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Abstract
We introduce a new approach, called Isolate-Detect (ID), for the consistent estima-
tion of the number and location of multiple generalized change-points in noisy data
sequences. Examples of signal changes that ID can deal with are changes in the mean
of a piecewise-constant signal and changes, continuous or not, in the linear trend. The
number of change-points can increase with the sample size. Our method is based on
an isolation technique, which prevents the consideration of intervals that contain more
than one change-point. This isolation enhances ID’s accuracy as it allows for detec-
tion in the presence of frequent changes of possibly small magnitudes. In ID, model
selection is carried out via thresholding, or an information criterion, or SDLL, or a
hybrid involving the former two. The hybrid model selection leads to a general method
with very good practical performance and minimal parameter choice. In the scenarios
tested, ID is at least as accurate as the state-of-the-art methods; most of the times
it outperforms them. ID is implemented in the R packages IDetect and breakfast,
available from CRAN.
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1 Introduction

Change-point detection is an active area of statistical research that has attracted a lot
of interest in recent years. Our work’s focus is on a posteriori change-point detec-
tion, where the aim is to estimate the number and locations of certain changes in the
behaviour of the data. We work in the model

Xt = ft + σεt , t = 1, 2, . . . , T , (1)

where Xt are the observed data and ft is a one-dimensional, deterministic signal with
structural changes at certain points. Two examples are: change-points in the level when
ft is seen as piecewise-constant, and change-points in the first derivative when ft is
piecewise-linear. We highlight, however, that our methodology and analysis apply to
more general scenarios, for instance the detection of knots in a piecewise polynomial
signal of order k, where k is not necessarily equal to zero (piecewise-constant mean) or
one (piecewise-linear mean). The number N of change-points as well as their locations
r1, r2, . . . , rN are unknown and our aim is to estimate them. In addition, N can grow
with T . The random variables εt in (1) have mean zero and variance one; further
assumptions will be given in Sect. 3.2.

When ft is assumed to be piecewise-constant, the existing change-point detection
techniques are mainly split into two categories based on whether the change-points are
detected all at once or one at a time. The former categorymainly includes optimization-
based methods, in which the estimated signal is chosen based on its least squares or
log-likelihood fit to the data, penalized by a complexity rule in order to avoid over-
fitting. The most common example of a penalty function is the Schwarz Information
Criterion (SIC); see Yao (1988) for details. To solve the implied penalization prob-
lem, dynamic programming approaches, such as the Segment Neighborhood (SN) and
Optimal Partitioning (OP) methods of Auger and Lawrence (1989) and Jackson et al.
(2005), have been developed. In an attempt to improve on OP’s computational cost,
Killick et al. (2012) introduce the PELT method, based on a pruning step applied to
OP’s dynamic programming approach. A non-parametric adaptation of PELT is given
in Haynes et al. (2017). Rigaill (2015) introduces an improvement over classical SN
algorithms, through a pruning approach called PDPa, while Maidstone et al. (2017)
give two algorithms by combining ideas from PELT and PDPa. Frick et al. (2014)
propose the simultaneousmultiscale change-point estimator (SMUCE) for the change-
point problem in the case of exponential family regression; solving an optimization
problem is also required. The FDRSeg method of Li et al. (2016) is a combination of
False Discovery Rate (FDR) control and global segmentation methods in a multiscale
way; the change-points are again detected all at once.

In the latter category, in which change-points are detected one at a time, a popu-
lar method is binary segmentation, which performs an iterative binary splitting of the
data on intervals determined by the previously obtained splits. Vostrikova (1981) intro-
duces and proves the validity of binary segmentation in the setting of change-point
detection for piecewise-constant signals. The main advantages of binary segmenta-
tion are its conceptual simplicity and low computational cost. However, at each step
of the algorithm, binary segmentation looks for a single change-point, which leads
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to its suboptimality in terms of accuracy, especially for signals with frequent change-
points. Some variants of binary segmentation that work towards solving this issue
are the Circular Binary Segmentation (CBS) of Olshen et al. (2004), the Wild Binary
Segmentation (WBS) of Fryzlewicz (2014) as well as its second version (WBS2) of
Fryzlewicz (2020), theNarrowest-Over-Threshold (NOT)method of Baranowski et al.
(2019), and the Seeded Binary Segmentation (SeedBS) of Kovács et al. (2020). CBS
searches for at most two change-points at each step. Instead of initially calculating the
contrast value for thewhole data sequence,WBS andNOT are based on a random draw
of subintervals of the domain of the data, on which an appropriate statistic is tested
against a threshold. The draw of all the subintervals takes place at the beginning of the
algorithm. In contrast, WBS2 draws first only a small number, M̃ , of data subsamples.
It then uses the first change-point candidate to split the data into two parts, and again
recursively draws the same number M̃ of subsamples to the left and to the right of this
change-point candidate, and so on. A major difference between WBS and WBS2 is
that the latter adaptively decides where to recursively draw the next subsamples, based
on the change-point candidates detected so far; this adds to the detection power of the
method. SeedBS is an approach, similar to WBS and NOT, that relies instead on a
deterministic construction of background intervals in which single change points are
searched. Apart from binary-segmentation-related approaches, the category in which
the change-points are detected one at a time also includes methods that control the
False Discovery Rate. For instance, the “pseudo-sequential” (PS) procedure of Venka-
traman (1992), as well as the CPM method of Ross (2015) are based on an adaptation
of online detection algorithms to a posteriori situations and work by bounding the
Type I error rate of falsely detecting change-points. Some methods do not fall in either
category. For example, the tail-greedy algorithm in Fryzlewicz (2018) achieves a mul-
tiscale decomposition of the data usingUnbalanced Haar wavelets in an agglomerative
way. In addition, Eichinger and Kirch (2018) use moving sum (MOSUM) statistics in
order to detect multiple change-points. For a more thorough review of the literature
on the detection of multiple change-points in the mean of univariate data sequences,
see Cho and Kirch (2020) and Yu (2020). Truong et al. (2020) also present a survey
of various a posteriori change-point detection algorithms; the focus is, however, on
multivariate time series.

Beyond the piecewise-constant signal model, existing methods mainly minimize
the residual sum of squares taking into account a penalty, with the most common being
the SIC. This is used in Bai and Perron (1998), in the trend filtering (TF) approach
(Kim et al. 2009; Tibshirani 2014), and in the dynamic programming algorithm CPOP
(Maidstone et al. 2019). Friedman (1991) introduces theMultivariateAdaptiveRegres-
sion Splines (MARS)method for regression analysis based on splines with the number
and the location of the knots being determined by the data. Spiriti et al. (2013) propose
two methods for optimizing knot locations in spline smoothing, where either the num-
ber of knots is fixed or an upper bound for it needs to be given. The NOT approach
(Baranowski et al. 2019) detects change-points one at a time in various scenarios
including piecewise-linear mean signals.

In general, change-point detection becomes easier in situations where there is at
most one change-point to be detected in a given interval; in such cases the detection
power of the contrast function (more details are in Sect. 3.2) ismaximised. Therefore, it
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makes sense to decouple themultiple change-point detection problem intomany single
change-point detections. To achieve this, we propose a generic technique, Isolate-
Detect (ID), for generalized change-point detection in various different structures, such
as piecewise-constant or piecewise-linear signals. The concept behind ID is simple
and is split into two stages; firstly, the isolation of each of the true change-points within
subintervals of the domain [1, 2, . . . , T ], and secondly their detection. From now on,
the terms subinterval and interval will be used interchangeably. Although a detailed
explanation of our methodology is provided in Sect. 3.1, the basic idea is that for an
observed data sequence of length T and with λT a positive constant, ID first creates
two ordered sets of K = �T /λT � right- and left-expanding intervals as follows. The
j th right-expanding interval is R j = [1,min { jλT , T }], while the j th left-expanding
interval is L j = [max {1, T − jλT + 1} , T ]. We collect these intervals in the ordered
set SRL = {R1, L1, R2, L2, . . . , RK , LK }. For a suitably chosen contrast function
(more details are in Sect. 3.2), ID identifies the point with the maximum contrast
value in R1. If its value exceeds a threshold, denoted by ζT , then it is taken as a
change-point. If not, then the next interval in SRL is tested. Upon detection, ID makes
a new start from the end-point (or start-point) of the right- (or left-) expanding interval
where the detection occurred. Upon correct choice of ζT , ID ensures that we work on
intervals with at most one change-point, which was our aim.

We would like to highlight the importance of the change-point isolation aspect
present in our method as explained in the previous paragraph. There are various
advantages. First, it enables detection in higher-order polynomial signals. Second,
it is carried out in a fixed and systematic way, which eliminates any randomness in the
selection of the intervals and, by extension, in the final results. Third, the way the iso-
lation is carried out in ID makes it quicker than other localisation-focused algorithms,
such as NOT, due to the fact that it needs to work on fewer intervals; more details
on this advantage of our proposed methodology are in Sect. 4.1. We note here that,
even though the default methodology described in Fryzlewicz (2014) and Baranowski
et al. (2019) is based on the construction of random intervals, the same approaches
can be applied to a fixed grid of intervals. However, as noted in Kovács et al. (2020),
the latter implementation can be quite slow. Fourth, the pseudo-sequential nature of
the attempted isolation, makes our proposed methodology suitable for online change-
point detection. This is one of the various different ways that ID is different from
existing techniques in the literature which also attempt change-point isolation; a more
thorough comparison with seemingly similar, but still different, methods is given in
the next section.

The paper is organized as follows. Section 2 is a motivating illustration of our
proposed method through examples. Section 3 gives a formal explanation of the ID
methodology along with two different scenarios of use and the associated theory. In
Sect. 4, we first discuss the computational aspects of ID and the choice of parameter
values. ID variants which lead to improved practical performance are also explained.
In Sect. 5, we provide a thorough simulation study to compare ID with state-of-the-
art methods. Real-life data examples are provided in Sect. 6. The paper is concluded
with reflections on the proposed method. The theoretical, as well as practical, merits
and weaknesses of ID when compared against state-of-the-art methods are discussed
throughout the paper. However, for the sake of clarity these are also brought together
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in Sect. 7. ID is implemented in the R packages IDetect and breakfast, available from
CRAN.

2 Motivating illustration of Isolate-Detect

The fact that each change-point is sequentially detected using an interval that con-
tains no other change-points leads to high detection power, especially in difficult
structures, such as limited spacings between consecutive change-points and/or higher-
order piecewise-polynomial signals. Two examples follow in order to make clear the
importance of the isolation step and to illustrate the power of ID compared to other
change-point detection methods (some of those also attempt localisation) in capturing
even small movements in the data that are close to each other. Table 1 provides results
on 100 replications of the continuous piecewise-linear signal (S1) and the piecewise-
constant signal (S2), where

(S1) T = 5200, with 21 change-points in the slope at locations 100, 140, · · · , 900. The
standard deviation is σ = 0.25;

(S2) T = 5200, with 21 change-points in the mean at locations 100, 105, · · · , 200.
The standard deviation is σ = 0.1.

As a measure of the accuracy of the estimated number we give N̂ − N , while as a
measure of the accuracy of the detected locations, we give Monte-Carlo estimates of

the mean square error, MSE = T−1 ∑T
t=1 E

(
f̂t − ft

)2
. The methods compared are

ID,NOT, andMARS for (S1) and ID,WBS,NOT, andPELT for (S2). For the ID related
results in Table 1, we used the hybrid version of ID explained in Sect. 4.4. The choice
of the parameters is described in Sect. 4.2. As already mentioned, WBS and NOT
also work on subintervals of the data, chosen though in a completely different manner
than in ID. More comparative simulation and real-life studies will be given in Sects. 5
and 6, respectively. We notice from Table 1 that ID offers an important increase in the

Table 1 Distribution of N̂ − N over 100 simulated data sequences from (S1)

Signal Method MSE

N̂ − N

≤ −15 (−15,−5] [−4, 4] [5, 15) ≥ 15

(S1) ID 0 0 100 0 0 13×10−5

NOT 5 86 9 0 0 141×10−5

MARS 100 0 0 0 0 284 × 10−5

(S2) ID 0 1 97 2 0 94 × 10−5

NOT 100 0 0 0 0 485 × 10−5

PELT 78 22 0 0 0 437 × 10−5

WBS 27 71 2 0 0 413 × 10−5

The average MSE is also given
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Fig. 1 Results (up to t = 1000) on estimated signals obtained by different change-point detection methods.
Top row: the true signal (S1) and the data sequence, and the estimated signal using ID. Bottom row: The
estimated signals from NOT, and MARS
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Fig. 2 Results (up to t = 250) on estimated signals obtained by different change-point detection methods.
Top row: the true signal (S2), the data sequence, and the estimated signal using ID. Bottom row: The
estimated signals from WBS, NOT, and PELT

change-point detection power, especially under limited spacings between consecutive
change-points. Figures 1 and 2 give a graphical representation of the results for the first
out of the 100 repetitions for signals (S1) and (S2), respectively. For better presentation
of the results, in (S1) the signals are presented up to t = 1000, since after t = 900
there is no change-point and in all methods the estimated signal continues linearly
beyond that point. For the same reason, in Fig. 2 which is related to (S2), the results
are presented up to t = 250. The NOT and WBS methods also operate on sub-
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intervals of the data. However, the nature of the fixed, certain (we can expand one
data point at each time), localization in ID means that it is of an order of magnitude
faster than the aforementioned methods, which have high computational cost that
increases linearly with the number of the randomly drawn intervals. This is an issue of
fundamental importance, especially in signals with a large number of change-points,
in which NOT andWBS need to increase the number M of intervals drawn. However,
doing this also increases the computational cost. More specifically, one could try and
draw all possible combinations of start- and end-points of the intervals; however, the
computational complexity turns out to be cubic in T . In contrast, due to the explained
interval expansion approach, in ID no choice of M is required, which leads to better
practical performance with more predictable execution times, while at the same time
ID examines all possible change-point locations. We recall that unlike ID and NOT,
the principle of WBS does not extend to models other than piecewise-constant. To
be more precise, this generality of Isolate-Detect with respect to its applicability in
many different signal structures is a main distinction between our method and recently
published competingmethods which, with the exception of NOT, have been developed
to cover only the detection of level-changes.

3 Methodology and theory

3.1 Methodology

Themodel is given in (1) and the unknownnumber, N , of change-points r j can possibly
grow with T . Let r0 = 0 and rN+1 = T and let δT = min j=1,2,...,N+1

∣
∣r j − r j−1

∣
∣.

For clarity of exposition, we start with a simple example before providing a more
thorough explanation of how ID works. Figure 3 covers a specific case of two change-
points, r1 = 38 and r2 = 77. We will be referring to Phases 1 and 2 involving six
and four intervals, respectively. These are clearly indicated in the figure and they
are only related to this specific example, as for cases with more change-points we
would have more such phases. At the beginning, s = 1, e = T = 100, and we take
λT = 10 (how to choose λT will be described in Sect. 4.2). Suppose the threshold
ζT has been chosen well enough (more details in Sect. 4.2) so that r2 gets detected
in {Xs∗ , Xs∗+1, . . . , Xe}, where s∗ = 71. After the detection, e is updated as the
start-point of the interval where the detection occurred; therefore, e = 71. In Phase 2
indicated in the figure, ID is applied in [s, e] = [1, 71]. Intervals 1, 3 and 5 of Phase
1 will not be re-examined in Phase 2 and r1 gets, upon a good choice of ζT , detected
in {Xs, Xs+1, . . . , Xe∗}, where e∗ = 40. After the detection, s is updated as the end-
point of the interval where the detection occurred; therefore, s = 40. Our method is
then applied in [s, e] = [40, 71]; supposing there is no interval [s∗, e∗] ⊆ [40, 71] on
which the contrast function value exceeds ζT , the process will terminate.

We now describe ID more generically. For each change-point, r j , ID works in two
stages: Firstly,we isolate r j in an interval that contains noother change-point. To ensure
this, the expansion parameter λT can be taken to be as small as equal to 1. If λT > 1,
then isolation is guaranteedwith high probability. Theoretically for large T , the chosen
value for λT (this typically will be small; see Sect. 4.2 for more details) is guaranteed
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Fig. 3 An example with two change-points; r1 = 38 and r2 = 77. The dashed line is the interval in which
the detection took place in each phase

to be smaller than the minimum distance δT (which has to grow with T ) between two
consecutive change-points and isolation will be guaranteed. For an explanation on the
rate of δT with respect to the sample size T , see the discussion that follows Theorem 1.
(Of course when asymptotics is put aside, in finite samples anything can happen, and
in some configurations no method can be guaranteed to detect change-points if they
are arbitrarily close.) The second stage is to detect r j through the use of an appropriate
contrast function. This function is, from now on, denoted by Cb

s,e(X), and it is defined
for any integer triple (s, e, b), with 1 ≤ s ≤ b < e ≤ T . Heuristically, the value of
Cb
s,e(X) is small if b is not a change-point and large otherwise. In piecewise-constant

signals, the contrast function reduces to the absolute value of the CUSUM statistic
defined in (4), while for continuous, piecewise-linear signals, the contrast function is
given in Sect. 3.2. For the better understanding of the method, we provide its step-
by-step simple outline through pseudocode, followed by a succinct narrative of the
purpose of each step. The threshold to be used, in order to decide if a change has
occurred at a specific data point, is denoted by ζT . Practical choices for λT and ζT
are given in Sect. 4.2. For K = �T /λT �, let crj = jλT and clj = T − jλT + 1 for

j = 1, 2, . . . , K − 1, while crK = T and clK = 1. For a generic interval [s, e], define
the sequences

Rs,e = [
crk1 , c

r
k1+1, . . . , e

]
, Ls,e =

[
clk2 , c

l
k2+1, . . . , s

]
, (2)

where k1 := argmin j∈{1,2...,K } { jλT > s} and k2 := argmin j∈{1,2...,K }{T − jλT +
1 < e}. Denoting by |A|, the cardinality of any sequence A, and by A( j) its j th
element, the pseudocode of the main function is as below:

Pseudocode explaining the proposed ID algorithm
function ISOLATEDETECT(s, e, λT , ζT )
if e − s < 1 then
STOP

else
For j ∈ {1, 2, . . . , |R|} , denote

[
s2 j−1, e2 j−1

] := [
s,Rs,e( j)

]
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For j ∈ {
1, 2, . . . ,

∣
∣Ls,e

∣
∣
}
, denote

[
s2 j , e2 j

] := [
Ls,e( j), e

]

i = 1
(Main part)
b2i−1 := argmax

t∈[s2i−1,e2i−1)

Ct
s2i−1,e2i−1

(X)

if Cb2i−1
s2i−1,e2i−1 > ζT then

add b2i−1 to the set of estimated change-points.
ISOLATEDETECT(e2i−1, e, λT , ζT )

else
b2i := argmaxt∈[s2i ,e2i )C

t
s2i ,e2i (X)

if Cb2i
s2i ,e2i > ζT then

add b2i to the set of estimated change-points.
ISOLATEDETECT(s, s2i , λT , ζT )

else
i = i + 1
if i ≤ max

{|Ls,e|, |Rs,e|
}
then

Go back to (Main part) and repeat
else
STOP

end if
end if

end if
end if

end function

A brief explanation of the pseudocode follows. With K already defined above,
the intervals [s1, e1], [s2, e2], . . . , [s2K , e2K ] are those used for the isolation step.
Notice that in the odd intervals [s1, e1], [s3, e3], . . . , [s2K−1, e2K−1] the start-point
is fixed, unchanged, and equal to s, meaning that s1 = s3 = · · · = s2K−1 = s.
In the even intervals [s2, e2], [s4, e4], . . . , [s2K , e2K ], it is the end-point that is kept
fixed and equal to e, meaning that e2 = e4 = · · · = e2K = e. The process will
follow until there are intervals to check. The term “expanding intervals” that is used
throughout the paper is due to this one-sided expansion (of magnitude λT ) of the
intervals. The pseudocode makes it also clear that ID is looking for change-points
interchangeably in right- and left-expanding intervals which, with high probability,
contain at most one change-point. The Isolate-Detect procedure is launched by the
call ISOLATEDETECT(1, T , λT , ζT ).

The idea of a-posteriori change-point detection, inwhich change-points are detected
sequentially, has appeared previously in the literature. The PSmethod of Venkatraman
(1992) studies the multiple change-point detection problem for the case of piecewise-
constant mean signals, as well as for changes in the rate of an exponential process. The
CPMmethod of Ross (2015) treats change-point detection in the mean or variance of a
sequence of random variables when their distribution is known. In addition, CPM can
be used for distributional changes. Fang and Siegmund (2020), in a work completed
after the first version of the current paper appeared on arXiv, search for significant
change-points in settings such as piecewise-linear, and one of their algorithms, labelled
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Seq, bears some resemblance to ID; we note, however, that in addition to some algo-
rithmic differences our aim is different as we focus on consistent estimation while
Fang and Siegmund (2020) on testing.

ID is conceptually and in practice different from these methods in a number of
ways related to the threshold choice, the construction of the estimated change-point
locations as well as the way PS, CPM, and Seq restart upon detection. Furthermore,
ID’s isolation technique does not appear in CPM. By contrast, we use this isolation
property of ID as a device enabling its use in piecewise-(higher-order-) polynomial
models. Indeed, as shown in Baranowski et al. (2019), fast segmentation of signals of
the latter type is difficult to achieve unless any change-point present can be isolated
away fromneighbouring change-points before detection is performed,which is exactly
what ID sets out to do. In particular, this paper demonstrates the use of ID in continuous
piecewise-linear models. A comparison between the performance of ID and that of
state-of-the-art methods is given in Sect. 5.

3.2 Theoretical behavior of ID

The assumption of the random sequence {εt }t=1,2,...,T being independent and identi-
cally distributed (i.i.d.) from the Gaussian distribution is widely used in the literature.
In this paper, the Gaussianity assumption is only made for technical convenience with
respect to the proofs of Theorems 1 and 2. Relaxing both the Gaussianity and the inde-
pendence assumptions in order to have time-dependent errors is a more complicated
issue in terms of theory development. Recently, Dette et al. (2018) have attempted
to treat this issue, specifically for the SMUCE approach of Frick et al. (2014), using
a reliable estimate for the long run variance, σ 2∗ := ∑

k∈Z Cov(ε0, εk), of the error
distribution, which is not necessarily Gaussian.

Apart from the well-studied i.i.d. Gaussian noise structure, Isolate-Detect is
explored under a variety of settings including i.i.d. non-Gaussian (see Sect. 4.5), and
auto-correlated noise structures; see Fearnhead and Rigaill (2020) who conclude that
“IDetect has very strong performance for many scenarios when either we have auto-
correlated or heavy-tailed noise”.

If the standard deviation, σ , of εt is unknown, then we need to estimate it and in
the cases of independent errors with the signal being piecewise-constant or piecewise-
linear,σ can be estimated via theMedianAbsoluteDeviation (MAD)method proposed
in Hampel (1974). For x = (x1, x2, . . . , xT ), the proposed estimator, denoted by
σ̂ := C × median |x − median(x)|, has been shown to be, for C = 1.4826, a con-
sistent estimator of the population standard deviation σ in the case of Gaussian data
(Rousseeuw 1993). It is very robust as evidenced by its bounded influence function
and its 50% breakdown point. For simplicity, let σ = 1, and (1) becomes

Xt = ft + εt , t = 1, 2, . . . , T . (3)

With r0 = 0 and rN+1 = T , and for j = 1, 2, . . . , N + 1, we examine the theoretical
behaviour of ID in the following two illustration cases:
Piecewise-constant signals: ft = μ j for t = r j−1 + 1, . . . , r j , and fr j 	= fr j+1.
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Continuous, piecewise-linear signals: ft = μ j,1 + μ j,2t , for t = r j−1 + 1, . . . , r j
with the additional constraint of μk,1 + μk,2rk = μk+1,1 + μk+1,2rk for k =
1, 2, . . . , N . The change-points, rk , satisfy frk−1 + frk+1 	= 2 frk .
The above scenarios are only examples of settings in which the IDmethodology can be
applied. The isolation aspect of the method allows its application to various different
cases, such as the estimation of the number and the position of knots in piecewise
polynomial signals (with or without the continuity constraint).
Piecewise-constant signals. Under piecewise-constancy, the contrast function used
is the absolute value of the CUSUM statistic, the latter being

X̃b
s,e =

√
e − b

n(b − s + 1)

b∑

t=s

Xt −
√
b − s + 1

n(e − b)

e∑

t=b+1

Xt , (4)

where 1 ≤ s ≤ b < e ≤ T and n = e−s+1.Under the i.i.d. Gaussian framework used
for the theoretical results presented in this paper, it can be shown that argmaxb

∣
∣
∣X̃b

s,e

∣
∣
∣ =

argmaxbRb
s,e(X), where Rb

s,e(X) is the generalized log-likelihood ratio statistic for
all potential single change-points within [s, e]. For the main result of Theorem 1, we
also make the following assumption.

(A1) The minimum distance, δT , between two change-points and the minimum mag-
nitude of jumps, f

T
, are connected by

√
δT f

T
≥ C

√
log T , for a large enough

constant C .

The number of change-points, N , is assumed to be neither known nor fixed. It can
grow with T and the only indirect assumption on N is due to the minimum distance,
δT , between two change-points in the sense that N + 1 ≤ T /δT . Below, we give
the theoretical result for the consistency of the number and location of the estimated
change-points. The proof is in Section 8 of the supplementary material.

Theorem 1 Let {Xt }t=1,2,...,T follow model (3), with ft being a piecewise-constant
signal and assume that the random sequence {εt }t=1,2,...,T is independent and iden-
tically distributed (i.i.d.) from the normal distribution with mean zero and variance
one and also that (A1) holds. Let N and r j , j = 1, 2, . . . , N be the number and
locations of the change-points, while N̂ and r̂ j , j = 1, 2, . . . , N̂ are their estimates

sorted in increasing order. In addition, Δ f
j = ∣

∣ fr j+1 − fr j
∣
∣, j = 1, 2, . . . , N. Then,

there exist positive constants C1,C2,C3,C4, which do not depend on T , such that for
C1

√
log T ≤ ζT < C2

√
δT f

T
and for a sufficiently large T , we obtain

P

(

N̂ = N , max
j=1,2,...,N

(
∣
∣r̂ j − r j

∣
∣
(
Δ

f
j

)2
)

≤ C3 log T

)

≥ 1 − C4

T
. (5)

The isolation aspect of Isolate-Detect helps us to prove consistency under the condi-
tions used in Theorem 1 (and later in Theorem 2). From (5), we notice that in order to
be able to match the estimated change-point locations with the true ones, δT should
be larger than max

j=1,2,...,N

∣
∣r̂ j − r j

∣
∣, meaning that δT must be at least O(log T ). For
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this order of δT , Chan and Walther (2013) argue that the smallest possible δT f 2
T
that

allows change-point detection isO (log T − log(log T )). In our case, assumption (A1)
ensures that the O(log T ) rate for δT f 2

T
is attained, which is nearly optimal (up to

the double logarithmic term). This provides evidence that ID allows for detection in
complex scenarios, such as limited spacings between change-points. We mention that
if δT is of higher order than O (log T ), then Assumption (A1) implies that f

T
could

decrease with T .
The quantity on the right-hand side of (5) is 1 − O(1/T ); the same order as in

WBS and NOT. However, ID gives a provably lower constant C4 for the bound. To
understand this consistency advantage of our method over, for example, NOT see our
proof in Section 8 of the supplement and compare (17) with the result in Equation
(19), p.28 in the online supplementary material of Baranowski et al. (2019). The rate
of the lower bound for the threshold ζT isO (√

log T
)
and this is what will be used in

practice as the default rate: we use

ζT = C
√
2 log T . (6)

and the choice of the constantC will be explained in Sect. 4. Furthermore, (5) indicates
that δT does not affect the rate of convergence of the estimated change-point locations;
these only depend on Δ

f
j .

Continuous, piecewise-linear signals. Under Gaussianity and with Rb
s,e(X) being

the generalized log-likelihood ratio for all possible single change-points within [s, e),
the idea is to find a contrast function Cb

s,e(X), which is maximized at the same point
as Rb

s,e(X). The contrast function is constructed by taking inner products of the data
with a contrast vector. In the case of continuous piecewise-linear signals, Baranowski
et al. (2019) show that the contrast vector to be used is φb

s,e = (
φb
s,e(1), . . . , φ

b
s,e(T )

)
,

where

φb
s,e(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αb
s,eβ

b
s,e

[
(e + 2b − 3s + 2)t − (be + bs − 2s2 + 2s)

]
, t = s, . . . , b,

− αb
s,e

βb
s,e

[
(3e − 2b − s + 2)t − (2e2 + 2e − be − bs)

]
, t = b + 1, . . . , e,

0, otherwise,

(7)

where n = e−s+1,αb
s,e = (6/[n(n2−1)(1+(e−b+1)(b−s+1)+(e−b)(b−s))]) 1

2

and βb
s,e = ([(e − b + 1)(e − b)]/[(b − s + 1)(b − s)]) 1

2 . The contrast function
is Cb

s,e(X) = ∣
∣
〈
X,φb

s,e
〉∣
∣. To explain the reasoning behind the choice of the trian-

gular function φb
s,e(·), we define, for the interval [s, e], the linear vector γs,e(t) =

( 1
12 (e − s + 1)

(
e2 − 2es + 2e + s2 − 2s

))− 1
2
(
t − e+s

2

)
, t = s, . . . , e (and 0 other-

wise) as well as the constant vector 1s,e(t) = (e − s + 1)− 1
2 , t = s, . . . , e (and 0

otherwise). On the vector φ̃b
s,e(t) = t − b, t = b + 1, . . . , e (and 0 otherwise), which

is linear with a kink at b + 1, we apply the Gram-Schmidt orthogonalization with
respect to γs,e(t) and 1s,e(t). Normalizing the obtained vector such that ‖.‖2 = 1
returns the contrast vector φb

s,e(t) defined in (7). The best approximation, in terms of
the Euclidean distance, of Xt in [s, e] is a linear combination of γs,e(t), 1s,e(t), and

123



Detecting multiple generalized change-points by isolating single ones 153

φs,e(t), which are mutually orthonormal (Baranowski et al. 2019). This orthonormal-
ity leads to Rb

s,e(X) = ∣
∣
〈
X,φb

s,e
〉∣
∣ = Cb

s,e(X). For the consistency of ID in continuous
piecewise-linear signals, we make the following assumption.

(A2) The minimum distance, δT , between two change-points and the minimum magni-
tude of jumps, f

T
= min j=1,2,...,N

∣
∣2 fr j − fr j+1 − fr j−1

∣
∣, are connected by the

requirement δ3/2T f
T

≥ C∗√log T , for a large enough constant C∗.

The term δ
3/2
T f

T
characterizes the difficulty level of the detection problem and is

analogous to
√

δT f
T
in the scenario of piecewise-constant signals. Theorem 2 gives

the consistency result for the case of continuous piecewise-linear signals. The proof
is in Section 8 of the supplement.

Theorem 2 Let {Xt }t=1,2,...,T follow model (3) with ft being a continuous, piecewise-
linear signal and assume that the random sequence {εt }t=1,2,...,T is independent and
identically distributed (i.i.d.) from the normal distributionwithmean zero and variance
one and that (A2) holds. We denote by N and r j , j = 1, 2, . . . , N the number and
locations of the change-points, while N̂ and r̂ j , j = 1, 2, . . . , N̂ are their estimates

sorted in increasing order. Also, we denote Δ
f
j = ∣

∣2 fr j − fr j+1 − fr j−1
∣
∣. Then,

there exist positive constants C1,C2,C3,C4, which do not depend on T , such that for
C1

√
log T ≤ ζT < C2δ

3/2
T f

T
and for sufficiently large T ,

P

(

N̂ = N , max
j=1,2,...,N

(
∣
∣r̂ j − r j

∣
∣
(
Δ

f
j

)2/3
)

≤ C3(log T )1/3
)

≥ 1 − C4

T
. (8)

The quantity on the right-hand side of (8) is 1 − O (1/T ). In addition, in the case of
f
T

∼ T−1, ID’s change-point detection accuracy is O (
T 2/3 (log T )1/3

)
, as can be

seen from (8). This differs from the O (
T 2/3

)
rate derived in Raimondo (1998) only

by the logarithmic factor. The lower bound of the threshold isO (√
log T

)
. Therefore,

ζT = C̃
√
2 log T , (9)

where C̃ is a constant and we will comment on its choice in Sect. 4.2.
ID is flexible because it does not depend on the structure of the signal; what changes

is the choice of an appropriate contrast function. Adopting a similar approach as the
one for the case of continuous piecewise-linear signals, one can construct contrast
functions for the detection of other types of features.

3.3 Information criterion approach

Misspecification of the threshold in the ID algorithm can lead to the misestimation of
the number of change-points. To remedy this, we develop an approach which starts
by possibly overestimating the number of change-points and then creates a solution
path, with the estimates ordered according to a certain predefined criterion. The best
fit is then chosen, based on the optimization of a model selection criterion.
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The solution path algorithm: The estimated number of change-points depends on
ζT and this allows us to denote N̂ = N̂ (ζT ). For given data, we employ ID using
first ζT and then ζ̃T , where ζ̃T < ζT . Let Cζ̃T

and C̃ζ̃T
be the ζ̃T -associated constants

in (6) and (9), respectively. With J ≥ N̂ (ζT ), we estimate r̃ j , j = 1, 2, . . . , J ,
which are sorted in increasing order in S̃ = [

r̃1, r̃2, . . . , r̃ J
]
. Our aim is to prune

the estimates through an iterative procedure, where at each iteration the estimation
most likely to be spurious is removed. The algorithm is split into four parts, with
their descriptions being fairly technical. We note however that the different parts
are very similar and are based on the idea of removing change-points according to
their contrast function values as well as their distance to neighbouring estimates.
Even though the full explanation of each part is in Section 1 of the supplement, we
now provide a brief summary for the framework of the solution path algorithm. With
r̃0 = 1 and r̃ J+1 = T , we first collect triplets (r̃ j−1, r̃ j , r̃ j+1), ∀ {1, 2, . . . , J } and we
calculate CS(r̃ j ) := C

r̃ j
r̃ j−1,r̃ j+1

(X), with Cb
s,e(X) being the relevant contrast function.

For m = argmin j

{
CS(r̃ j )

}
we check whether CS(r̃m) ≤ ˜̃C√

log T , for ˜̃C > 0; in

the proofs of Theorems 3 and 4, ˜̃C = 2
√
2 but smaller values could be sufficient; see

for example Corollary 1. If CS(r̃m) ≤ ˜̃C√
log T , we remove r̃m from S̃, reduce J by

1, relabel the remaining estimates (in increasing order) in S̃, and repeat this estimate
removal process, which is carried out in a way such that once the set S̃ contains N
estimates, then for j = 1, 2, . . . , N , each r̃ j is within a distance of C∗ (log T )α from
the true change-point r j . We keep removing estimates until S̃ = ∅.

At the end of this change-point removal approach, we collect the estimates in

b = (b1, b2, . . . , bJ ) , (10)

where bJ is the estimate that was removed first, bJ−1 is the one that was removed
second, and so on. From now on, the vector b is called the solution path and is used to
give a range of different fits. We define the collection

{M j
}
j=0,1,...,J whereM0 = ∅

and M j = {
b1, b2, . . . , b j

}
. For j = 2, . . . , J , let b̃1 < . . . < b̃ j be the sorted

elements of M j . Among the collection of models
{M j

}
j=0,1,...,J , we propose to

select the one that minimizes the strengthened Schwarz Information Criterion (Liu
et al. 1997; Fryzlewicz 2014), defined as

sSIC( j) = −2
j+1∑

k=1

�
(
Xb̃k−1+1, . . . , Xb̃k

; θ̂k

)
+ n j (log T )α , (11)

where b̃0 = 0 and for each collection M j , b̃ j+1 = T and θ̂1, θ̂2, . . . , θ̂ j+1 are the
maximum likelihood estimators of the segment parameters for the model (3) with
change-point locations b1, b2, . . . , b j . The quantity n j is the total number of estimated
parameters related toM j . For example, if we do not consider the change-point loca-
tions as free parameters, then in the scenario of piecewise-constant mean n j = j + 1
(the constant values for each of the j+1 segments), while in the scenario of continuous
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and piecewise-linear signals n j = j + 2 (the starting intercept and slope and the j
changes in the slope). We mention that if the continuity constraint is to be removed,
then n j would be equal to 2 j+2 (the constant and slope values for the j+1 segments).
If now we consider the change-point locations to be free parameters, then we just need
to add j in the above values for n j in the different scenarios.

In the algorithm we have referred to three parameters: C∗, ˜̃C , and α. Although we

do not give a recipe for the choice of C∗ and ˜̃C , Sect. 3 describes how to circumvent
their choice. With respect to α, taking its value to be equal to 1 in (11) gives the
standard SIC penalty, but our theory requires α > 1. In practice we use α = 1.01 in
order to remain close to SIC. Theorems 3 and 4 below give the consistency results for
the piecewise-constant and continuous piecewise-linear models, based on the sSIC
approach. The proof of Theorem 3 is in the supplementary material and the same
approach can be followed to prove Theorem 4.

Theorem 3 Let {Xt }t=1,2,...,T follow model (3) under piecewise-constancy and let the
assumptions of Theorem 1 hold. Let N and r j , j = 1, 2, . . . , N be the number and
locations of the change-points. Let N ≤ J , where J can also grow with T . In addition,
letα > 1 be such that (log T )α = o(δT f 2

T
) is satisfied, where δT and f

T
are defined in

(A1). With
{M j

}
j=0,1,...,J being the set of candidate models obtained by the solution

path algorithm, we define N̂ = argmin j=0,1,...,J sSIC( j). Then, there exist positive

constants C1,C2, which do not depend on T , such that for Δ
f
j = ∣

∣ fr j+1 − fr j
∣
∣,

P

(

N̂ = N , max
j=1,2,...,N

(
∣
∣r̂ j − r j

∣
∣
(
Δ

f
j

)2
)

≤ C1 (log T )α
)

≥ 1 − C2

T
. (12)

Theorem 4 Let {Xt }t=1,2,...,T follow model (3) under continuous piecewise-linearity
and let the assumptions of Theorem 2 hold. Let N and r j , j = 1, 2, . . . , N be the
number and locations of the change-points. Let N ≤ J , where J can also grow with
T . In addition, let α > 1 be such that (log T )α = o(δ3T f 2

T
) is satisfied, where δT

and f
T
are defined in (A2). With

{M j
}
j=0,1,...,J being the set of candidate models

obtained by the solution path algorithm, we define N̂ = argmin j=0,1,...,J sSIC( j).
Then, there exist positive constants C1,C2, which do not depend on T , such that for
Δ

f
j = ∣

∣2 fr j − fr j+1 − fr j−1
∣
∣,

P

(

N̂ = N , max
j=1,2,...,N

(
∣
∣r̂ j − r j

∣
∣
(
Δ

f
j

)2/3
)

≤ C1(log T )α/3
)

≥ 1 − C2

T
. (13)

We note that our solution path algorithm, explained in detail in Section 1 of the
supplementary material, allows J , the number of the detections from the already
explained overestimation process, to grow with T . The quantities on the right hand
sides of (12) and (13) are 1−O (1/T ); the sameorder as those in (5) and (8). The lowest
admissible δT f 2

T
and δ3T f 2

T
in Theorems 3 and 4, respectively, are slightly larger than

the same quantities in the thresholding approach. Our empirical expertise suggests
that SIC-based approaches tend to exhibit better practical behaviour for signals that
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have a moderate number of change-points and/or large spacings between them. A
hybrid that combines the advantages of the thresholding and the SIC-based approach
is introduced in Sect. 4.4.

4 Computational complexity and practicalities

4.1 Computational cost

With δT being the minimum distance between two change-points, and λT the interval-
expansion parameter, we use λT < δT . We note that while δT is unknown, choosing
λT small enough guarantees with high probability that this requirement holds; see
Sect. 4.2 for how to choose λT in order to obtain good accuracy performance and
at the same time low computational cost. Now, since K = �T /λT � > �T /δT � and
the total number, MID , of intervals required to scan the data is no more than 2K
(K intervals from each expanding direction), in the worst case scenario we have

MID = 2K > 2
⌈

T
δT

⌉
. As a comparison, in WBS and NOT one needs to draw at least

M intervals where M ≥ (
9T 2/δ2T

)
log

(
T 2/δT

)
. The lower bound for M in WBS and

NOT is O (
T 2/δ2T

)
up to a logarithmic factor, whereas the lower bound for MID is

O (T /δT ). This results in great speed gains of ID over WBS and NOT. The reason
behind this significant difference in the computational complexity of the methods is
that in WBS and NOT both the start- and end-points of the randomly drawn intervals
have to be chosen, whereas in ID, depending on the expanding direction, we keep the
start- or the end-point fixed.

4.2 Parameter choice

Choice of the threshold constant. We start with an upper bound on the constant C ,
as defined in (6), for the case of piecewise-constant signals when the error terms εt are
i.i.d. from the Gaussian distribution. We note that this result is of independent interest.
Our model is as in (1) for stationary εt . For any vector y ∈ R

T , we define

ỹbs,e =
√

e − b

n(b − s + 1)

b∑

t=s

yt −
√
b − s + 1

n(e − b)

e∑

t=b+1

yt ; ˜̃ys,e =
∑e

t=s yt
(e − s + 1)1/2

,

(14)

where 1 ≤ s ≤ b < e ≤ T and n = e − s + 1. It can be shown that if εt , are serially
independent and their distribution is symmetric about zero (for example i.i.d. standard
Gaussian random variables), then the sequence {εt }Tt=1 satisfies

∀ γ > 0, P

(

min
s,b,e

˜̃εs,b ˜̃εb+1,e < −γ

)

≤ P

(

max
s,b,e

˜̃εs,b ˜̃εb+1,e > γ

)

(15)
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The following corollary indicates that as T → ∞, we have that C ≤ √
3/2, meaning

that the threshold can be taken to be at most
√
3 log T . This value of

√
3 is smaller than

the constant used in the solution path algorithm of Sect. 3.3 ( ˜̃C = 2
√
2), which can

however be used to give explicit upper bounds on the consistency results as explained
in Theorems 1 and 3; in contrast, Corollary 1 does not give an explicit upper bound
for the probability related to the consistency result as expressed in (16). We highlight
that the aforementioned bound on the constant and its proof are simpler than the
results presented in Fang et al. (2020) which involve the manipulation of complex
distributions. The proof is in the supplementary material.

Corollary 1 Let {εt }Tt=1 be i.i.d. N (0, σ 2). For any δ > 0,

P

(

∃s,a,e

(
ε̃bs,e

)2
> 3σ 2(1 + δ) log T

)

−−−→
T→∞ 0. (16)

For the practical choice of the values of C and C̃ , in (6) and (9), respectively, we
ran a large-scale simulation study involving a wide range of signals. The number
of change-points, N , was generated from the Poisson distribution with rate param-
eter Nα ∈ {4, 8, 12}. For T ∈ {100, 200, 500, 1000, 2000, 5000}, we uniformly
distributed the change-points in {1, 2, . . . , T }. Then, for piecewise-constant (or contin-
uous piecewise-linear) signals, at each change-point location we introduced a jump (or
a slope change) which followed the normal distribution with mean zero and variance
σ 2 ∈ {1, 3, 5}. Standard Gaussian noise was then added onto the simulated signal. For
each value of Nα , σ 2 and T we generated 1000 replicates and estimated the number
of change-points using ID with threshold ζT as in (6) and (9) for a variety of constant
values C and C̃ . The best behaviour occurred when, approximately, C = 1.05 and
C̃ = 1.4. These values will be referred to as the default constants and they hold true
for all signals that satisfy the assumption of the error terms εt being i.i.d. Gaussian.
We note that the value of C̃ = 1.4 does not violate Corollary 1 because the result
expressed in the latter is only for piecewise-constant signals, while the constant C̃
applies to the scenario of continuous, piecewise-linear signals. Due to the fact that
the contrast function used is based on local averaging, the CLT can be used to show
that for sufficiently large sample size T , ID is robust when the normality assumption
is not satisfied; this has also been explored in Fearnhead and Rigaill (2020). Also,
pre-averaging is a practical approach that we employed in Sect. 4.5 for such cases
with error departures from Gaussianity.

In the SIC-based approach of Sect. 3.3, we started by detecting change-points using
threshold ζ̃T < ζT . In practice, we take the constants related to ζ̃T , namely Cζ̃T

and

C̃ζ̃T
as defined in Sect. 3.3, to be 0.9 and 1.25, respectively.

Choice of the expansion parameter λT . We start by highlighting that our numerical
experience suggests that ID is robust to small changes in the value of λT ; for a small-
scale simulation study when the value of λT changes significantly (λT ∈ {5, 20, 80}),
see Section 6 of the supplementary material. Theoretically, for a given signal, the
change-point detection results obtained from ID are the same for any value of λT used
which is less than the minimum spacing between two successive change-points. The
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computational cost of running ID is inversely proportional to the size of the expansion
parameter; the smaller the λT , the more intervals we need to work on. However, the
low computational complexity of our algorithm allows us to take λT to be as small
as the value of three leading to very good accuracy even for signals with frequent
change-points. We now give example execution times for two models, (T1) and (T2)
defined below, on a 3.60GHz CPU with 16 GB of RAM. We employed the ID-variant
for long signals explained in Sect. 3.

(T1) Length l j = 7 × 10 j , j = 3, 4, 5, with change-points at 7, 14, . . . , l j − 7 and
values between them 0, 4, 0, 4, . . . , 0, 4. The standard deviation is σ = 0.5.
Execution times: 0.31s ( j = 3), 2.25s ( j = 4), 26.41s ( j = 5).

(T2) Length l j = 7 × 10 j , j = 3, 4, 5, with no change-points. We use σ = 1.
Execution times: 0.64s ( j = 3), 3.01s ( j = 4), 30.35s ( j = 5).

4.3 Variants

Here, we describe three different ways to further improve ID’s practical performance.
Long signals: If T is large, we split the given data sequence uniformly into smaller
parts (windows), to which ID is then applied. In practical implementations, the length
of the window is 3000 and we apply this structure only when T > 12000, because
for smaller values of T there are no significant differences in the execution times of
ID and its window-based variant. The computational improvement that this structure
offers is explained in Section 3 of the supplement.
Restarting after detection: In practice, instead of starting from the end-point e∗ (or
start-point s∗) of the right-expanding (or left-expanding) interval where a detection
occurred, we could start from the estimated change-point, b̂. This alternative, labelled
IDdet , leads to accuracy improvement without affecting the speed of the method.
Faster solution path algorithm: In practice, we use only Part 4 of the solution path algo-
rithm described in Section 1 of the supplement because it is quicker and conceptually
simpler; it requires only the choice of α and tends not to affect ID’s accuracy.

4.4 Alternative model selection criteria

A hybrid between thresholding and SIC stopping rules: For signals with a large num-
ber of regularly occurring change-points, the threshold-based ID tends to behave
better than the SIC-based procedure. As explained after Theorems 3 and 4, this is
unsurprising because SIC-based approaches typically perform better on signals with
a moderate number of change-points separated by larger spacings. This difference in
ID’s behaviour between the threshold- and SIC-based versions is what motivates us to
introduce a hybrid of these two stopping rules with minimal parameter choice, which
works as follows. Firstly, we estimate the change-points using the threshold approach
IDdet with λthT = 3. If the estimated change-points are more than a constant J ∗, then
the result is accepted and we stop. Otherwise, the hybrid method proceeds to detect
the change-points using the SIC-based approach with λT > λthT , since the already-
applied thresholding rule has not suggested a signal with many change-points. In the
simulations, we use J ∗ = 100, λT = 10.
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Steepest Drop to Low Levels (SDLL): We also combine ID with the SDLL model
selection method introduced in Fryzlewicz (2020).

4.5 Extension to different noise structures

This section describes how to use ID when the noise is not Gaussian. We pre-process
the data in order to obtain a noise structure that is closer to Gaussianity. For a given
scale number s and data {Xt }t=1,2,...,T , let Q = �T /s� and X̃q = 1

s

∑qs
t=(q−1)s+1 Xt ,

for q = 1, 2, . . . , Q − 1, while X̃Q = (T − (Q − 1)s)−1 ∑T
t=(Q−1)s+1 Xt . We apply

ID on
{
X̃q

}

q=1,2,...,Q
to obtain the estimated change-points, namely ˜̃r1, ˜̃r2, . . . , ˜̃rN̂ ,

in increasing order. To estimate the original locations of the change-points we define

r̂k =
( ˜̃rk − 1

)
s + ⌊ s

2 + 0.5
⌋

, k = 1, 2, . . . , N̂ . The larger the value of s, the closer

the distribution of the noise to normal, but the more the amount of pre-processing. In
simulations presented in Sect. 5, we use s = 3 for the case of Student-t5 distributed
noise, while if the tails are heavier (Student-t3), we set s = 5. The hybrid version of

ID will be employed on
{
X̃q

}

q=1,2,...,Q
and in order to be consistent with the choice

of the expansion parameter, we take λ∗
T = �λT /s�. In practice, for unknown noise,

our recommendation is to set s = 5.

5 Simulations

This section compares the performance of ID with competitors. The main change-
point detection R functions in the competing packages were called using their
default input arguments, which does not always allow direct like-for-like compar-
isons of the methods. Whenever needed (difficult signal structures), and in order
to help the competitors capture their best possible performance, the input values
were adjusted accordingly. The R code used for the simulation study is avail-
able from Github at https://github.com/Anastasiou-Andreas/IDetect/blob/master/R/
Simulations_used.R. Table 2 shows the competitors used. CPOP is employed based on
R code found in http://www.research.lancs.ac.uk/portal/en/datasets/cpop(56c07868-
3fe9-4016-ad99-54439ec03b6c).html andTF in https://stanford.edu/~boyd/l1_tf. For
WBS, we give results based on both the information criterion and the thresholding (for
C = 1) stopping rules. The notation isWBSIC andWBSC1, respectively.With respect
toWBS2, its performance is investigated based on the SDLLmodel selection criterion
introduced in Fryzlewicz (2020). In the cpm package, the threshold is decided through
the average run length (ARL) until a false positive occurs. In our simulations, we give
results for ARL = 500 (the default value) and if the signal length, ls , is greater than
500, results are also given for ARL = 1000�ls/1000�. The notation is CPM.l.A, with
A the value of ARL. For FKS, when the number of knots is unknown (the scenario we
work in), we need to specify the maximum allowed number of knots. We take this to
be 2N , with N the true number of change-points. Also, the estimated change-points by
FKS are positive real numbers; we take as estimation the closest integer. The proposed
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Fig. 4 Example of a signal of length 1000 with change-points at 490 and 510 offsetting each other

ID version is the hybrid described in Sect. 4.4. However, we also present the results
for two more variants: SDLL and thresholding with constant

√
3/2 (see (6)), which

is the upper bound proven in Corollary 1. The notation for these variants is ID.SDLL
and ID√

3/2, respectively.

A seemingly difficult structure for ID: Signals that present the most difficulty to ID
are ones in which change-points are concentrated in the middle part of the data and
offset each other, as in Fig. 4. The reason is that due to the left- and right- expanding
feature of ID, where one of the two end-points of the interval is kept fixed, the change-
points need to be detectable based on relatively “unbalanced” (explanation follows
directly below) tests, which typically tend to offer poor power. For example, referring
again to Fig. 4, the change-point at 490 will need to be isolated and detected by com-
paring the means of the data over the long interval [1, 490] and a short interval of the
form [491, e j ], where e j ≤ 510 is the end-point of a right-expanding interval [1, e j ].
To be more precise, if the expansion parameter λ = 3, then e j ∈ {492, 495, . . . , 510}
and therefore our procedure will have seven opportunities to detect the change-point
490 while it is still isolated in intervals that do not contain any other change-points.
Even though ID would be expected to struggle in detecting the change-points in such
unbalanced intervals, our numerical experience suggests that its performance on such
challenging signals is in fact very good and matches or surpasses that of the best com-
petitors; see for example the results in Table 3 for the model (M4), which follows this
structure. All the signals are fully specified in Section 2 of the supplementary material.
Figure 5 shows examples of the data generated by models (M1) blocks, (M2) teeth,
(M4) middle-points, and (W1) wave 1. Tables 3, 4, 5, 6 and 7 summarize the results
in the case of i.i.d. Gaussian noise. Table 8 presents the behaviour of ID under the
setting of i.i.d. scaled Student-td noise, where d = 3, 5. More examples are in the
supplement.

We highlight that the NOT, WBSIC, and S3IB methods require the specification of
the maximum number, Kmax , of change-points allowed to be detected. If the default
values in these methods are lower than the true number of change-points in the sim-
ulated examples, then we take Kmax = �T /δT �, where δT is the minimum distance
between two change-points. We ran 100 replications for each signal and the frequency
distribution of N̂ − N for each method is presented. The methods with the highest
empirical frequency of N̂ − N = 0 (or in a neighbourhood of zero, depending on
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Fig. 5 Examples of data series, used in simulations. The true signal, ft , is in red

the example) and those within 10% off the highest are given in bold. As a measure of
the accuracy of the detected locations, we provide Monte-Carlo estimates of the mean

squared error, MSE = T−1 ∑T
t=1 E

(
f̂t − ft

)2
, where f̂t is the ordinary least square

approximation of ft between two successive change-points. In continuous piecewise-
linear signals, f̂t is the splines fit obtained using the splines package in R. The scaled
Hausdorff distance, dH = n−1

s max
{
max j mink

∣
∣r j − r̂k

∣
∣ ,maxk min j

∣
∣r j − r̂k

∣
∣
}
,

where ns is the length of the largest segment, is also given in all examples apart from
the signal (NC) in Table 5, which is a constant-mean signal with no change-points.

The average computational time for all methods, apart from FDR, is also provided.
FDR is excluded due to its non-uniform procedure in terms of the execution speed
for each signal (if a newly obtained signal has length greater than previously treated
signals, then FDR estimates the threshold by 5000 Monte-Carlo simulations, which
makes it slow). In some cases the average computational time for FKS is not given.
We have already explained that we need to pre-specify the maximum allowed number
of knots in order for FKS to work. The method is somewhat slow and we exclude
the results for FKS when the true change-points are more than 10, as in such cases it
would take a significant amount of time to finish all the 100 simulations.

With regards to piecewise-constancy, ID is always in the top10%of the bestmethods
when considering accuracy in any aspect (estimation of N , MSE, dH ); in most cases
it is the best method overall. ID.SDLL is also, in most cases, in the top 10% of the
best performing methods; this provides evidence that the Isolate-Detect algorithm
can be combined with various model selection criteria (thresholding, SIC, SDLL)
and maintain a good practical behaviour. When the threshold constant, C , is equal to√
3/2, the behaviour of ID remains good for signals that have a moderate number of

change-points that are not near each other. As we can see from Table 4, ID√
3/2 seems

to struggle in scenarios with a large number of frequently occurring change-points.
In continuous piecewise-linear signals, CPOP, ID, and ID.SDLL are in all cases in
the top 10% of the best methods in terms of the accurate estimation of N . In terms
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Table 5 Distribution of N̂ − N over 100 simulated data sequences from (NC)

Method MSE Time (s)

N̂ − N

0 1 2 ≥ 3

PELT 100 0 0 0 39 ×10−5 0.004

NP.PELT 8 1 23 68 999 ×10−5 1.077

S3IB 100 0 0 0 39 ×10−5 0.715

CumSeg 100 0 0 0 39 ×10−5 0.115

CPM.l.500 0 0 0 100 2957 ×10−5 0.011

CPM.l.3000 28 6 39 27 628 ×10−5 0.031

WBSC1 15 18 20 47 653 ×10−5 0.149

WBSIC 99 1 0 0 44 ×10−5 0.149

WBS2 89 5 4 2 82 ×10−5 0.958

NOT 99 1 0 0 44 ×10−5 0.089

FDR 96 4 0 0 47 ×10−5 –

TGUH 100 0 0 0 39 ×10−5 0.217

ID 100 0 0 0 39 ×10−5 0.172

ID.SDLL 90 4 0 6 182 ×10−5 0.069

ID√
3/2 99 0 1 0 41 ×10−5 0.259

Also the average MSE and computational times for each method are given

of the MSE and dH , CPOP is by a narrow margin the overall best method, with ID
and ID.SDLL coming second and third, respectively. We can deduce that our method
exhibits uniformity in detecting with high accuracy the change-points for various
different signal structures, a characteristic which is at least partly absent from the
majority of its competitors. Furthermore, ID’s behaviour is particularly impressive in
extremely long signals with a large number of frequently occurring change-points; see
Tables 4 and 7. Compared to other well-behaved methods, such as NOT for piecewise-
constancy and CPOP for continuous piecewise-linear signals, our methodology has
by far the lowest computational cost. To conclude, the simulation study provides
evidence that Isolate-Detect is an accurate, reliable, and quick method for generalized
change-point detection.

The results of Table 8 are very good for d = 5 and not too different from those under
Gaussian noise. For d = 3, there is a slight overestimation of the number of change-
points.When the tails of the distribution of the noise are significantly heavier than those
of the normal distribution, one can obtain better results by increasing the threshold
constant. For example, the results in Table 8 for d = 3 were improved when the
threshold constantwas slightly increased.Wehighlight thatmore thorough simulations
can be done using our R packages IDetect and breakfast and code available from
https://github.com/Anastasiou-Andreas/IDetect/blob/master/R/Simulations_used.R.
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Table 6 Distribution of N̂ − N over 100 simulated data sequences from the continuous piecewise-linear
signals (W1), (W3), and (W4)

Method Model MSE dH Time (s)

N̂ − N

≤ −3 −2 −1 0 1 2 ≥ 3

NOT 0 0 0 99 1 0 0 0.016 0.063 0.343

TF 0 0 0 0 0 0 100 0.029 0.451 1.125

CPOP 0 0 0 99 1 0 0 0.013 0.055 23.190

MARS (W1) 0 0 2 9 42 39 8 0.034 0.200 0.011

FKS 0 0 0 72 22 6 0 0.015 0.109 270.385

ID 0 0 0 91 9 0 0 0.030 0.104 0.036

ID.SDLL 0 0 0 98 0 1 1 0.033 0.098 0.030

NOT 0 0 27 0 6 18 49 0.035 0.571 0.163

TF 0 0 0 0 0 0 100 606.523 0.432 0.117

CPOP 0 0 0 90 6 2 2 0.010 0.097 0.078

MARS (W3) 91 0 7 2 0 0 0 3.991 2.258 0.008

FKS 0 0 0 90 9 1 0 0.010 0.097 67.582

ID 0 0 0 99 1 0 0 0.013 0.101 0.017

ID.SDLL 0 0 0 93 4 1 2 0.022 0.130 0.010

NOT 0 1 14 20 16 20 29 0.109 0.998 0.958

TF 0 0 0 0 0 0 100 660.399 0.465 1.349

CPOP (W4) 0 0 0 92 8 0 0 0.015 0.084 1.627

MARS 100 0 0 0 0 0 0 22.058 1.609 0.019

ID 0 0 0 92 8 0 0 0.038 0.123 0.045

ID.SDLL 0 0 0 92 4 1 3 0.062 0.120 0.025

The average MSE, dH and computational time for each method are also given

6 Real data examples

6.1 UK House Price Index

We investigate the performance of ID onmonthly percentage changes in theUKHouse
price index from January 1995 to December 2020 in two London Boroughs: Tower
Hamlets andHackney. The data are available from http://landregistry.data.gov.uk/app/
ukhpi and they were accessed in March 2021. Figure 6 shows the fits of ID, ID.SDLL,
NOT, and TGUH. In both data sets, ID behaves similarly to NOT whereas ID.SDLL’s
performance is closer to that of TGUH where we detect more change-points. This
difference between the examined methods is, in our opinion, due to the fact that ID
in this example and NOT detect change-points based on the Schwarz Information
Criterion, so fewer estimated change-points can be expected. The detection of two
change-points nearMarch 2008 and September 2009 for both boroughsmay be related
to the financial crisis during that time, which led to a decrease in house prices. As
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Table 8 ID results for the distribution of N̂ −N for the models (M2)–(M4) and (W1), over 100 simulations
where the distribution of the noise is Student-td , for d = 3, 5

d Model MSE dH Time (ms)

N̂ − N

≤ −3 −2 −1 0 1 2 ≥ 3

5 (M2) 6 2 2 74 9 5 2 60 × 10−3 0.86 9.7

(M3) 0 0 0 75 16 5 4 21 × 10−3 0.16 9.2

(W1) 0 0 0 86 12 2 0 31 × 10−3 0.23 32.8

3 (M2) 7 1 2 52 21 8 9 71 × 10−3 1.18 8.7

(M3) 0 1 0 59 20 13 7 26 × 10−3 0.22 9.8

(W1) 0 0 0 62 28 4 6 32 × 10−3 0.25 22.6

The average MSE, dH and computational time are also given
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Fig. 6 Top row: The time series and the fitted piecewise-constant mean signals obtained by ID and ID.SDLL
for both Tower Hamlets and Hackney. Bottom row: NOT (solid) and TGUH (dashed) estimates for Tower
Hamlets and Hackney

explained in Sect. 3.3, our methodology returns the solution path defined in (10),
which can be used to obtain different fits; see Section 7 in the supplement for more
details and for a real-data example where this is useful.

Residual diagnostics have indicated that the behaviour of the raw residuals, Xt − f̂t ,
in relation to normality and independence is good for all methods.

6.2 The COVID-19 outbreak in the UK

The performance of ID is investigated on data from the recent COVID-19 pandemic;
we employ a continuous piecewise-linear model on the daily number of lab-confirmed
cases in England, as well as on the daily additional COVID-19 associated UK deaths.
The data concern the period from the beginning of March 2020 until the end of Febru-
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Plot for the daily additional number of cases in England
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Fig. 7 Top row: The transformed data sequence and the fitted continuous and piecewise-linear mean signals
obtained by ID and ID.SDLL for both the daily number of cases and the daily number of deaths. Bottom
row: NOT (solid) and CPOP (dashed) estimates for the daily number of cases and the daily number of
deaths

ary 2021 and they are available from https://coronavirus.data.gov.uk. The data were
accessed on the 8th of March 2021. Before applying the various methods to the data,
we bring the distribution closer to Gaussian with constant variance. To achieve this we
perform the Anscombe transform, a : N → R, with a(x) = 2

√
x + 3/8 as described

in Anscombe (1948). We denote the transformed number of COVID-19 cases by X̃t

and the transformed number of COVID-19 associated deaths by D̃t . Figure 7 presents
the results of ID, ID.SDLL, CPOP, and NOT for the transformed data. We observe
that ID, ID.SDLL, and NOT have a similar behaviour, while CPOP gives a higher
estimated number of change-points. In an attempt to date the detected change-points
by ID, we provide a possible explanation of their location with respect to the outbreak
of the pandemic in the UK; this discussion is given in Section 4 of the supplementary
material.

For another example related to the continuous, piecewise-linear case, see Section 7
of the supplement where we explore the behaviour of Isolate-Detect and two competi-
tors, CPOP and NOT, on the daily closing stock prices of Samsung Electronics Co.
from July 2012 until June 2020.

7 Concluding reflections on ID

In this paper, we have proposed Isolate-Detect which is a new, generic technique for
multiple generalized change-point detection in noisy data sequences. The method is
based on a change-point isolation approach which seems to provide an advantage in
detection power, especially in complex structures wheremost state-of-the-art competi-
tors seem to suffer (see the simulations in Sect. 5) such as limited spacings between
change-points. In addition, the aforementioned isolation aspect allows the extension
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of our method to the detection of knots in higher-order polynomial signals. As already
mentioned in Sect. 1, NOT, WBS, and WBS2 also work on sub-intervals of the data,
but the way the isolation is carried out in ID, where one of the end-points of the subin-
tervals is kept fixed, provides predictable execution times for the analysis of a given
data sequence, which are faster than the aforementioned competitors; see Sects. 4.1
and 5. Another advantage of our method over NOT, WBS and WBS2 is that, due to
its pseudo-sequential interval expansion character, it can easily be applied for online
change-point detection.

In Sect. 4.4, a variant of ID was introduced that combines the threshold- and SIC-
based versions of our proposed method with the aim to enhance its accuracy (both in
terms of the estimated number and the estimated change-point locations) for signals of
different structures with respect to the true number of change-points and the distance
between them. In addition, due to the way that the relevant hybrid approach has been
developed in Sect. 4.4, we manage to offer, for ease of execution, minimal parameter
choice. Apart from thresholding and SIC, we have also combined ID with the SDLL
model selection criterion.

In the practical applications of Sects. 5 and 6, compared to the state-of-the-art
competitors, ID lies in the top 10% (in terms of the accurate estimation of the number
and the location of the change-points) of the best methods. Furthermore, it exhibits a
notable advantage over other techniques in long signals with many change-points that
occur frequently. In addition, ID’s pseudo-sequential character assists in attaining a low
computational time; our method can accurately analyse signals of tens of thousands
with thousands of change-points in less than a second; see for example Table 4. In
cases where the normality assumption for the error terms is violated, Sect. 4.5 provides
a practical solution where pre-processing allows us to use ID without altering the
proposed parameter values. The results of simulations from a Student-t distribution
with two options for the degrees of freedom are in Table 8.

Since no method has a uniformly best behaviour, it is natural to also highlight the
weaknesses of our method in terms of its practical behaviour. To start with, ID can be
slow in long and constant signals in which change-points do not occur. This is because
of the expanding intervals attribute, which in the case of no change-points will push
the method to keep testing for change-points in growing, overlapping intervals. This
is inevitably going to lead to high computational costs. We tried to eliminate this
weakness by introducing a window-based variant, as explained in Section 3. Another
drawback of themethod is that, due to its left- and right-expanding feature, the change-
points need to be detectable based on relatively unbalanced intervals. This could lead
to accuracy issues in signals where the change-points are in the middle of the data
sequence and offset each other. In practice, we have not encountered this type of
behaviour in ID; in particular it accurately detects the change-points for the model
(M4) in Table 3, which is an example of the aforementioned structure with two nearby
change-points in the middle of the data sequence.
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