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Background: Almost 40% of patients with kidney renal clear cell carcinoma (KIRC) with
advanced cancers eventually develop to metastases, and their 5-year survival rates are
approximately 10%. Aberrant DNA methylations are significantly associated with the
development of KIRC. The aim of our present study was to identify suitable ferroptosis-
and immune-related (FI) biomarkers correlated with aberrant methylations to improve the
prognosis and diagnosis of KIRC.

Methods: ChAMP and DESeq2 in R (3.6.2) were used to screen the differentially
expressed methylation probes and differentially expressed genes, respectively.
Univariate and multivariate Cox regression were used to identify the overall survival
(OS)–related biomarkers.

Results: We finally identified five FI biomarkers (CCR4, CMTM3, IFITM1, MX2, and
NR3C2) that were independently correlated with the OS of KIRC. The area under the curve
value of the receiver operating characteristic value of prognosis model was 0.74, 0.68,
and 0.72 in the training, validation, and entire cohorts, respectively. The sensitivity and
specificity of the diagnosis model were 0.8698 and 0.9722, respectively. In addition, the
prognosis model was also significantly correlated with several immune cells and factors.

Conclusion: Our present study suggested that these five FI-DEGs (CCR4, CMTM3,
IFITM1, MX2, and NR3C2) could be used as prognosis and diagnosis biomarkers
for patients with KIRC, but further cross-validation clinical studies are still needed to
confirm them.
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INTRODUCTION

Kidney cancer is the second most common malignancies in the
urinary system, which accounts for 2.2% of all new cancer cases,
with over 430,000 new cases and 1.8% of all cancer related death,
with almost 180,000 deaths in 2020 globally (1). Kidney renal
clear cell carcinoma (KIRC) is the most common subtype, which
accounts for 75% of kidney cell carcinomas (2, 3). Surgery is the
primary treatment for KIRC (4, 5). However, almost 40% of
patients with KIRC with advanced cancers eventually develop to
metastases despite of early surgical treatment carried out (6, 7).
Patients with KIRC have poor prognosis and high mortality
rates, and their 5-year survival rates are approximately 10% (3,
8). Therefore, it is very necessary to identify potential prognosis
biomarkers for the diagnosis and prognosis of KIRC.

Epigenetics was originally coined by Conrad Waddington,
which plays a critical role in the regulation of DNA-based
processes (9). Consequently, abnormal expression patterns or
genomic alterations caused by abnormal epigenetic
modifications may induce and maintenance various cancers
(9). Accumulating pieces of evidence indicate that epigenetic
alterations are the early events of cancerigenesis (9–11). For
example, several key cancerigenesis related pathways could be
regulated by epigenetic, such as Wnt/b-catenin signaling
pathway, Hedgehog signaling pathway, and Notch signaling
pathway (12–14). DNA methylations as the typical epigenetic
manners are indeed involved in procession of many cancer stem
cells, such as leukemic, lung and colon stem cells (15–17). In
addition, previous studies have also demonstrated that aberrant
DNA methylations are significantly correlated with the
procession of KIRC (18, 19).

Numerous studies demonstrated that ferrptosis and immune
can regulate each other and participate in the progression of
several cancers (20–25). Regulation of ferroptosis and immune
are currently considered to be novel therapeutic targets for the
cancers (24, 26–29). The Cancer Genome Atlas (TCGA) is an
open access database. In the present study, we downloaded 484
methylation data, 602 RNA sequencing (RNA-seq) data and the
corresponding clinical information from TCGA and aimed to
identify suitable ferroptosis- and immune-related (FI)
biomarkers correlated with aberrant methylations to improve
the prognosis and diagnosis of KIRC.
MATERIALS AND METHODS

Data Source and Data Processing
The data used in present study were obtained from an open
access database TCGA, including 484 samples (160 controls vs.
324 cancers) of methylation data, 602 samples (72 controls vs.
530 cancers) of RNA-seq data, and the corresponding clinical
information. The recognized FI-related genes were obtained
from the FerrDb and ImmPort, respectively. We used ChAMP
and DESeq2 in R (3.6.2) to screen the differentially expressed
methylatyion probes (DMPs) as the criteria padj < 0.05 and
|logFC| ≥ 0.2 and differentially expressed genes (DEGs) as the
Frontiers in Immunology | www.frontiersin.org 2
criteria padj < 0.05 |logFC| ≥ 0.5 and base mean ≥ 100,
respectively. Pearson correlation analyses were used to
determine the relationship of DEGs and their corresponding
DMPs as the criteria R ≤ −0.3. To construct a prognostic model
and verify it, 530 patients with KIRC were randomly separated
into training (n = 354) and validat ion (n = 176)
cohorts (Table 1).

Construction of Prognosis and
Diagnostic Model
We divided the patients with KIRC into low-expression cohort
and high-expression cohort by the median expression value. The
univariate Cox regression and multivariate Cox regression in R
(3.6.2) were used to identify the candidate biomarkers. After
multivariate Cox hazards regression, we constructed the
prognostic model according to the previous reports (30, 31).
Risk score = (−0.9653) × Exp(CCR4) + (−0.7026) × Exp(CMTM3) +
(0.8370) × Exp(IFITM1) + (0.8450) × Exp(MX2) + (−0.7717) ×
Exp(NR3C2)

Patients with KIRC were divided into low-risk cohort and
high-risk cohort depends on the optimal cutoff value
(Youden Index).

After a stepwise logistic regression analyses, the diagnostic
model was constructed as follows: LOGIT score = 0.7998 +
(0.1034)*Exp(CMTM3) + (−0.1590)*Exp(NR3C2) + (0.0465)*Exp(MX2)

+ (0.0737)*Exp(CCR4) + (0.0966)*Exp(IFITM1)

Enrichment Analyses and Principal
Component Analyses
David 6.8 was used to carry out Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses with the default parameter (https://david.ncifcrf.gov/).
A principal component analyses (PCAs) in R (3.6.2) was used to
reduce the dimensions and to visualize the distribution of the
patients with KIRC.

Statistical Methods
A repeated-measure ANOVA followed by Bonferroni post hoc
tests or unpaired two-tail Student’s t-test was used as indicated.
RESULTS

Identification of Candidate
Prognostic Biomarkers
We downloaded methylation data of 484 samples (160 controls
vs. 324 cancers) from the TCGA database and obtained 15,025
DMPs by ChAMP. Of which, 9,294 were hypermethylated DMPs
and 5,731 were hypomethylated DMPs (Figure 1A). The
distributions of those 15,025 DMPs were showed in Figure 1B
by considering the CpG content and the neighboring context.

Similarly, we also downloaded RNA-seq data of 602 samples
(72 controls vs. 530 cancers) from TCGA database and obtained
7,500 DEGs (4,515 were upregulated DEGs and 2,985 were
downregulated DEGs) through DESeq2 (Supplementary
Figure 1). Of which, there were 784 DEGs were FI-DEGs
May 2022 | Volume 13 | Article 851312
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(Figure 1C). Then, we introduced Pearson correlation analyses
for those 15,025 DMPs and their corresponding FI-DEGs and
found that there were 138 FI-DEGs correlated with 256 DMPs
(Supplementary Table 1).
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To obtain suitable FI-DEGs as biomarkers, we firstly
performed the univariate Cox regression analyses for those 138
FI-DEGs correlated with DMPs and found 61 FI-DEGs were
correlated with the overall survival (OS) of patients with KIRC in
TABLE 1 | Clinical features of patients in the training cohort and validation cohort.

Variables Training Cohort (n = 354) Validation Cohort (n = 176)
No. % No. %

Age ≤65 229 64.69 119 67.61
>65 125 35.31 57 32.39

Stage I 183 51.69 82 46.59
II 34 9.60 23 13.07
III 84 23.73 39 22.16
IV 52 14.69 30 17.05
X 1 0.28 2 1.14

T T1 187 52.82 84 47.73
T2 40 11.30 29 16.48
T3 120 33.90 59 33.52
T4 7 1.98 4 2.27

N N0 165 46.61 74 42.05
N1 9 2.54 7 3.98
NX 180 50.85 95 53.98

M M0 283 79.94 137 77.84
M1 49 13.84 29 16.48
MX 22 6.21 10 5.68

Gender Female 131 37.01 55 31.25
Male 223 62.99 121 68.75
May 2022 | Volume 13 | Arti
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FIGURE 1 | Identification of candidate prognostic biomarkers. (A) Volcano plot of DMPs between normal and patients with KIRC. (B) Distribution of DMPs by
considering the CpG content (up) and the neighboring context (down). (C) Volcano plot of FI-DEGs between normal and patients with KIRC. (D) Multivariate Cox
regression analyses illustrated five FI-DEGs independently correlated with OS. (E–I) Overall survival status for these five FI-DEGs.
cle 851312
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the training cohort. We then performed the multivariate Cox
regression analyses for those 61 FI-DEGs and found that five of
61 FI-DEGs (CCR4, CMTM3, IFITM1, MX2, and NR3C2) were
independently correlated with the OS of patients with KIRC
(Figure 1D). Kaplan–Meier (KM) curve showed patients with
KIRC with high expression of CCR4 and NR3C2 displayed better
OS, whereas patients with high expression of CMTM3, IFITM1,
and MX2 displayed worse OS (Figures 1E–I).

Specific Prognostic Model Construction
After multivariate Cox regression analyses, we constructed a
specific prognostic model using those five FI-DEGs. Depending
on the Youden Index as the optimal cutoff value (Supplementary
Figure 2), we regrouped the patients with KIRC into low-risk
cohort and high-risk cohort. The expressions of these five FI-
DEGs between patients with KIRC with the low-risk cohort and
high-risk cohort were displayed in Supplementary Figures 3A–C.
The correlations of these five FI-DEGs with the risk value were
displayed in Supplementary Figures 3D–F. CCR4, IFITM1, and
MX2 were significantly correlated with the prognostic model
(Supplementary Figures 3D–F).

We constructed prognostic models using these five FI-DEGs in
the training, validation, andentire cohort. In the trainingcohort, the
Frontiers in Immunology | www.frontiersin.org 4
risk score (up) and survival status (down) for each patients with
KIRC were displayed in Figure 2A. Patients with KIRC with low-
risk value had longer survival time [Figure 2A (down)]. KM curve
showed patients with KIRCwith low-risk value displayed betterOS
(Figure 2B). The timedependent area under the curve (AUC) value
of receiver operating characteristic (ROC) of the prognostic model
was displayed in Figure 2C. All AUC values were over 0.70. The
patients with high-risk value could well be distinguished from the
whole patients as measured by the PCA analyses (Figure 2D). To
determine whether these five biomarkers were feasible, we
conducted validation studies in validation cohort and entire
cohort. The similar results were displayed in Figures 2E-L. In all
three cohorts, the 5-year AUC value of the prognostic model
reached 0.70 (Figures 2C, G, K). These results indicated the
prognostic model constructed using those five FI-DEGs could
well predict the outcome of patients with KIRC.

Clinical Evaluation of the
Prognostic Model
To know the role of the prognostic model in the prediction, we
performed univariate and multivariate Cox regression analyses
for the prognostic model and the variant clinical features. In the
training cohort, the age, pathological TNM, pathologic stage, and
A B C D

E F G H

I J K L

FIGURE 2 | Specific prognostic model constructions. (A–D) For the training cohort. (A) Risk value (up) and survival status (down), (B) KM curve, (C) ROC curve,
and (D) PCA analyses. (E–H) For the validation cohort. (E) Risk value (up) and survival status (down), (F) KM curve, (G) ROC curve, and (H) PCA analyses. (I–L) For
the entire cohort. (I) Risk value (up) and survival status (down), (J) KM curve, (K) ROC curve, and (L) PCA analyses.
May 2022 | Volume 13 | Article 851312
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the prognostic model were correlated with the OS as measured
by univariate Cox regression analyses (Figure 3A). The
pathological M and prognostic model were independently
correlated with the OS as measured by multivariate Cox
regression analyses (Figure 3B). In addition, the AUC value of
prognostic model was high than that of the pathological
M (Figure 3C).

In the validation cohort, the age, pathological TNM,
pathologic stage, and the prognostic model were correlated
with the OS as measured by univariate Cox regression analyses
(Figure 3D). The pathological M was independently correlated
with the OS as measured by multivariate Cox regression analyses
(Figure 3E). The AUC value of prognostic model was
comparable with that of the pathological M (Figure 3F).

In the entire cohort, the age, pathological TNM, pathologic
stage, and the prognostic model were correlated with the OS as
measured by univariate Cox regression analyses (Figure 3G).
The age, pathological M, and prognostic model were
independently correlated with the OS as measured by
multivariate Cox regression analyses (Figure 3H). The AUC
value of prognostic model was higher than that of the age and
pathological M (Figure 3I).

We also explored the relationship of the expression of these
five FR-DEGs and the risk value with the clinical features. The
results were displayed in Figure 4.
Frontiers in Immunology | www.frontiersin.org 5
Correlation Analyses of the Prognostic
Model With the Immunity
We evaluated the immunity status of the patients with KIRC
using these 7,500 DEGs by ESTIMATE in R (3.6.2). The
ESTIMATE score, immune score, and stromal score were
significantly increased, whereas the tumor purity was significantly
decreased in the patients with KIRC (Figures 5A–D). Moreover, the
ESTIMATE score, immune score, and stromal score were
significantly decreased, whereas the tumor purity was significantly
increased in the patients with KIRC with high-risk value
(Figures 5E–H). In addition, the expression of CCR4, MX2, and
NR3C2 were significantly correlated with the stromal score,
immune score, ESTTIMATE score, and tumor purity (Figure 5I).
IFITM1 expression was significantly correlated ESTIMATE score
and tumor purity (Figure 5I).

We also evaluated the relationship of infiltration of immune
cells and factors with the risk value. First, we found that there
were 88 immune cells and factors whose infiltration values were
significantly difference between normal and patients with KIRC
(Supplementary Table 2). Of which, there were 53 immune cells
and factors that are significantly difference between patients with
KIRC with low-risk value and high-risk value (Figures 6A-G).
Correlation analyses showed six immune cells and factors were
significantly correlated with the risk value (Figure 6H). In
addition, these five FI-DEGs were also significantly correlated
A B C

D E F

G H I

FIGURE 3 | Independent prognostic factors analyses. (A–C) For the training cohort: (A) Univariate Cox regression analyses, (B) multivariate Cox regression analyses,
and (C) ROC curve. (D–F) For the validation cohort: (D) Univariate Cox regression analyses, (E) multivariate Cox regression analyses, and (F) ROC curve. (G–I) For the
entire cohort: (G) Univariate Cox regression analyses, (H) multivariate Cox regression analyses, and (I) ROC curve.
May 2022 | Volume 13 | Article 851312
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with several immune and factors of six immune cells and
factors (Figure 6H).

Functional Enrichment Analyses
GO and KEGG analyses were carried out for these 784 FI-DEGs
between normal and patients with KIRC and 226 FI-DEGs
between patients with KIRC with low-risk value and high-risk
value (Supplementary Figure 4). There were 366 biological
processes (BPs), 45 cellular components (CCs), 81 molecular
functions (MFs), and 87 KEGG pathways that were enriched as
measured by the False discovery rate (FDR) value <0.05 for those
784 FI-DEGs between the normal and patients with KIRC
(Figures 7A, C and Supplementary Tables 3, 4). There were
68 BPs, 11 CCs, 18 MFs, and 16 KEGG pathways that were
enriched as measured by the FDR value <0.05 for those 226 FI-
Frontiers in Immunology | www.frontiersin.org 6
DEGs between patients with KIRC with low-risk value and high-
risk value (Figures 7B, D and Supplementary Tables 5, 6).

Construction of the Diagnostic Model
A diagnostic model integrating these five DEGs (CCR4, CMTM3,
IFITM1, MX2, and NR3C2) were established to separate KIRC
from normal using a stepwise logistic regression method.
Diagnostic scores were identified as follows: LOGIT score =
0.7998 + (0.1034)*Exp(CMTM3) + (−0.1590)*Exp(NR3C2) +
(0.0465)*Exp(MX2) + (0.0737)*Exp(CCR4) + (0.0966)*Exp(IFITM1)

(Figure 8A). The LOGIT value of patients with KIRC was
significantly higher than that of the normal (Figure 8B). The
AUC value of the diagnostic model reached 0.9470 (Figure 8C).
Correlation analyses indicated that these five FI-DEGs were
significantly correlated the LOGIT value (Figure 8D). The
A B C D

E F G

I J

K L

M

H

FIGURE 4 | Correlation analyses with clinical features. (A, C, E, G, I, K) Differentially expression analyses of risk value with clinical different features in the entire cohort [(A)
age, (C) gender, (E) pathological S, (G) pathological T, (I) pathological (N), and (K) pathological (M)]. (B), (D), (F), (H), (J), (L) Differentially expression of these five FI-DEGs
with clinical features in the entire cohort [(A) age, (C) gender, (E) pathological S, (G) pathological T, (I) pathological (N), and (K) pathological (M)]. (M) Correlation analyses of
these five FI-DEGs and risk value with the clinical features in the entire cohort. N (≤65) = 348, n (>65) = 182. N (Male) = 344, N (Female) = 186. N (SI + II) = 322, N (III + IV) =
205. N (T1 + 2) = 340, N (T3 + 4) = 190. N (N0) = 239, N (N1) =16. N (M0) = 420, N (M1) = 78. *p < 0.05, **p < 0.01, ***p < 0.001.
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sensitivity and specificity of the diagnostic model were 86.98%
and 97.22%, respectively (Table 2).
DISCUSSIONS

DNA methylation is one of the most common epigenetic
modifications, which plays important role in the regulation of
the structure and expression of genes. Aberrant DNA
methylations may lead to the inactivation of tumor suppressor
genes or the activation of oncogenes, which could further lead to
the cancerigenesis (9–11). Therefore, researchers have conducted
a large number of studies related to the DNA methylation profile
of various cancers. The DNA methylated profiles provide
insights into the etiology of various cancers for the researcher
and clinician in early diagnosis and precise treatment. In the
present study, we aimed to identify suitable prognostic
biomarkers related with aberrant methylations for KIRC using
the TCGA data. We identified that FI-DEGs correlated with
aberrant methylations (CCR4, CMTM3, IFITM1, MX2, and
NR3C2) were significantly correlated with the OS of KIRC
Frontiers in Immunology | www.frontiersin.org 7
independently. The prognostic model and diagnosis model
constructed by these five FI-DEGs can be well used for the
prognosis and diagnosis of KIRC respectively.

CCR4 (C-C Motif Chemokine Receptor 4) is the primary
receptor for C-C motif chemokine ligand 17 and C-C motif
chemokine ligand 22. Suppression of CCR4 could suppress the
migration, invasion, and proliferation for several cancers, such as
lung cancer, breast cancer, and leukemia (32–34). Patients with
high CCR4 expression have a poorer survival prognosis (35). In
the present study, we found that the expression of CCR4 was
significantly increased in the patients with KIRC. In addition,
previous study also indicated that CCR4 could be a prognostic
biomarker and correlated with immune infiltrates in head and
neck squamous cell carcinoma (36). CCR4 could be used as a
therapeutic target for cancer immunotherapy of several cancers,
such as adult T-cell leukemia/lymphoma and cutaneous T-cell
lymphomas (37). In our present study, we also found that CCR4
was correlated with the infiltration of several immune cells and
factors. However, what is very interesting was that patients with
KIRC with high expression of CCR4 displayed better OS.
Therefore, we speculate that CCR4 may only be related to the
A B C

E F

G H

I

D

FIGURE 5 | Correlation analyses with the immune. (A–D) Differentially expressed analyses for the ESTIMATE (A), immune (B), stromal (C), and tumor purity (D)
between the normal and patients with KIRC in the entire cohort. (E–H) Differentially expressed analyses for the ESTIMATE (E), immune (F), stromal (G), and tumor
purity (H) between the patients with KIRC with low-risk value and high-risk value in the entire cohort. (I) Correlation analyses of these five FI-DEGs and risk value with
the immune in the entire cohort. N (normal) = 72, N (cancer) = 530. N (low) = 336, N (high) =194. *p < 0.05, ***p < 0.001.
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survival of KIRC and does not participate in the development of
KIRC. CMTM3 (CKLF-like MARVEL transmembrane domain-
containing 3), a member of the CMTM family, was found in
several human tumors. In addition to being associated with
immunity, CCR4 have also been implicated in iron death-
related processes, such as Reactive oxygen species (ROS).
Molinaro et al. found that Treg cells in CCR4−/− sepsis mice
showed reduced inhibition of ROS production by activated
neutrophils (38). Hsu et al. found that CCR4 was involved in
the regulation of ROS production by IL-20 (39). CMTM3 is
closely connected with immune system and associated with sex
during tumorgenesis (40). The expression of CMTM3 was
decreased in several cancers, such as prostate cancer (41), and
hepatic carcinoma (42). Overexpression of CMTM3 could
inhibit the proliferation, migration, and invasion for several
cancers (41, 42). However, the previous study also
demonstrated that CMTM3 was overexpressed in pancreatic
cancer (43). Results from the study of Zhou et al. indicated
that CMTM3 could promote tumor aggressiveness in pancreatic
cancer, and CMTM3 overexpression predicts poor survival (43).
CMTM3 could be used as a potential prognostic biomarker of
glioma, which is associated with immune invasion in the glioma
microenvironment and may become a new immunotherapy
target (44). In the present study, we also found that the
expression of CMTM3 was increased. Patients with KIRC with
high expression of CMTM3 displayed worse OS. All of these
results indicated that CMTM3 may serve different role for
Frontiers in Immunology | www.frontiersin.org 8
different cancers. IFITM1 (interferon-induced transmembrane
protein 1) is a member of interferon stimulated family, which is
expressed by T cells (45). Recent experiments have shown that
IFITM protein is directly involved in adaptive immunity and
regulates the differentiation of CD4+ T helper cells in a T-cell
intrinsic manner (45). Results from the study of Lui et al.
indicated that IFITM1 overexpression contributes to breast
cancer progression (46). Yan et al. found that suppression of
IFITM1 could suppress cell growth and metastasis for lung
cancer (47). Numerous pieces of evidence indicated that
IFITM1 may serve as prognostic biomarker due to the closely
relationship with survival (48–50). Consistent with previous
studies, we found that the expression of IFITM1 was increased
and correlated with the OS of patients with KIRC. MX2 (MX
dynamin-like GTPase 2) is a novel regulator of cell cycle in
melanoma cells. Wang et al. found the overexpression of human
MX2 gene suppresses cell proliferation, migration, and invasion.
However, we found that MX2 was reduced in KIRC (51). It may
be similar to CMTM3; MX2 may play different roles in different
cancers. NR3C2 is nuclear receptor subfamily 3 group C member
2. Fan et al. found that the expression of NR3C2 was
downregulated in breast cancer (52). High expression of
NR3C2 was significantly correlated with prolonged OS (53).
Overexpression NR3C2 could repress the proliferation,
migration, and invasion for breast cancer and hepatocellular
carcinoma (52, 54). Consistent with previous studies, NR3C2
was decreased in patients with KIRC. Moreover, low NR3C2
A

B

C

D

F G

H

E

FIGURE 6 | Correlation analyses with the infiltration of immune cells and factors. (A–G) Differentially expressed analyses for infiltration of immune cells and factors
with different risk value. (A) XCELL. (B) TIMER. (C) QUANTISEQ. (D) MCPCOUNTER. (E) EPIC. (F) CIBERSORT-ABS. (G) CIBERSORT. (H) Correlation analyses of
these five FI-DEGs and risk value with the immune cells and factors in the entire cohort. N (low) = 336, N (high) = 194. *p < 0.05, **p < 0.01, ***p < 0.001.
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A B

C D

FIGURE 7 | Functional Enrichment Analyses. (A, B) The significantly enriched GO term (top 10) for those 784 FI-DGEs (A) and those 226 FI-DEGs (B). (C, D) The
significantly enriched KEGG pathway (top 10) for those 784 FI-DGEs (C) and those 226 FI-DEGs (D).
A B D

C

FIGURE 8 | Diagnosis model for distinguishing KIRC from normal in entire cohort. (A) The b value of these five FI-DEGs analyses by stepwise logistic regression.
(B) Diagnosis LOGIT values between normal and patients with KIRC. (C) ROC curves for evaluating the predictive performance of the diagnostic model.
(D) Correlation analyses for the expression of these five FI-DEGs and diagnostic model. N (normal) = 72, N (cancer) = 530. ***p < 0.001.
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correlated with the metastasis and poor prognosis (55). Our
studies reinforced the negative relationship of NR3C2 with
the KIRC.
CONCLUSIONS

Our present data showed that the prognostic and diagnostic
models using those five FI-DEGs (CCR4, CMTM3, IFITM1,
MX2, and NR3C2) could well predict the outcome of patients
with KIRC, which suggested that these five FI-DEGs could be
used as prognosis and diagnosis biomarkers for KIRC. However,
whether these five FI-DEGs are really associated with abnormal
methylation and whether these five FI-DEGs can be used for
clinical prognosis and diagnosis need further validation,
especially clinical cross-validation.
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