

Draft Genome Sequence of *Methylobacterium* sp. ME121, Isolated from Soil as a Mixed Single Colony with *Kaistia* sp. 32K

Shun Fujinami,^{a,b} Kiyoko Takeda-Yano,^c Takefumi Onodera,^d Katsuya Satoh,^e Tetsu Shimizu,^f Yuu Wakabayashi,^g Issay Narumi,^{g,h} Akira Nakamura,^f Masahiro Ito^{a,g,h}

Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan^a; Department of Chemistry, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan^b; Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan^c; Cooperative Research Centre of Life Sciences, Kobe Gakuin University, Kobe, Hyogo, Japan^d; Ion Beam Mutagenesis Research Group, Biotechnology and Medical Application Division, Quantum Beam Science Center, Japan Atomic Energy Agency, Takasaki, Gunma, Japan^e; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan^f; Graduate School of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan⁹; Faculty of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan^h

Methylobacterium sp. ME121 was isolated from soil as a mixed single colony with *Kaistia* sp. 32K, and its growth was enhanced by coculture. Here, we report the draft genome sequence of *Methylobacterium* sp. ME121, which may contribute to the study of the molecular mechanisms underlying this phenomenon.

Received 23 July 2015 Accepted 24 July 2015 Published 3 September 2015

Citation Fujinami S, Takeda-Yano K, Onodera T, Satoh K, Shimizu T, Wakabayashi Y, Narumi I, Nakamura A, Ito M. 2015. Draft genome sequence of *Methylobacterium* sp. ME121, isolated from soil as a mixed single colony with *Kaistia* sp. 32K. Genome Announc 3(5):e01005-15. doi:10.1128/genomeA.01005-15.

Copyright © 2015 Fujinami et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Masahiro Ito, masahiro.ito@toyo.jp.

t has been suggested that a majority of environmental microorganisms are still uncultured, and some of them form symbiotic relationships with other organisms. For example, *Symbiobacterium thermophilum* was reported as a symbiotic bacterium requiring support of the associated *Geobacillus stearothermophilus* for growth (1). The genomic information of such symbiotic bacteria could be of use for studying the molecular mechanisms underlying microbial symbiosis (2).

Methylobacterium sp. ME121 was isolated from soil as a mixed single colony with *Kaistia* sp. 32K during our screening of L-glucose-utilizing microorganisms (3), and its growth was enhanced by coculture. It was expected that genomic analysis of this bacterium would provide novel information on coculture-dependent growth enhancement. *Methylobacterium* sp. ME121 appeared to be most closely related to *M. radiotolerans* based on the 16S rRNA gene sequence identity.

The draft genome sequence of *Methylobacterium* sp. ME121 is 7,096,979 bp in total length and comprises 197 large contigs (>500 bp) and was obtained with the Roche GS Junior and assembled using the GS *de novo* assembler version 2.7. Automatic annotation was performed using the Microbial Genome Annotation Pipeline (4), which predicted a total of 6,676 protein-coding genes. The product names of the predicted protein-coding genes were revised manually. tRNA detection was performed using the tRNA scan software (5), which predicted a total of 56 tRNAs.

Methylobacterium species generally live on plant surfaces and assimilate methanol emitted by plants. The genome sequences of *M. aquaticum* and *M. radiotolerans* were analyzed, and the genes involved in methylotrophy were identified (6, 7). The annotation of the draft genome sequence shows that *Methylobacterium* sp. ME121 has some genes that encode putative methanol/ethanol family PQQ-dependent dehydrogenases involved in methylotrophy. Some unknown factor (e.g., methanol) provided by the coculture may contribute to increase the growth of *Methylobacterium* sp. ME121. Future study will identify such a factor, and it would serve to clarify the molecular mechanisms of coculture-dependent growth enhancement.

Nucleotide sequence accession numbers. The draft genome sequence of *Methylobacterium* sp. ME121 was deposited at DDBJ/ EMBL/GenBank under the accession number BBUX00000000. The version described in this paper is the first version, BBUX00000000.1.

ACKNOWLEDGMENTS

We thank Arthur A. Guffanti for critical reading of the manuscript.

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas no. 24117005 of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MI).

REFERENCES

- 1. Ohno M, Okano I, Watsuji T, Kakinuma T, Ueda K, Beppu T. 1999. Establishing the independent culture of a strictly symbiotic bacterium *Symbiobacterium thermophilum* from its supporting *Bacillus* strain. Biosci Biotechnol Biochem 63:1083–1090. http://dx.doi.org/10.1271/ bbb.63.1083.
- Ueda K, Yamashita A, Ishikawa J, Shimada M, Watsuji TO, Morimura K, Ikeda H, Hattori M, Beppu T. 2004. Genome sequence of *Symbiobacterium thermophilum*, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Res 32:4937–4944. http://dx.doi.org/ 10.1093/nar/gkh830.
- Shimizu T, Takaya N, Nakamura A. 2012. An L-glucose catabolic pathway in *Paracoccus* species 43P. J Biol Chem 287:40448–40456. http:// dx.doi.org/10.1074/jbc.M112.403055.
- 4. Sugawara H, Ohyama A, Mori H, Kurokawa K. 2009. Microbial genome

annotation pipeline (MiGAP) for diverse users, abstr S-001-1-2. Abstr. 20th Int. Conf. Genome Informatics, Kanagawa, Japan.
5. Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan

- Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689. http://dx.doi.org/10.1093/nar/gki366.
- 6. Tani A, Ogura Y, Hayashi T, Kimbara K. 2015. Complete genome sequence of *Methylobacterium aquaticum* strain 22a, isolated from *Racomi*-

trium japonicum moss. Genome Announc 3(2):e00266-15. http://dx.doi.org/10.1128/genomeA.00266-15.

 Eevers N, Van Hamme JD, Bottos EM, Weyens N, Vangronsveld J. 2015. Draft genome sequence of *Methylobacterium radiotolerans*, a DDEdegrading and plant growth-promoting strain isolated from *Cucurbita pepo*. Genome Announc 3(3):e00488-15. http://dx.doi.org/10.1128/ genomeA.00488-15.