation game provides an analogue to results from typical network evolutionary PGGs; in both cases, we 
find that the self-interest of myopic individuals can be directed toward outcomes which improve collective 
wealth to an extent that is determined by a network’s degree heterogeneity. The game studied here considers 
the how agents adapt their allocations while holding the overall magnitudes of their efforts fixed. This stands in 
contrast to typical PGG models, which assume that agents vary their strategies in magnitude while holding their 
allocations of effort fixed across all goods. Their conclusions rely heavily on this assumption; were individuals 
capable of selectively reallocating their contributions toward cooperation-dominated games, the network’s mul-
tiple PGGs would become decoupled, eliminating the very mechanism by which cooperative strategies can be 
introduced into initially defection-dominated communities. Experimental social scientists sometimes explicitly 
distinguish these two aspects of the decision faced by participants in CPR games—the “effort decision” regarding 
the best overall level of extraction to exert, and the “spatial decision” regarding how best to distribute this effort 
among multiple resources13,14—and seek to identify which aspect is more relevant to real-world CPR users’ self-
regulation. Since both the CPR model at hand and typical PGG models rely on an assumption that one of these 
aspects of agents’ choice is fixed while the other is allowed to vary, neither model is able to directly address these 
issues on its own. We believe that our results, by highlighting the potential importance of allocation decisions 
in self-regulation, prompt further research into how the conclusions of each these models are altered if both 
“spatial” and “effort” decisions operate simultaneously. Alternatively, if real-world CPR agents are indeed found 
to exhibit some innate inclination or aversion toward reallocation, then our result prompts further investigations 
into how either of these bounds to agents’ rationality might itself have emerged. Whether these bounds arise 
from agents’ intrinsic cognitive limitations or from external factors which limit agents’ access to information 
about resource conditions, or might be “learned” or transmitted socially, a deeper understanding of these issues 
seems necessary to determine the applicability of these network evolutionary game models to real-world public 
goods or CPR dilemmas.

Aside from this parallel, the current CPR model differs from typical network PGG models in that it does not 
rely on any assumption that imitation drives agents’ strategy choices. In those models, cooperative strategies 
persist only because individuals—in lieu of direct knowledge of the actual payoff functions that map their actions 
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onto their outcomes—misattribute the higher payoffs of their cooperator neighbors to the cooperative strategy 
itself, and so to imitate this strategy in hopes of achieving similar payoffs for themselves. Here, however, no such 
misunderstanding or miscommunication is required. In this CPR model, no single fixed extraction strategy is 
labelled as “cooperation”; rather, effective coordination among individuals depends on a population’s ability to 
adapt their strategies to collectively mitigate CPR degradation by chasing their own short-term interests based 
on accurate information about resource conditions. The results thus provide some insight into how agents might 
initially be incentivized to discover and practice more efficient patterns of extraction, rather than into how these 
patterns might then become established in the form of social norms and rules. Indeed, real-world CPR users are 
known to exchange information about resource conditions and intentions, and to coordinate their actions by 
negotiating and enforcing rules, via social networks3. We believe that the findings presented here might provide 
a more fundamental basis upon which to build these more elaborate networked CPR models, which incorporate 
additional social processes which interact with agents’ myopic self-interest to facilitate or hinder effective CPR 
self-regulation by reallocation.

Finally, we expect that it will be fruitful to explore potential links between the present work, which is rooted in 
a more abstract, evolutionary perspective, and the wider body of ongoing applied research that applies the tools of 
rational queueing theory33,34, dynamic pricing35–37, and social choice theory38 to address issues of resource alloca-
tion in networked systems39–42. Although the CPR literature may seem to suggest that regulation by a centralized 
decision-maker is likely doomed to failure, a study of the mechanisms underlying CPR self-regulation may help 
to inform research undertaken from an optimal control perspective, with the aim of identifying potential tar-
geted interventions that respect and leverage a community’s innate capacity for bottom-up self-regulation rather 
than disrupt it. Introducing some form of dynamic pricing into these networked models43,44, for example, might 
represent one less-intrusive approach through which agents’ myopic self-interest could be redirected towards 
collectively beneficial outcomes while still being informed by changing resource conditions at the local level. 
Conversely, the specific game-theoretical formalism already adopted in application-oriented studies could also 
help to guide future extensions of more abstract models such as that of the present work. Studies of the collective 
dynamics of agents attempting to coordinate resource usage within these networks, while also perhaps paying 
for access to new resources in ways that alter the network structures themselves, might be informed by recent 
game-theoretical studies of hybrid public–private parking systems45. Models that allow agents to consider the 
longer-term, "non-myopic" consequences of decisions may also benefit from recent modelling work on transport 
services46.
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