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Abstract: Background: Breast cancer is the most common malignancy in women worldwide. P2X7 is
a transmembrane receptor expressed in breast cancer and activated by the ATP tumor microenviron-
ment, driving cell proliferation, angiogenesis, and metastasis via different signaling pathways. The
role of the P2X7 receptor, hypoxia, and autophagy in regulating tumor progression is controversial.
The multikinase inhibitor regorafenib prevents the activation of numerous kinases involved in angio-
genesis, proliferation, and metastasis. The present study aimed to evaluate the modulatory effect of
regorafenib on the hypoxia/angiogenesis/P2X7R/autophagy axis on the MCF7 breast cancer cell
line and its impact on different signaling pathways involved in breast cancer pathogenesis. Methods:
The levels of VEGF, VEGFR, PI3K, NF-κB, HIF-1α, and LC3-II were analyzed using ELISA, and
caspase-3 activity was also assessed colorimetrically. Phosphorylated (p)-p38 MAPK and purinergic
ligand-gated ion channel 7 (P2X7) receptor protein expression levels were analyzed via Western
blotting. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels
of Beclin 1 (BECN1), LC3-II, and sequestosome 1 (p62). Results: Regorafenib reduced MCF7 cell
viability in a dose-dependent manner. Furthermore, regorafenib significantly reduced levels of PI3K,
NF-κB, VEGF, VEGFR, P2X7 receptor, and p-p38 MAPK protein expression, and markedly reduced
p62 mRNA expression levels. However, regorafenib significantly increased caspase-3 activity, as well
as BECN1 and LC3-II mRNA expression levels. Conclusions: Regorafenib was demonstrated to possi-
bly exhibit antitumor activity on the breast cancer cell line via modulation of the P2X7/HIF-1α/VEGF,
P2X7/P38, P2X7/ERK/NF-κB, and P2X7/beclin 1 pathways.
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1. Introduction

Breast cancer is one of the most common cancers worldwide, and is the main leading
cause of cancer mortality in women [1]. Angiogenesis, autophagy, and apoptosis serve
essential roles in breast cancer progression via numerous signaling pathways [2–4].

Angiogenesis is a key contributor to the formation of tumors and metastases in a
number of different malignancies [2]. VEGF is an angiogenic protein that is regulated
by hypoxia-inducible factor-1 α (HIF-1α). HIF-1α is a transcription factor that regulates
oxygen homeostasis, angiogenesis, and hypoxia response [5]. Hypoxia promotes tumor
heterogeneity and plasticity, as well as the development of more invasive and resistant
tumor subtypes [6]. VEGF stimulates the PI3K/AKT signaling pathway, protein kinase C,
and the MAPK/ERK signaling pathway, which leads to the activation of endothelial cell
proliferation, migration, and survival [7].
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Apoptosis and autophagy are common types of programmed cell death, and their
malfunction can contribute to tumor growth [8]. Autophagic cell death is mediated by the
extensive degradation of organelles, which is dependent on autophagic flux [9]. During
cancer treatment, crosstalk between the autophagy and apoptosis signaling pathways has
been reported. Moreover, autophagy can induce apoptotic cell death [10,11]. Targeting
apoptosis and autophagy via numerous signaling pathways, including the PI3K signaling
pathway, has served a major role in cancer therapeutic development [12,13]

The purinergic ligand-gated ion channel 7 (P2X7) receptor is an ATP-gated nonselec-
tive cation channel receptor that serves a role in tumor growth regulation and progres-
sion, as well as in signal transduction during angiogenesis [14,15]. The P2X7 receptor is
highly expressed in numerous types of cancer, including breast, prostate, and pancreatic
cancer [15,16]. P2X7 receptor expression provides cancer cells with certain important
properties, including improved engraftment strength and in vivo proliferation rate, higher
expression of proliferation markers, decreased apoptosis, and accelerated VEGF production
and angiogenesis [17]. In breast cancer, P2X7 receptor upregulation has been demonstrated
to activate the AKT signaling pathway, the epithelial–mesenchymal transition, and govern
the production of small extracellular vesicles that enhance invasion and migration [17].

Regorafenib is a Food and Drug Administration-approved multikinase inhibitor that
inhibits various membrane-bound and intracellular kinases implicated in oncogenesis,
angiogenesis, metastasis, and tumor immunity [18]. Therefore, the present study aimed
to evaluate the modulatory effect of regorafenib on the P2X7/HIF-1α/VEGF, P2X7/P38,
P2X7/ERK/NF-κB, and P2X7/beclin 1 pathways on the MCF7 breast cancer cell line and
its impact on different signaling pathways involved in breast cancer progression.

2. Materials and Methods
2.1. Reagents

Regorafenib (BAY 73-4506; cat. no. S1178) was purchased from Selleck Chemicals.
Trypsin (2.5%; 10X) was purchased from Gibco (Thermo Fisher Scientific, Inc.). FBS, DMEM,
and MTT were purchased from Sigma-Aldrich (Merck KGaA). DMSO was purchased from
SERVA Electrophoresis GmbH. Penicillin/streptomycin mixture and PBS were purchased
from Lonza Group, Ltd. Ethanol was purchased from El Nasr Pharmaceutical Chemicals
Co.

2.2. Regorafenib Solubility

The stock solution of regorafenib was dissolved in 1% DMSO and diluted in DMEM
to obtain the concentrations (1.25, 2.5, 5, 10, 20, or 40 µM) used in the present study. DMEM
with an equal volume of 1% DMSO as used for the treatment group was used as a control.

2.3. Experimental Cell Line

The human breast carcinoma MCF7 cell line was purchased from the American Type
Culture Collection. MCF7 cells were grown in DMEM containing 1% penicillin/streptomycin
and 10% FBS and incubated at 37 ◦C with humidified air and 5% CO2. The research protocol
used in the present study was approved by the Ethics Committee of the Faculty of Pharmacy
of Damanhour University (Damanhour, Egypt; approval no. 821PB22F).

2.4. Cell Viability Assay

The effect of regorafenib on cell viability was assessed using the MTT assay. The
cells were cultured in DMEM containing 1% penicillin/streptomycin and 10% FBS in
96-well plates (4000 cells/well) at 37 ◦C overnight. The old media was then discarded, and
0.1 mL of DMEM containing regorafenib at concentrations of 1.25, 2.5, 5, 10, 20, or 40 µM
was added to all wells, excluding the controls, and incubated for a further 72 h at 37 ◦C.
Subsequently, cells were incubated for 4 h at 37 ◦C with 20 µL MTT reagent (5 mg/mL).
The formed formazan crystals were dissolved in 150 µL of DMSO, and the absorbance was
analyzed at 590 nm using a microplate reader (Bio-Rad Laboratories, Inc.). All experiments
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were carried out in triplicate. The viability of the cells was calculated as a percentage
relative to that of the control groups. The median inhibitory concentration (IC50) values
were calculated using CompuSyn software (version 1; CompuSyn, Inc.) [19].

2.5. Treatment of MCF7 Cells with Regorafenib and Experimental Design

Cells were grown in eight T-75 flasks (2 × 105 cells/flask) overnight to allow for cell
adhesion to the flasks in DMEM containing 1% penicillin/streptomycin and 10% FBS at
37 ◦C. The following day, flasks were divided into the following two groups and incubated
at 37 ◦C for 72 h: (i) vehicle-treated group (1% DMSO); and (ii) regorafenib-treated group
(IC50 level, 8.39 ± 0.43 µM).

2.6. Cell Lysate Preparation and Protein Quantification

RIPA lysis and extraction buffer (cat. no. 89900) was purchased from Thermo Fisher
Scientific, Inc. and was used to acquire cell lysates. To MCF7 cell pellets, 1 mL of RIPA
buffer was added and agitated gently on ice for 15 min. Cells were centrifuged at 14,000× g
for 15 min, and subsequently, the supernatants were collected and stored at −20 ◦C. Total
protein concentration was determined using the SMARTTM BCA protein assay kit (cat.
no. 21071) purchased from Intron Biotechnology, Inc. The absorbance was analyzed at
562 nm.

2.7. Biochemical Analyses in Cell Lysates

The levels of VEGF and VEGFR2 were evaluated as markers of angiogenesis using
ELISA. The Human VEGF ELISA Kit (cat. no. MBS355343; MyBioSource, Inc.) and the
Human VEGFR-2/Flk-1 ELISA Kit (cat. no. CSB-E04763h; Cusabio Technology LLC) were
used according to the manufacturers’ protocols. Moreover, PI3K and NF-κB levels were
evaluated as angiogenic signaling mediators and markers of tumor growth and progression
using ELISA. The Human PI3K ELISA Kit (cat. no. MBS268899; MyBioSource, Inc.) and the
Human NF-κB p65 ELISA Kit (cat. no. MBS263235; MyBioSource, Inc.) were used according
to the manufacturer’s protocols. LC3-II levels were evaluated as a marker of autophagy
using ELISA. The Human Microtubule-Associated Protein 1 LC3B (MAP1LC3B) ELISA
Kit (cat. no. MBS917498; MyBioSource, Inc.) was used according to the manufacturer’s
protocol. The HIF-1α levels were evaluated as a marker of hypoxia using ELISA. The
human HIF-1α ELISA Kit (cat. no. KA1247; Abnova Corporation) was used according to
the manufacturer’s protocol. Caspase-3 activity was also assessed as a marker of apoptosis.
The Human Caspase-3 assay colorimetric kit (product code CASP-3-C) purchased from
Sigma-Aldrich (Merck KGaA) was used to determine caspase’3 activity according to the
manufacturer’s protocol [20].

2.8. Reverse Transcription-Quantitative PCR (RT-qPCR)

The mRNA expression levels of LC3-II, Beclin 1 (BECN1), and sequestosome-1 (p62)
were assessed as markers of autophagy. An RNA-spin ™ Total RNA Extraction Kit (cat.
no. 17211; Intron Biotechnology, Inc.) was used to extract total RNA. The RNA was
reverse-transcribed into complementary DNA (cDNA) using a HiSenScript ™RH (-) cDNA
Synthesis Kit (cat. no. 25014; Intron Biotechnology, Inc.). The mRNA gene expression levels
of p62, LC3-II, and BECN1genes were quantified using the TOPreal ™ qPCR 2X PreMIX
(SYBR Green with low carboxyrhodamine dye, uracil N-glycosylase plus) Kit (Enzynomics
Co., Ltd.). The primer pairs (Sigma-Aldrich, Merck KGaA) used for RT-qPCR can be seen
in Table 1. Three experimental repeats were performed. β-actin and GAPDH were used as
internal reference genes. Relative p62, LC3-II, and BECN1 mRNA gene expression levels
were quantified using Applied Biosystems 7500 Real-Time PCR Software version 2.0.6.
(Applied Biosystems; Thermo Fisher Scientific, Inc.). The real-time PCR instrument was
programmed for p62 and BECN1 genes as follows: 95 ◦C for 10 min, followed by 40 cycles
at 95 ◦C for 15 s and 56 ◦C for 30 s. It was programmed for LC3-II as follows: 95 ◦C for 10
min, followed by 50 cycles at 95 ◦C for 15 s and 58 ◦C for 15 s.
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Table 1. Primers used for RT-qPCR.

Forward Primer Reverse Primer

P62 5′-GGG GAC TTG GTT GCC TTT T-3′ 5′-CAG CCA TCG CAG ATC ACA TT-3′

LC3-II 5′-GAT GTC CGA CTT ATT CGA GAG C-3′ 5′-TTG AGC TGT AAG CGC CTT CTA-3′

BECN1 5′-GGC TGA GAG ACT GGA TCA GG-3′ 5′-CTG CGT CTG GGC ATA ACG-3′

GAPDH 5′-ACC ACA GTCCAT GCC ATC AC-3′ 5′-TCC ACC ACCCTG TTC CTGTA-3′

β-actin 5′-CAC CAT TGG CAA TGA GCG GTT C-3′ 5′-AGG TCT TTG CGG ATG TCC ACG T-3′

2.9. Western Blotting

Western blotting was used to evaluate the P2X7 receptor as a marker of angiogenesis,
and phosphorylated (p)-p38 MAPK as an angiogenic signaling mediator and marker of
tumor growth and progression. Equivalent protein samples (30 µg/lane) were loaded
onto 12% SDS-PAGE gels and then transferred to polyvinylidene fluoride membranes.
The membranes were blocked with 3% BSA in TBST buffer for 1 h at 37 ◦C. The primary
antibodies were as follows: anti-P2X7R (1:1000; cat. no. DF8135) and anti-p-p38 MAPK
(1:500; cat. no. AF4001); all from Affinity Biosciences, Ltd. The membrane was incubated
with the primary antibodies for 2 h at 37 ◦C and was then treated with the secondary
antibody, HRP-conjugated IgG (1:5000; cat. no. FNSA-0004, Wuhan Fine Biotech Co.,
Ltd.) at 37 ◦C for 1 h. Blots were evaluated using TMB solution (Cat.no. T0565; Sigma
Aldrich, Merck KGaA). Image J software (National Institutes of Health) was used to
analyze band densities normalized to β-actin protein expression levels, which were used
as a loading control.

2.10. Statistical Analysis

Prism 5 for windows version 5.01 (GraphPad Software, Inc.) was used for data analysis.
Data are expressed as the mean ± SEM. The Student’s unpaired t-test was used to compare
statistical differences between groups; p < 0.05 was considered to indicate a statistically
significant difference.

3. Results
3.1. Effect of Regorafenib on MCF7 Cell Viability

Cells were exposed to a regorafenib concentration ranging between 1.25 and 40 µM.
The results demonstrated that the cytotoxic effect of regorafenib on MCF7 cells was
concentration-dependent, with an IC50 of 8.39 ± 0.43 µM (Figure 1).
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Figure 1. The viability of MCF-7 cells treated by regorafenib (1.25–40 µM).

3.2. Effect of Regorafenib on HIF-1α as Hypoxia Marker

A significant decrease in HIF-1α level was detected in the regorafenib-treated group
compared to the vehicle-treated group (Table 2) (Figure 2).
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Table 2. The effect of regorafenib in MCF7 cell lysate.

Variables Vehicle-Treated Group
(N = 4), X ± SEM

Regorafenib-Treated Group
(N = 4), X ± SEM

VEGF (pg/mL) 3.650 ± 0.1190 1.625 ± 0.1109 *
VEGFR-2 (ng/mL) 3.350 ± 0.1555 1.350 ± 0.0646 *

Caspase 3 activity (mmol/mL) 1.350 ± 0.06455 3.675 ± 0.1797 *
PI3K (ng/mL) 4.275 ± 0.2287 1.850 ± 0.1041 *

NF-κB (pg/mL) 4.750 ± 0.1443 1.875 ± 0.08539 *
LC3-II (pg/mL) 2.000 ± 0.09129 5.075 ± 0.2136 *
HIF-1α (ng/mL) 3.575 ± 0.1548 1.250 ± 0.06455 *

* Significant from control group at p < 0.05.
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3.3. Effect of Regorafenib on Angiogenic Markers

The regorafenib-treated group demonstrated a significant reduction in VEGF and
VEGFR2 levels compared to the vehicle-treated group (Table 2; Figure 3).
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3.4. Effect of Regorafenib on P2X7 Receptor Expression

Furthermore, the regorafenib-treated group demonstrated a significant reduction in
P2X7R protein expression level by 62% compared to the vehicle-treated group (Figure 4).
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Figure 4. Western blot of P2X7R, phospho-p38 MAPK. and β-actin in regorafenib-treated and
vehicle-treated groups.

3.5. Effect of Regorafenib on Markers of Tumor Growth and Progression

A significant decrease in the PI3K level was detected in the regorafenib-treated group
compared to the vehicle-treated group (Table 2) (Figure 5). Furthermore, the regorafenib-
treated group demonstrated a significant reduction in the NF-κB level and p-p38 MAPK
protein expression level by 60.53 and 48%, respectively, compared to the vehicle-treated
group (Table 2) (Figures 4 and 5).
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3.6. Effect of Regorafenib on LC3-II Level and LC3–II, p62, and BECN1 mRNA Expression Levels
as Autophagic Markers

The regorafenib-treated group demonstrated a significant increase in LC3-II level
(Table 2), LC3-II mRNA gene expression levels, and BECN1 mRNA gene expression levels
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compared to the vehicle-treated group, by 153.75, 166.97, and 64.15% respectively. The
p62 mRNA gene expression level was reduced in the regorafenib-treated group by 92.13%
compared to the vehicle-treated group (Figures 6 and 7).
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3.7. Effect of Regorafenib on Caspase-3 as an Apoptotic Marker

A significant increase in caspase-3 activity was detected in the regorafenib-treated
group compared to the vehicle-treated group (Table 2) (Figure 8).
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4. Discussion

Breast cancer is the most commonly diagnosed cancer, and the leading cause of
cancer mortality in women worldwide [21]. Overexpression or dysregulation of receptor
tyrosine kinases in breast cancer cells leads to accelerated tumor growth, angiogenesis, and
metastasis by activating numerous downstream signaling pathways [22].

The P2X7 receptor is expressed in different types of cancer, and potentiates different
oncogenic signaling mediating cancer progression [23]. Several calcium-related intracellu-
lar pathways involved in cell proliferation were shown to be activated by the P2X7 receptor.
These include the JNK/MAPK, PI3K/AKT/myc, and HIF-1α/VEGF pathways [24].
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Regorafenib successfully targeted numerous tyrosine kinases implicated in cancer, in-
cluding those involved in oncogenesis, angiogenesis, and tumor microenvironment regu-
lation [25]. Therefore, the present study aimed to evaluate the modulatory effect of rego-
rafenib as a multikinase inhibitor on P2X7R expression and the P2X7/hypoxia/angiogenesis/
autophagy signaling axis in the MCF7 breast cancer cell line.

To the best of our knowledge, this was the first study investigating the modulatory
effect of regorafenib as a tyrosine kinase inhibitor on P2X7 signaling in breast cancer. The
present study demonstrated that regorafenib reduced P2X7 receptor protein expression in
MCF7 cells. Reduced expression of the P2X7 receptor was attributed to the reduction of
HIF-1α expression, which is the main regulator of P2X7R expression [26]. This inhibition
of P2X7R expression also resulted in inhibition of VEGF and PI3K/AKT expression levels,
and ERK1/2 phosphorylation [26].

The present study also revealed that regorafenib may reduce angiogenesis by inhibit-
ing the P2X7R/HIF-1α/VEGF axis, as mirrored by decreased VEGFR2 levels in MCF7 cells.
This was in agreement with Mehta et al. [27], who reported that regorafenib significantly
inhibited VEGF-A production in triple-negative breast cancer cell lines. This effect was
attributed to regorafenib being a strong inhibitor of numerous tyrosine kinases, which are
implicated in neovascularization and tumor progression via Raf inhibition [28].

Moreover, the present study also indicated that regorafenib may inhibit tumor growth
and progression via the suppression of the P2X7/PI3K/mTOR/NF-κB axis and dephos-
phorylation of p-p38 MAPK in MCF7 cells. Similar results were reported in previous
studies [29–31], which demonstrated that regorafenib diminished tumor progression via
suppression of MAPK/ERK activation in hepatocellular carcinoma in vitro and in vivo.
Furthermore, regorafenib has been reported to significantly inhibit NF-κB, p38, and ERK
activation in bladder cancer in vitro and in vivo [30]. Another previous study determined
that both the activation and expression of NF-κB-mediated proteins involved in tumor
progression were suppressed by regorafenib treatment in colorectal cancer [29]. This sup-
pression was attributed to VEGF and VEGFR2 production inhibition, which led to the
inhibition of numerous intracellular signaling molecules, including PI3K/AKT kinase,
phospholipase Cγ, protein kinase C, and MAPK/ERK signaling pathway proteins [7].

The present study also indicated that regorafenib may inhibit P2X7/HIF-1α/VEGF
axis, as mirrored by reducing HIF-1α levels in MCF7 cells. HIF-1α is a major transcrip-
tional regulator involved in the hypoxia response [32]. Multiple signaling cascades reg-
ulate HIF-1α expression at the transcriptional and translational levels. Inhibition of the
P2X7R/PI3K/Akt signaling pathway has the potential to reduce HIF-1α expression [33].
NF-κB has been also shown to regulate HIF-1α activation. Inhibition of NF-κB can down-
regulate HIF-1α and VEGF [34,35]. The downstream of HIF-1α levels led to the blockage
of the VEGF pathway, resulting in angiogenesis inhibition [36].

Furthermore, the present study indicated that regorafenib may activate autophagy,
which was demonstrated by the increased BECN1 and LC3-II mRNA expression and
decreased p62 mRNA expression. A previous study also reported that regorafenib induced
autophagy in pulmonary fibroblasts as a result of the inhibition of the mTOR signaling
pathway [31]. Such mTOR inhibition has previously been determined to reduce p62
expression contributing to autophagy induction [37]. Blocking the P2X7/beclin 1 signaling
pathway in the MCF7 cell line downregulates the expression of the PI3K/AKT pathway
which subsequentially activates autophagy.

In addition, the present study also suggested that regorafenib may induce apoptosis,
which was demonstrated by increased caspase-3 activity in MCF7 cells. A recent study
by Liu et al. [29] demonstrated a similar result, and reported that regorafenib triggered
the intrinsic and extrinsic apoptotic pathways in colorectal cancer cells by activating
caspase-3, -8 and -9 in vitro and in vivo. This result was attributed to the inhibition of the
P2X7/PI3K/AKT/mTOR signaling pathway by regorafenib. Inhibition of this pathway has
previously been demonstrated to directly block the phosphorylation of apoptosis signaling
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molecules (Bad, caspase-9, and acinus) or indirectly inhibit the activity of NF-κB and
suppress the transcriptional activation of antiapoptotic genes [38].

5. Conclusions

Regorafenib was demonstrated to possibly exhibit antitumor activity on a breast
cancer cell line via, at least in part, modulation of the P2X7/HIF-1α/VEGF, P2X7/P38,
P2X7/ERK/NF-κB, and P2X7/beclin 1 signaling pathways. Further future studies are
warranted to firstly validate other modulatory effects of regorafenib on different P2X7
receptor signaling pathways involved in breast cancer pathogenesis using different breast
cancer cell line, and secondary to investigate this promising therapeutic insight in different
human cancers, such as colon cancer.
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