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A B S T R A C T

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent due to
its selective killing on cancer cells while sparing the normal cells. Nevertheless, breast adenocarcinoma cells can
develop TRAIL resistance. Therefore, this project investigated the anti-cancer effects of the combination of
epigenetic drugs zebularine and trichostatin A (ZT) with TRAIL (TZT) on the human breast adenocarcinoma cells.
This treatment regimen was compared with the natural anti-cancer compound curcumin (Cur) and standard
chemotherapeutic drug doxorubicin (Dox). As compared to TRAIL treatment, TZT treatment hampered the cell
viability of human breast adenocarcinoma cells MDA-MB-231 significantly but not MCF-7 and immortalized non-
cancerous human breast epithelial cells MCF10A. Unlike TZT, Cur and Dox treatments reduced cell viability in
both human breast adenocarcinoma and epithelial cells significantly. Nevertheless, there were no changes in cell
cycle in both TRAIL and TZT treatments in breast adenocarcinoma and normal epithelial cells. Intriguingly, Cur
and Dox treatment generally induced G2/M arrest in MDA-MB-231, MCF-7 and MCF10A but Cur induced S phase
arrest in MCF10A. The features of apoptosis such as morphological changes, apoptotic activity and the expression
of cleaved poly (ADP) ribose polymerase (PARP) protein were more prominent in TRAIL and TZT-treated MDA-
MB-231 as compared to MCF10A at 24 h post-treatment. Compared to TZT treatment, Cur and Dox treatments
exhibited lesser apoptotic features in MDA-MB-231. Collectively, the sensitization using Zeb and TSA to augment
TRAIL-induced apoptosis might be an alternative therapy towards human breast adenocarcinoma cells, without
harming the normal human breast epithelial cells.
1. Introduction

Breast cancer is the most frequently diagnosed and the leading cause
of cancer mortality among females (Bray et al., 2018). With this, highly
aggressive triple-negative breast cancer (TNBC) which lacks estrogen
receptor (ER), progesterone receptor (PR) and human epidermal growth
factor receptor 2 (HER2) constituted about 20% of all breast cancer cases
my, eunice_ngai@yahoo.com (S.C

2 July 2019; Accepted 9 Septem
is an open access article under t
worldwide (Badve et al., 2010; Wahba and El-Hadaad, 2015). Currently,
chemotherapy is the main therapeutic option to improve the clinical
outcome of TNBC patients. Nevertheless, prognosis remains poor due to
the high recurrence rate and short disease-free survival rate (Wahba and
El-Hadaad, 2015). Hence, it is imperative to search for alternative ther-
apy to combat breast cancer.

Belongs to tumour necrosis factor (TNF) family members, TNF-related
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apoptosis-inducing ligand (TRAIL) is a 20 kDa type II transmembrane
protein which exerts its tumour surveillance by regulating extrinsic and
intrinsic apoptotic pathways (Falschlehner et al., 2007). Upon engage-
ment to death receptors such as death receptor 4 (DR4) and death re-
ceptor 5 (DR5), Fas-associated protein with death domain (FADD) and
caspase 8/10 are recruited, forming death-inducing signalling complex
(DISC) (Ashkenazi, 2002; Riedl and Shi, 2004; Lemke et al., 2014). This
leads to caspase 8 auto-activation and subsequently results in caspase
cascade signalling that eventually causes apoptosis (Johnstone et al.,
2008). In the intrinsic pathway, activated caspase 8 cleaves Bcl-2 ho-
mology domain 3 interacting-domain death agonist (Bid) which causes
the activation of pro-apoptotic proteins Bax and Bak and causing the
permeabilization of the mitochondrial membrane. This directs the acti-
vation of caspase 3/9 and causes apoptosis (Wang, 2008; DeMiguel et al.,
2016).

Although demonstrating tumour surveillance properties, many can-
cers develop defensive mechanisms towards TRAIL such as the down-
regulation of death receptors (Rahman et al., 2009; Zhang et al., 2009),
overexpression of anti-apoptotic proteins (Cao et al., 2004; Allensworth
et al., 2012; Riley et al., 2013) and the dysregulation of caspase activities
(Wu et al., 2010). With respect to this, clinical studies targeting TRAIL
apoptotic pathways exhibited no improved clinical outcome among pa-
tients (Bellail et al., 2009; Lemke et al., 2014). These had caused the
neglection of TRAIL as an anti-cancer agent. However, TRAIL is worth for
investigation due to its selective killing of cancer cells but not normal
cells (Ashkenazi, 2002; Holland, 2013). Therefore, combinational ther-
apy is developed by using sensitizers to reverse TRAIL resistance and
maximize the anti-cancer potentials towards cancerous cells.

Zebularine (Zeb) is a DNAmethyltransferase (DNMT) inhibitor which
belongs to nucleoside analogues (Yoo et al., 2004; Mani and Herceg,
2010; Wu et al., 2019). It inhibits the DNMT activities through its
engagement to DNMT and hinders their methyl transfer activities (Zhou
et al., 2002). The association of Zeb and TRAIL is well illustrated from the
previous research. Zeb increased the fucosylation of death receptor and
augmented TRAIL-induced apoptosis in cancerous cells (Moriwaki et al.,
2010). Furthermore, trichostatin A (TSA) is a histone deacetylase
(HDAC) inhibitor which consists of chemical group hydroxamic acid that
impedes HDAC activities (Bolden et al., 2006; Halsall and Turner, 2016).
Besides inhibiting HDAC activities, TSA caused cell cycle arrest and
apoptosis in many cancerous cells (Bolden et al., 2006). TSA was proved
to augment the TRAIL-induced apoptosis in cancerous cells through the
downregulation of anti-apoptotic proteins such as cellular FLICE-like
proteins (cFLIPs) (Mühlethaler-Mottet et al., 2006; Park et al., 2009).
Recently, research performed by Kaminskyy et al. (2011) demonstrated
that co-administration of DNMT and HDAC inhibitors sensitized the
non-small cell lung cancer towards TRAIL-induced apoptosis via the
restoration of caspase 8 activities. This evidence provided the notion that
administration of DNMT and HDAC inhibitors collectively sensitized the
cancerous cells towards TRAIL-induced apoptosis.

In this study, we aimed to investigate the anti-cancer effects of
epigenetic drugs Zeb and TSA as sensitizers to human breast adenocar-
cinoma cells towards TRAIL-induced apoptosis. Besides, this treatment
will be compared with the natural anti-cancer compound curcumin (Cur)
and standard chemotherapeutic drug doxorubicin (Dox).

2. Materials and methods

2.1. Chemicals

Zebularine (Zeb) (Sigma, USA) and trichostatin A (TSA) (Sigma, USA)
were dissolved and further diluted in dimethyl sulfoxide (DMSO) (Sigma,
USA). Recombinant human TRAIL/TNFSF10 protein (TRAIL) (375-TL-
010, R&D System) was dissolved in the 1X phosphate buffered
saline (PBS) and 0.1% bovine serum albumin (BSA). Curcumin (Cur)
(Sigma, USA) was dissolved in the absolute ethanol and further
diluted with Dulbecco's Modified Eagle Medium (DMEM) (Cellgro, USA).
2

Doxorubicin (Dox) (D1515, Sigma) was dissolved in sterile water.

2.2. Cell culture and maintenance

Human breast adenocarcinoma cells MDA-MB-231, MCF7 and human
breast epithelial cells MCF10A were purchased from America Type Cul-
ture Collection (ATCC). Both human breast adenocarcinoma cells were
cultured in DMEM and supplemented with 10% fetal bovine serum (FBS)
(Sigma, USA) and 1% penicillin-streptomycin (Pen-Strep) (Gibco, USA).
MCF10A was maintained in MCF10A complete media which consisted of
DMEM/F12 (Cellgro, USA) and supplemented with 5% horse serum
(Gibco, USA), 20 ng/μL of human epidermal growth factor (hEGF)
(Sigma, USA), 0.5 μg/mL of hydrocortisone (Nacalai Tesque, Japan), 10
mg/mL of insulin (Sigma, USA) and 1% Pen-Strep as described in pre-
vious studies (Chung et al., 2017). MCF10A was starved with MCF10A
complete media without 20 ng/μL hEGF one day prior to any experiment.
The cells were maintained in an incubator at 37�C and supplied with 5%
carbon dioxide.

2.3. Cell viability assays

MDA-MB-231, MCF-7 and MCF10A (5000 cells/well) were seeded
and allowed for attachment overnight. After the treatments, the cells
were subjected to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assays to determine the percentage of cell viability based
on previous studies (Al-Khdhairawi et al., 2017; Chung et al., 2017; Mai
et al., 2018).

2.4. Morphological assessment through histochemical staining

The untreated and treated cells were stained in hematoxylin and eosin
dyes (Fisher Scientific, USA) as described previously (Abubakar et al.,
2016; Lim et al., 2013). After preparing the slides, the cellular morpho-
logical images were captured under x40 magnification using Nikon 80i
Eclipse microscope (Nikon, Japan).

2.5. Flow cytometry analysis

The change in the cell cycle phase was evaluated by flow cytometric
propidium iodide (PI) staining. After fixing the cells using pre-chilled
70% ethanol for a week, the cells were stained with PI staining solu-
tion which consisted of 0.1% Triton-X (Nacalai Tesque, Japan), 100 μg/
mL RNase A (Nacalai Tesque, Japan) and 50 μg/mL PI (Nacalai Tesque,
Japan). After incubation in the dark for 30 min, the cell cycle analysis
was performed using BD Accuri C6 flow cytometer (BD Biosciences,
USA). At least 10,000 events were examined for each sample and the data
were analysed using ModFit 5.0 program.

For apoptotic activity analysis, the cells were stained with Annexin V
and PI using fluorescein isothiocyanate (FITC) Annexin V Apoptosis
Detection Kit I (BD Biosciences, USA) following the manufacturer's pro-
tocol. The apoptotic activity was quantified as the percentage of Annexin
V positive and PI negative cells using BD Accuri C6 flow cytometer (BD
Biosciences, USA) and at least 10,000 events were examined for each
sample.

2.6. Western blot analysis of poly (ADP-ribose) polymerase (PARP)
expression

The cellular lysate was prepared using ice-cold lysis buffer consisting
of 1% NP40, 1 mM DTT and protease inhibitors in PBS. The protein
concentration was quantified through Bradford assays (Bio-Rad Labora-
tories, USA). Protein (50 μg) from each sample was subjected to sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) fol-
lowed by immunoblotting as described previously (Soo et al., 2017).
Primary antibodies targeting PARP at 1: 1000 (Cell Signalling Technol-
ogy, USA) and β-actin at 1: 1000 (Santa Cruz Biotechnology, USA) were
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incubated on polyvinylidene difluoride (PVDF) membrane overnight.
Following 3 times washing with PBST consisting of 1� PBS and 0.1%
Tween-20, the blots were incubated with diluted enzyme-linked sec-
ondary antibodies. The detection of specific antibodies was carried out
with Enhance Chemiluminescence (ECL)™ Select Western Blotting
Detection Reagent (Sigma-Aldrich, USA). The images were captured
using the ChemiDoc™ XRS þ System (Bio-Rad Laboratories, USA).

2.7. Statistical analysis

All results were presented as mean � standard error mean (SEM) in
triplicates from at least three independent experiments unless stated
otherwise. Statistical significance was determined using one-way
ANOVA with Tukey post-hoc test through IBM SPSS Statistics 24. The
statistical difference was determined by *p < 0.05 and **p < 0.01 vs
control as well as #p < 0.05 and ##p < 0.01 vs TRAIL-treated cells.

3. Results

3.1. Anti-cancer potential of Zeb, TSA and TRAIL towards human breast
adenocarcinoma cells and breast epithelial cells

We investigated the potential of Zeb and TSA in sensitizing the human
breast adenocarcinoma cells towards TRAIL treatment. To determine the
suitable inhibitory concentrations (ICs), dose responses were determined
through a series of MTT assays. The treatment regimens used were IC25 of
Zeb (4.75 μM), IC25 of TSA (25 nM), IC25 of Zeb and TSA (Termed ZT) (4
μM Zeb and 12.5 nM TSA), 50 ng/mL TRAIL and IC25 of ZT followed by
50 ng/mL TRAIL (Termed TZT) (See in Supplementary Fig. 1). The
positive controls were IC50 of Cur (20 μM) and IC50 of Dox (0.8 μM) (See
in Supplementary Fig. 2).

At 24 h post-treatment, Zeb, TSA and ZT caused no significant
reduction in the cell viability towards MDA-MB-231, MCF7 and MCF10A
(See in Supplementary Fig. 3). Based on Fig. 1A, ZT and TRAIL treatments
did not reduce cell viability in MDA-MB-231 significantly. Nevertheless,
TZT treatment exerted significant (p < 0.05) reduction in the cell
viability of MDA-MB-231 (63.79 � 7.93%) as compared to TRAIL treat-
ment (111.17 � 6.14%), suggesting administration of ZT sensitized
MDA-MB-231 towards TRAIL. Same as MDA-MB-231, TZT treatment
diminished the cell viability (42.95 � 4.72%) significantly (p < 0.05) as
compared to untreated control in MCF7. However, statistical analysis
revealed no significant difference in cell viability of MCF7 between
TRAIL and TZT treatments, suggesting ZT had no sensitization effects
towards TRAIL treatment in MCF7. Furthermore, ZT, TRAIL and TZT
treatments did not decrease the cell viability in MCF10A, suggesting ZT,
TRAIL and TZT are safe towards normal cells. As compared to TZT
treatment, Cur and Dox treatments decreased the cell viability of MDA-
MB-231, MCF7 and MCF10A after 24 h treatment (Fig. 1A).

Following cell viability studies, we further investigated whether these
effects were caused by cell cycle arrest in MDA-MB-231, MCF7 and
MCF10A. Based on Fig. 1B and C and Supplementary Fig. 4A and B, there
were no significant changes in the cell cycle phases of MDA-MB-231
under the treatment of Zeb, TSA, ZT, TRAIL and TZT at 24 h post-
treatment. Same effects were observed in MCF7 and MCF10A under
the treatments of Zeb, TSA, ZT, TRAIL and TZT (See Supplementary
Fig. 4C to F). These indicated that the diminished cell viability was driven
by other mechanisms. Conversely, Cur treatment resulted in G2/M cell
cycle arrest in MDA-MB-231, MCF7 and S cell cycle arrest in MCF10A.
Besides, Dox treatment induced very significant (p < 0.01) G2/M cell
cycle arrest in MDA-MB-231, MCF7 and MCF10A at 24 h post-treatment
(See in Supplementary Fig. 4). This suggested that the reduction of cell
viability of MDA-MB-231, MCF7 and MCF10A under treatment of Cur
and Dox was regulated by cell cycle arrest mechanism.
3

3.2. Apoptotic activities of human breast adenocarcinoma cells and breast
epithelial cells after the treatment of Zeb, TSA and TRAIL

After the cell viability and cell cycle analysis, the apoptotic activities
of these treatments were evaluated through numerous apoptotic analysis.
Since the cell viability and cell cycle results of ZT treatment were insig-
nificant, the apoptotic analysis was conducted based on TRAIL, TZT, Cur
and Dox treatments targeting MDA-MB-231 and MCF10A. Based on
Fig. 2Ai and B, TZT treatment induced very significant (p < 0.01)
apoptotic activities (48.03 � 6.24%) in MDA-MB-231 as compared to
TRAIL treatment alone (22.82 � 6.24%) at 24 h post-treatment. This
implies that the administration of ZT augmented TRAIL-induced
apoptosis in MDA-MB-231. In concordance with that, morphological
assessment through histochemical staining exhibited apoptotic features
such as nuclear chromatin condensation and cell shrinkage in both
TRAIL- and TZT-treated MDA-MB-231 as shown in Fig. 2C. As an indi-
cator of apoptotic activities, cleavage of PARP expression was studied
through Western blot analysis. Based on Fig. 2D and Supplementary
Fig. 5A, TRAIL- and TZT-treated MDA-MB-231 revealed a cleavage of
PARP expression. Furthermore, apoptotic activities were rather subtle in
MDA-MB-231 treated with Cur (10.35 � 3.21%) and Dox (15.91 �
1.77%) as compared to TZT treatment (48.03 � 6.24%). Although
resulted apoptotic features such as chromatin condensation and cell
shrinkage, Cur and Dox treatments caused minimal expression of PARP
cleavage as compared to TZT treatment.

The apoptotic activities induced by TRAIL and TZT treatment were
further evaluated in MCF10A as shown in Fig. 2Aii and B. In concordance
with the cell viability studies, TRAIL and TZT treatments resulted in very
minute apoptotic activities in MCF10A. These results were supported by
the absence of apoptotic features observed in histochemical staining
(Fig. 2C) and cleaved PARP expression in Western blot analysis (Fig. 2D
and Supplementary Fig. 5B). However, Cur treatment resulted in very
significant (p < 0.01) apoptotic activity (9.33 � 0.4%) in MCF10A as
compared to untreated control (1.73 � 0.54%) as shown in Fig. 2Aii.
Besides displaying chromatin condensation and cell shrinkage, nuclear
chromatin fragmentation and apoptotic bodies formation were detected
in Cur-treated MCF10A as shown in Fig. 2C. Moreover, Cur treatment
resulted in cleavage of PARP in MCF10A as shown in Fig. 2D. Oppositely,
Dox treatment did not cause significant effects on apoptotic studies.

In summary, administration of ZT augmented the TRAIL-induced
apoptosis in human breast adenocarcinoma cells MDA-MB-231 at 24 h
post-treatment, but this treatment was unharmed towards human breast
epithelial cells MCF10A.

4. Discussion

TRAIL is an attractive candidate for anticancer therapy which is
famously known for its preferentially killing of cancerous cells while
sparing most normal cells (Ashkenazi et al., 1999; Wang, 2008).
Although TRAIL was well-tolerated among cancer patients, TRAIL-based
therapy exhibited no improved clinical outcomes (Soria et al., 2010,
2011). This is attributed by the development of various cancer defensive
mechanisms towards TRAIL (Lemke et al., 2014; Wang and El-Deiry,
2003). A growing body of evidence supports the feasibility of combina-
tional therapy in targeting TRAIL-induced apoptotic pathways (De
Miguel et al., 2016; Frew et al., 2008). In this study, we explored the
anticancer potential of Zeb and TSA in augmenting the TRAIL therapeutic
effects and achieving maximal demise of human breast adenocarcinoma
cells.

As aforementioned, many cancers develop resistance to TRAIL ther-
apy (Zhang and Fang, 2004). Our results supported this notion whereby
nominal reduction of cell viability was induced by TRAIL alone treatment
towards MDA-MB-231. Oppositely, sensitization of Zeb and TSA greatly



Fig. 1. Effects of Zeb and TSA as sensitizers to augment the TRAIL-induced apoptosis in human breast adenocarcinoma cells MDA-MB-231, MCF7 and breast epithelial
cells MCF10A. (A) TZT treatment significantly reduced the cell viability of MDA-MB-231 but not MCF7 and MCF10A as compared to TRAIL treatment alone. (B)
Representative flow cytometry data for cell cycle analysis in MDA-MB-231 in which the percentage of cells (%) arrested at each cell cycle phase is presented in (C) . (C)
No changes in the cell cycle of the TRAIL and TZT treated MDA-MB-231. The data represented means � SEM of triplicates in three independent samples. The sig-
nificant difference was determined by *p < 0.05 and **p < 0.01 vs. control; #p < 0.05 vs. TRAIL treatment.
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Fig. 2. Apoptotic analysis of human breast adenocarcinoma cells MDA-MB-
231 and breast epithelial cells MCF10A under TRAIL, TZT, Cur and Dox
treatments. (A) Representative flow cytometry data showed that TZT-treated
MDA-MB-231 induced higher apoptotic activity as compared to TRAIL treat-
ment while no apoptotic activities were found in MCF10A under TRAIL and
TZT treatment. The apoptotic activity (%) of the cells is presented in (B). (B)
Apoptotic activities of MDA-MB-231 and MCF10A under the treatments. The
apoptotic activities were taken into account based on the cells undergo early
apoptosis. (C) Apoptotic morphologies such as nuclear chromatin condensa-
tion and cell shrinkage (Black arrow); apoptotic bodies formation (White
arrow); chromatin fragmentation (Yellow arrow) were evident in MDA-MB-
231 but minimally observed in MCF10A under treatments. (D) TRAIL and
TZT-treated MDA-MB-231 caused cleavage of PARP but not in MCF10A in
Western blot analysis. The data represented means � SEM of triplicates in two
independent samples. The significant difference was determined by **p < 0.01
vs. control; ##p < 0.01 vs. TRAIL treatment. The original uncropped blot
images can be viewed in Supplementary Fig. 5.
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decreased the cell viability of MDA-MB-231 towards TRAIL treatment.
This sensitization effects can be related to the negative regulation of cell
survival signalling and the reversal of TRAIL resistance mechanisms. For
example, the sensitization had downregulated the cell survival signalling
such as insulin growth factor-1 receptor (IGF-1R) signalling (Karasic
et al., 2010) and phosphatidylinositol 3-kinase (PI3K) signalling (Wang
et al., 2002; Xu et al., 2010) which eventually ceased the cell prolifera-
tion in cancerous cells. Besides, recent findings demonstrated the
importance of sensitizers in reversing TRAIL resistance through the
upregulation of tumour suppressor PTEN which is responsible for cell
proliferation control (Xu et al., 2010).

Apart from the dysregulated cell viability, cancerous cells have un-
controlled cell division (Malumbres and Barbacid, 2009). We ought to
explore whether the TRAIL and TZT can cause cell cycle arrest in human
breast adenocarcinoma cells. Consistent with previous research, our re-
sults indicated no cell cycle arrest was induced in TRAIL- and TZT-treated
MDA-MB-231 (Lin et al., 2011). With this, TRAIL was suggested to
potentiate anticancer properties by other mechanisms, for instance, the
induction of cell death mechanisms.

Although not causing a reduction in cell viability, TRAIL treatment
elevated apoptotic activities in MDA-MB-231 via flow cytometry
apoptotic analysis. This discrepancy can be explained by the interference
of metabolic viability based onMTT assay when assessing cell viability. It
is speculated that TRAIL could have protected the cells against mito-
chondria injury, increased the activity of mitochondrial succinate dehy-
drogenase and increased the production of formazan. Besides, TRAIL
could also have interacted directly with MTT and caused the formazan
formation. These activities could increase the formazan formation, thus
overestimating the cell viability of the treated cells (Wang et al., 2010;
Rai et al., 2018). Due to these limitations, flow cytometry apoptotic
studies were conducted to confirm the apoptosis regulation under the
TRAIL and TZT treatments towards MDA-MB-231. TRAIL initiates the
cell death mechanisms through the extrinsic and intrinsic pathways.
These apoptotic pathways trigger a series of caspase activities and cause
the hallmark of apoptosis- cleavage of PARP proteins (Chaitanya et al.,
2010). In TRAIL-resistant cancerous cells, these apoptotic pathways were
highly governed by various anti-apoptotic proteins (De Miguel et al.,
2016; Lemke et al., 2014). Our results proved the enhanced apoptotic
activities by TZT treatment in MDA-MB-231 as compared to TRAIL alone
treatment. The presence of two bands of the cleaved PARP remains un-
known of its mechanisms. It could be due to the non-specific binding.
However, it is evident that for the cells treated with TRAIL and TZT, the
89 kDa of the cleaved PARP was present, which is the most important
research findings of this experiment. Besides, the apoptotic features such
as nuclear chromatin condensation and cell shrinkage were observed
through the histochemical staining in TRAIL- and TZT-treated
MDA-MB-231. This agrees with other studies in which Zeb and TSA
respectively augmented the TRAIL-induced apoptosis in cancerous cells
through elevation of fucosylation level of death receptors (Moriwaki
et al., 2010) and downregulation of anti-apoptotic proteins Bcl-2 (Billam
et al., 2010; Park et al., 2009, 2012). Furthermore, other studies illus-
trated the additive effects by various sensitizers augmented
TRAIL-induced apoptosis through the downregulation of cFLIP (Carlisi
et al., 2009; Manouchehri et al., 2018), the reversal of DR in-
ternalizations (Moriwaki et al., 2010; Twomey et al., 2015) and the
decreased expression of anti-apoptotic proteins (Hari et al., 2015; Park
et al., 2014). Compared to TZT treatment, Cur and Dox treatments
induced lesser apoptotic activities and PARP cleavage expression in
MDA-MB-231. These results suggested that the Cur and Dox treatments
reduced the cell viability through the modulation of cell cycle arrest,
which is in accordance with the results obtained. This could be related to
previous studies in which both Dox and Cur treatments induced G2/M
cell cycle arrest while decreasing the cell viability of cancerous cells
(Ramachandran and You, 1999; Meiyanto et al., 2011; Sun et al., 2012).

Besides illustrating the killing effects of TRAIL towards human breast
adenocarcinoma cells, our findings were consistent with the concept that
6

TRAIL is unharmed towards normal cell lines (Ashkenazi et al., 1999).
Not only TRAIL treatment, TZT treatment exhibited very minimal
reduction in cell viability and apoptotic activities in human breast
epithelial cells. With this, it is suggested that TZT treatment is safe to-
wards human breast epithelial cells. Compared to TZT, Cur induced
apoptotic activities and cleavage of PARP in MCF10A. Besides decreasing
cell viability, the apoptotic activity is postulated by the downregulation
of CDK inhibitor p21 and upregulation of pro-apoptotic protein Bax in
MCF10A treated with Cur which is related to previous studies (Ram-
achandran and You, 1999; Ramachandran et al., 2005). Although
reducing cell viability of Dox-treated MCF10A, the apoptotic activity was
rather minute. This could be related to a finding that normal cells were
less responsive as compared to the cancer cells when both were treated
with the same concentration of Dox (Stallard et al., 1990). This can be
postulated that Dox only reduced cell viability and caused cell cycle ar-
rest but not inducing apoptosis in this study.

In summary, Zeb and TSA collectively augmented the TRAIL effects
towards human breast adenocarcinoma cells through the induction of
apoptotic activities. Moreover, this therapeutic strategy caused no harm
to the human breast epithelial cells. Further harnessing the molecular
mechanisms and understanding the TRAIL resistance drivers, this ther-
apeutic strategy can improve the clinical outcome among breast cancer
patients in the future.
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