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The critical Barkhausen avalanches 
in thin random-field ferromagnets 
with an open boundary
Bosiljka Tadić1,2, Svetislav Mijatović3, Sanja Janićević3, Djordje Spasojević3 & Geoff J. Rodgers4

The interplay between the critical fluctuations and the sample geometry is investigated numerically 
using thin random-field ferromagnets exhibiting the field-driven magnetisation reversal on the 
hysteresis loop. The system is studied along the theoretical critical line in the plane of random-field 
disorder and thickness. The thickness is varied to consider samples of various geometry between a two-
dimensional plane and a complete three-dimensional lattice with an open boundary in the direction of 
the growing thickness. We perform a multi-fractal analysis of the Barkhausen noise signals and scaling 
of the critical avalanches of the domain wall motion. Our results reveal that, for sufficiently small 
thickness, the sample geometry profoundly affects the dynamics by modifying the spectral segments 
that represent small fluctuations and promoting the time-scale dependent multi-fractality. Meanwhile, 
the avalanche distributions display two distinct power-law regions, in contrast to those in the two-
dimensional limit, and the average avalanche shapes are asymmetric. With increasing thickness, 
the scaling characteristics and the multi-fractal spectrum in thicker samples gradually approach the 
hysteresis loop criticality in three-dimensional systems. Thin ferromagnetic films are growing in 
importance technologically, and our results illustrate some new features of the domain wall dynamics 
induced by magnetisation reversal in these systems.

Disordered ferromagnets are well-known memory materials and new classes of memory devices are increas-
ingly making use of controlled motion of the domain walls (DW) in thin ferromagnetic films and nanowires1–3. 
The underlying magnetisation-reversal processes in these disordered ferromagnetic materials typically exhibit 
domain nucleation and domain-wall propagation under slow driving by the external field4,5. Hence, there is an 
increased interest in the experimental investigations of the Barkhausen noise (BHN) accompanying the magne-
tisation reversal along the hysteresis loop in nanowires6, thin films7–14, and systems with a finite thickness15,16. 
On the other hand, theoretical and numerical investigations of the impact of the specific sample shape on the 
magnetisation reversal processes are still in their infancy17–20. The domain structure in these materials is primar-
ily related to the intrinsic disorder that contributes to the enhanced stochasticity of the DW motion21–25, but this 
remains poorly understood.

One of the key sources of the DW stochasticity are the dynamic critical fluctuations, which have no particular 
scale26. These occur close to a critical disorder line that separates two distinct dynamical regimes: on one side a 
weak pinning regime with large propagating domains, and on the other side a strong disorder regime with pinned 
domain walls and smaller domains. In this context, the changing sample shape and dimensionality can affect the 
extension of the domains in one or more directions and thus alter the effects of disorder on the domain wall prop-
agation. Consequently, the critical disorder separating the two dynamical regimes can vary with the sample shape 
and the effective dimensionality. More precise theoretical investigations using the numerical studies of Ising spin 
model systems with the random-field magnetic disorder (RFIM) and the concept of finite-size scaling27 deter-
mine the critical disorder = .R 2 16c

D3  in the three-dimensional28–30, and = .R 0 54C
D2  in two-dimensional sys-

tems31,32, augmenting earlier studies with a built-in DW33–35. Recently20, using the extensive simulations and 
extending the finite-size scaling for the systems with the base L × L and finite thickness l, the critical disorder line 
R l L( , )c

eff  has been determined interpolating from the two-dimensional ( =l 1) and three-dimensional ( =l L) 
RFIM systems. Apart from the value of the critical disorder, the DW motion at different spatiotemporal scales36,37 

1Department for Theoretical Physics, Jožef Stefan Institute, P.O. Box 3000, SI-1001, Ljubljana, Slovenia. 2Complexity 
Science Hub, Vienna, Austria. 3Faculty of Physics, University of Belgrade, POB 368, 11001, Belgrade, Serbia. 4Brunel 
University London, Uxbridge Middlesex, UB8 3PH, UK. Bosiljka Tadić and Svetislav Mijatović contributed equally. 
Correspondence and requests for materials should be addressed to B.T. (email: bosiljka.tadic@ijs.si)

Received: 31 July 2018

Accepted: 4 April 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-42802-w
mailto:bosiljka.tadic@ijs.si


2Scientific Reports |          (2019) 9:6340  | https://doi.org/10.1038/s41598-019-42802-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

as well as the interplay of the critical fluctuations and the shape of the lattice constitute the theoretically challeng-
ing problems of broad importance. A review of some recent developments in classical and quantum systems can 
be found in38,39. Some of the considersations in this paper are reminiscent of research that considers criticality of 
spin systems situated on a complex network topology40–43.

In this work, we tackle some of these issues through the numerical study of magnetisation reversal processes 
in RFIM systems of variable thickness on the critical disorder line, moving from a two-dimensional plane to 
the three-dimensional lattice. At one end of this critical line, in the three-dimensional limit, the hysteresis-loop 
behaviour was investigated extensively by numerical methods28–30. The three-dimensional model is also accessible 
to field-theory approaches26,44–47. The renormalization-group approach in another class of models48–52 focuses 
on the criticality of the driven interface depinning in random 3D and 2D systems. In the course of the reversal 
process along the hysteresis loop, the occurrence of large domain walls and their motion in the central part of 
the loop, where the external field is close to the coercive field Hc, play a crucial role in the critical dynamics. It 
has been recognised47 that in the metastable states near Hc particular configurations of the disorder can trigger a 
large system-wide avalanche. In contrast, much less is known about the structure of such states in finite geometry 
samples or in the two-dimensional limit, which appears to be the lower critical dimensionality of the field-theory 
model. Recent numerical investigations18–20,32 indicate a rich dynamical critical behaviour, prone to the impact 
of geometry and disorder. Therefore, we adopt an adiabatic driving mode, where the field increments adjust to 
the current minimal local field (see Model and Methods) and focus on the nature of fluctuations in the central 
part of the hysteresis loop. Our analysis reveals that the samples of sufficiently small thickness have a new critical 
behaviour on the hysteresis loop, which is different from the one in the two-dimensional limit; these differences 
manifest themselves at the level of multi-fractality of the Barkhausen noise signal as well as the avalanches of 
domain-wall slides. On the other hand, the hysteresis-loop criticality in substantially thick samples gradually 
changes with the increased thickness, increasingly resembling the three-dimensional system.

Model and Methods
Field-driven spin reversal dynamics in RFIM.  Random-field disorder, which locally breaks the rotational 
symmetry of the order parameter, is considered to adequately describe the impact of magnetic defects on critical-
ity in classical53 and quantum54 spin systems. To model the effects of disorder on the magnetisation reversal along 
the hysteresis loop, we use a RFIM driven by the time-varying external field Hext at zero temperature53,55,56. The 
Hamiltonian of interacting Ising spins = ±s 1i  is

∑ ∑ ∑= − − −
〈 〉

J s s h s H s ,
(1)i j

i j
i

i i ext
i

i
,



where = …i N1, 2,  runs over all sites and ∑〈 〉i j,  denotes the summation over all pairs of nearest neighbour spins 
on the lattice of the specified size L × L × l, and the strength of the ferromagnetic coupling is fixed =J 1. At each 
lattice site, the value hi of the random field is chosen from the Gaussian distribution ρ π= −h e R( ) / 2h R/22 2

 of zero 
mean and the variance δ〈 〉 =h h Ri j i j,

2. The realisation of these random fields is considered as a quenched disor-
der53, consequently, the fields are kept fixed during the system’s evolution. The deterministic (zero-temperature 
type) dynamics consists of spin-flip + = −s t s t( 1) ( )i i  by aligning the spin si with its local field hi

loc, which is given 
by = ∑ + +h J s H hi

loc
j j ext i. Apart from the fixed random field hi at that site, the time varying contributions to 

hi
loc are due to the state of all neighbouring spins sj and the actual value of the external field Hext. The spin system 

is driven along the ascending branch of the hysteresis loop starting from the uniform state = −s{ 1}i  for all lattice 
sites, and a large negative Hext. The external field is increased for a small value to start a new avalanche (see below) 
and the updated values of hi

loc at all sites are computed and kept until all unstable spins are flipped in the current 
time step. Then the set of new local fields hi

loc is determined at sites in the shell at the avalanche front, and the 
unstable spins flipped; the process is repeated until no more unstable spins can be found. Then the external field 
is increased again. Note that the number of chain events strongly depends on the state of the system, the strength 
of disorder R, and the actual value of the external field, i.e., the hysteresis loop segment.

The sequence of spin-flip events between the two consecutive updates of the external field comprise an ava-
lanche. This larger-scale event can be characterised by the duration T—the number of time steps, and size S—the 
number of flipped spins during the avalanche propagation, i.e., = ∑ =S nt t

t
ts

e  and = −T t te s, where nt is the num-
ber of spins flipped during the step t, and ts and te indicate the moments when the avalanche begins and ends, 
respectively. Note that in the zero-temperature dynamics the number nt gives the exact change of the magnetisa-
tion δ ≡ + − =M t M t M t n N( ) ( 1) ( ) 2 /t  at time t, constituting the time signal known as Barkhausen noise. 
Here, the magnetisation = ∑ =M t s N( ) /i

N
i1  varies with t depending on the state of all spins. To minimally affect 

the avalanche propagation the driving field is incremented adiabatically, that is, the external field Hext is held 
constant during each avalanche. Moreover, the field that starts a new avalanche is updated by the amount that 
matches the local field of the minimally stable spin in the entire system, which is identified using a sorted-list 
search method55. The process ends when all spins are reversed completing the hysteresis branch. We sample two 
sets of systems of the size L × L × l where the thickness =l 2k, = …k 0, 1, 2, 3, , i.e., from =l 1 corresponding to 
the two-dimensional x-y plane of the size L × L until =l L complete three-dimensional sample. The linear size L 
of the considered systems are =L 256 and =L 512. The periodic boundary conditions are applied along x-y 
directions while the open boundaries are kept in the perpendicular direction of changing thickness. For each 
system, we sample the number of flipped spins {nt} along the entire branch of the hysteresis loop (Barkhausen 
noise signal), and identify each avalanche that occurred during the full magnetisation reversal. To complete the 
avalanche statistics, we repeat the process by new samples of the random fields with the same disorder strength R. 
The number of runs per one set of l and L pair, performed at the corresponding value of effective critical disorder 
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R l L( , )c
eff , ranged between 500 for the large, and 60 000 for the small samples. The sorted-lists algorithm is very 

efficient. For the largest system simulated in this work, the single run time on the Supermicro server 
8047R-7RTF+ is about 5 hours.

Critical disorder of systems with finite thickness.  The critical fluctuations comprise of the avalanches 
of all sizes including an infinite system-size avalanche. In the finite-size L systems with periodic boundary condi-
tions, these are represented by spanning avalanches that occur at an effective critical point R L( )c

eff . Then the true 
critical point → ∞R L( )c  is extracted by applying the finite-size scaling collapse27. Using these ideas and simula-
tions of the RFIM in very large systems, the critical disorder has been determined as = . ± .R 2 16 0 06c

D3  in 
=D 3, and = . ± .R 0 54 0 06c

D2  in =D 2 spatial dimensions28–30,57. In the finite-size scaling spirit, a system of 
finite thickness exhibits critical fluctuations for a reduced disorder compared with the full three-dimensional 
geometry. Recently, extensive simulations and the finite-size scaling analysis of avalanches for the systems of size 
L × L × l with varied thickness l have been performed in20. In this case, the spanning avalanches in the x-y dimen-
sions are relevant in addition to the extra scaling variable l/L, due to the open boundaries in the l-direction. The 
analysis led to the critical disorder line

=
− ∆ νR l R

l
( )

1 /
,

(2)c
c

D3

1/ D3

where ∆ = − R R1 /c
D

c
D3 2  and ν D3  is the correlation-length exponent of the corresponding three-dimensional 

system. Relevant for this work is the effective critical disorder of the system of the finite base length L and thick-
ness l that can be obtained from the analysis in20, in particular:

−
= ν

R l L R l
R l L

A l
L

( , ) ( )
( , )

( )
(3)

c
eff

c

c
eff 1/ D2

where A(l) was shown to scale with the thickness as = − ∆

− ∆

ν

νA l( ) a l
l

( ) D

D

1/ 2

1/ 3
 and = . ± .a 0 63 0 18 is the fit parameter. 

The respective values are 1/ν = .0 71D3  and 1/ν = .0 19D2 , using the exponent controlling the divergence of the 
correlation length for =l L in =D 328, and =l 1 in =D 2 limit31.

Avalanche distributions and average shapes.  Regarding the statistics of avalanches at the critical dis-
order, we distinguish the loop-integrated distributions (int), including the avalanches that appear over the entire 
branch of the hysteresis, and the distributions of the avalanches occurring only in the central part of the hysteresis 
loop (HLC). In the limiting 2D and 3D cases, the distributions of the avalanche size P(S) and duration P(T) obey 
power-law decay = τ− PP x L Ax x L( , ) ( / )Dx x  with a finite size cut-off and corresponding fractal dimension Dx, 
which are well studied in the literature29,30,57. For example, for the disorder ≥R Rc

D3 , the scaling function +P  
represents a product of a polynomial and a stretched exponential28,56; whereas, −P  corresponding to disorders 

<R Rc
D3  is further modified to include the spanning avalanches of different dimensions29,30,57. In the samples of 

finite thickness with the lattice size L × L × l, the appearance of the extra scaling variable l/L induces substantial 
changes both in the scaling function and the exponents (see Results). In this case, we observe two distinct slopes 
for small and large avalanches, respectively, which can be fitted by the following expression

= − +τ τ P{ }P S S B A
S

S B A
S

S( ) [1 tanh( / )] tanh( / ) ( ),
(4)

1 2
1 2

for the avalanche size S and P S( ) the scaling function for a particular size L and thickness l. The factor in the curly 
brackets in (4) is a convex combination of two power-laws, A1/

τS 1 and A2/
τS 2, specified by the amplitudes A1 and A2, 

and exponents τ1 and τ2, respectively. For S B, the first power-law prevails, so τ1 gives the slope of the log-log plot 
of the curve P(S) in that region. Then, for ≈S B, the distribution curve bends and proceeds with the second slope τ2 
in the part of scaling region where S B, up to the large-avalanche cutoff, where the universal scaling function 
P S( ) becomes dominant. At disorders above the effective critical disorder, a stretched exponential form 

= − σP S S C( ) exp[ ( / ) ] can be used. To capture the contribution of different types of spanning avalanches that typ-
ically occur at and below the critical disorder, we use a more elaborate expression58 = − σP S S D S C( ) exp[( / ) ( / ) ]k . 
Note that the distribution =

∼ τ− PP S AS S( ) ( ) with a similar form of scaling function was derived in the renormali-
zation group theory for the elastic interface48–50, where the exponent k = 1/2 is fixed, while the exponents σ and τ as 
well as the parameters are determined by ε-expansion (ε = 1 for the 3D and ε = 2 for the 2D case). A similar 
expression (4) applies for the duration T of avalanches, with the corresponding exponents α1 and α2 and a scaling 
function P T( ). The bending value =B Sx of the size and =B Tx of the duration distribution depend on the actual 
sample thickness (see Results).

The average size of all avalanches of given duration T, 〈 〉S T, also exhibits a scale invariance 〈 〉 ∝ γS TT  with the 
exponent γ α τ= − −( 1)/( 1). With two distinct scaling regions in the distributions of size and duration, here 
also two exponents γ1 and γ2 can be observed for some intermediate sample thicknesses. Similarly, two values of 
γ are extracted from the data for the average avalanche shape for small and large durations using the analytical 
form59 (a more general form was derived using the renormalization group methods in60,61)
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Here, 〈 | 〉n t T( )t  refers to the number of spins nt flipped at the moment t since the start of the avalanche whose 
duration is T and averaged over all avalanches of the duration T. Therefore, in the present context, the quantity nt 
measures the pace of propagation of the avalanche front, analogous to the velocity of the interface; the exponent 
γ is defined above and a is the asymmetry parameter.

Detrended multifractal analysis of Barkhausen noise signal.  As demonstrated in36, the convenient 
approach of studying the multifractal features of the magnetisation reversal fluctuations exploits the underlying 
scale-invariance to determine the generalised Hurst exponent H(q). The respective time series δM(k), 

= …k T1, 2, max of the length Tmax comprises a selected segment of the BHN signal {nt} on the hysteresis loop 
(see Results). Following the standard procedure described in36,62–64, the profile of the time series 

δ δ= ∑ − 〈 〉=Y i M k M( ) ( ( ) )k
i

1  is firstly obtained, and thereafter divided into non-overlapping segments of equal 
length n. The process is repeated starting from the end of the time series resulting in total =N T n2 2 int( / )s max  
segments; here, int(x) is the integer part of a real number x. Then, the local trend yμ(i) is found at each segment 
μ = … N1, 2 s, which enables the determination of the standard deviation μF n( , ) around the local trend

∑μ μ=





− + −





μ
=

F n
n

Y n i y i( , ) 1 [ (( 1) ) ( )] ,
(6)i

n

1

2
1/2

and similarly, μF n( , ) = μ∑ − − + − μ={ }Y N N n i y i[ ( ( ) ) ( )]
n i

n
s

1
1

2 1/2
 for μ = + …N N1, 2s s. Finally, the q-th 

order fluctuation function Fq(n) is computed for segment length n, and averaged over all segments

∑ μ=









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
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∼ .
μ=

F n
N

F n n( ) 1
2

[ ( , )]
(7)

q
s

N
q

q
H q

1

2
2 /2

1/
( )s

The idea behind this formula is that various segments of the signal need to be enhanced in different ways (values 
of q) to achieve a self-similarity of the whole signal. In particular, small fluctuation segments are enhanced by the 
negative values of q, while the segments with large fluctuations dominate the fluctuation function for the positive 
values of q. By varying the segment lengths in the range ∈n T[2, int( /4)]max , we compute the fluctuation function 
Fq(n) for different ∈ −q [ 10, 10]. Plotting Fq(n) against n allows us to find the regions of scale invariance and the 
corresponding scaling exponent H(q), as the slope of straight lines in the double-logarithmic plot. Furthermore, 
the exponent τ q( ) of the box probability measure, standardly defined in the partition function method, is related to 
H(q) via the scaling relation τ = −q qH q( ) ( ) 1. Hence, the singularity spectrum αΨ( ) is obtained from H(q) via 
the Legendre transform of τ q( ). In particular, α α τΨ = −q q( ) ( ), where α τ= = +d dq H q qdH dq/ ( ) / . For a 
monofractal, we have = =H q H const( )  and α = H; consequently, αΨ( ) reduces to a single point.

Results and Discussion
Hysteresis loop and signal shape in thin samples at the critical disorder.  The critical disorder line 
R l L( , )c

eff  for the sample with the base size =L 256 and varied thickness =l 2k, = …k 0, 1, 2, 8 is plotted in 
Fig. 1a together with the effective coercive field H l L( , )c

eff ; the corresponding lines for the case of =L 512 are also 
shown. The effective critical disorder increases at small thickness and then saturates approaching the values for 
the 3D samples. As expected in disordered materials13,53, the increased disorder induces narrowing of the hyster-
esis loop, which is compatible with the smaller values of the effective coercive fields H l( )c

eff  for ≥l 2, as shown in 
Fig. 1b.

The small thickness also affects the shape of the signal and the propagation of avalanches, as demonstrated 
in Fig. 1c–f. As mentioned above, the avalanches of different sizes including the sample-spanning avalanches are 
expected at critical disorder. In the case of small thickness, the avalanche often hits the system’s open boundary 
in the z-direction and stops, while the propagation in the x-y directions within the sample is conditioned by the 
pinning of avalanches by the random-field disorder; some examples of avalanches are shown in Fig. 1e,f. Hence, 
the sample thickness determines the actual shape of the critical avalanches. These effects are also manifested in 
the shape of the accompanying BHN signal. For example, for a large and thin sample, see Fig. 1c, small variations 
of the signal occurring due to pinning at the boundary appear intermittently between the large fluctuations even 
in the central part of the hysteresis loop. A detailed analysis below reveals how these fluctuations are manifested 
in the multi-fractal properties of the BHN signal in the thin samples.

Figure 2 shows how the sample thickness affects the magnetization increase with time in the ascending branch 
of the hysteresis loop. Precisely, the pronounced effects occur in the case of small thickness l ltr, where ≈l L/8tr  
is a transitional thickness, which depends on the base size L. In contrast, for the thicker samples with >l ltr, the 
effects of the finite thickness are more predictable, as the analysis below will show. The majority of the critical 
fluctuations permitting the spanning avalanches occur in the central part of the hysteresis loop (HLC); therefore, 
we mainly focus on these segments of the loop. The corresponding segments of the BHN signal at each sample 
thickness are indicated in the middle panel of Fig. 2, while the related values of the external fields that cause these 
fluctuations are given in the lower panel. Note that, due to the adiabatic driving where the field is kept fixed 
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during the avalanche propagation, the effective driving rate in the HLC segments is minimal, thus allowing a 
spontaneous evolution of the system.

As mentioned above, the size and thickness of the sample affects the critical disorder R l L( , )c
eff  and, conse-

quently, the shape of the BHN signal. Some features of the BHN signal obtained at the critical disorder in samples 
of different thickness are illustrated in Fig. 3a–f. The signals exhibit long-range temporal correlations with the 
power spectrum ∼ φ−P f f( )  over an extended range of frequencies f. The previous studies of the multifractal 
features of the BHN in 2D and bulk samples in a strong disorder regime19,36, suggest that the signal shape differs 

Figure 1.  (a) Effective critical disorder R l L( , )c
eff  and the coercive field H l L( , )c

eff  versus sample thickness l, for 
the systems with base size =L 256 and =L 512. The horizontal line at a fixed disorder is to indicate a typical 
variation of system parameters accessible to experiments (see Supplementary Information). (b) Magnetization 
M against the rescaled magnetic field H/Hc

eff  for various sample thicknesses l and base size =L 256; for each l 
the magnetization curve is obtained at the corresponding effective critical disorder R l L( , )c

eff  shown in the 
legend. Inset: the same magnetization curves versus the magnetic field H. (c) An example of the BHN signal nt 
against time t; the fragment is extracted from the response of a system at the critical disorder Rc

eff  for =L 256 
and small thickness =l 4. (d–f) Sample avalanches: non-spanning ( = . = =R l L2 5, 16, 32), 1D-spanning 
( = . = =R l L1 9, 4, 64), and 2D-spanning ( = . = =R l L1 8, 4, 64), respectively.

Figure 2.  Magnetisation M(t) plotted against time t (top panel), the corresponding BHN signal nt (middle 
panel), and the time-varying external field Hext(t) (lower panel) for the increasing sample thickness l, indicated 
in the top panel, from 2D sample =l 1 to 3D sample = =l L 512. The part of the signal corresponding to the 
center segment of the hysteresis loop are shown in the middle panel. The logarithmic scale along the time axis is 
applied. The beginning of the loop is omitted to improve clarity.
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in different segments of the hysteresis loop. Here, we demonstrate how the size and temporal correlations of the 
signal change along the hysteresis loop in the 3D sample at the critical disorder, see Fig. 3c,d. Moreover, in the 
present context, it is interesting to point out another segmentation of the signal, which comprises the separation 
of small and large avalanches occurring in a thin sample. Two panels in Fig. 3a,b show the respective separation 
and the corresponding power spectra for a sample of the transitional thickness ltr(L) for the given base size L (see 
below for its precise definition). Furthermore, the persistent fluctuations are observed that are compatible with 
the Hurst exponent H(2) 1 in samples of a larger thickness, whereas >H(2) 1 for the thin samples having 

<l l L( )tr , as shown in Fig. 3e. For the analysis in this paper, it is also important to note that the distribution of the 
signal heights nt (data points) shows a broad peak that moves to the right with the increased sample thickness, as 
shown in Fig. 3f. The tangent line has a power-law slope, while the small signal heights have entirely different 
distribution, which also varies with the thickness.

Critical avalanches in samples of different thickness.  In Fig. 4 we show the distributions of size P(S) 
and duration P(T) of the avalanches obtained for various sample thicknesses. These distributions contain ava-
lanches collected in the central part of the hysteresis loop in a small window of the external field, and are most rel-
evant for the critical dynamics. In addition, we also show the results for the avalanches collected along the entire 
hysteresis branch, denoted by Pint(S) and Pint(T), for size and duration, respectively, that are typically determined 
in the analysis of the experimental BHN signals.

In contrast to the avalanches in strictly two-dimensional31,32 and three-dimensional RFIM29,30,56, the avalanche 
distributions in the samples of finite thickness exhibit two distinct scaling regions, for small and large avalanches, 
respectively, as shown in Fig. 4. More specifically, the first larger slope (identified by the exponent τ1 and similarly 
α1, see Model and Methods) describes the scale-invariant behaviour of small avalanches. Whereas the second 
region with a smaller exponent τ2 (and α2) relates to the avalanches larger than the bending size Sx (or duration 
Tx). The bending point Sx (and corresponding Tx) depends on the sample thickness and the base size, and gradu-
ally moves towards larger size with an increased sample thickness. Thus, we find that the larger slope appears and 
can be measured for the lattices of quite small thickness; it gradually wins, and when →l L approaches the expo-
nent τ τ→ D

1
3  and α α→ D

1
3  (note open boundary conditions). The two-slope distributions are typically found 

for sufficiently thin samples, i.e., ≤ ≤l8 32 for =L 256, and ≤ ≤l16 64 for =L 512 (see also Fig. 3e). It should 
be stressed that these features apply to both the loop-integrated avalanches as well as the avalanches in the central 
part of the hysteresis, as also demonstrated in Fig. 4. Therefore, although the corresponding exponents are some-
what smaller in the central hysteresis segment, the occurrence of two scaling regions in the distributions of the 
critical Barkhausen avalanches is a unique property of the thin samples with l ltr . According to these results 
(see also the discussion on multifractality below), the transient thickness can be estimated as ≈l Ltr /8 above 
which the system effectively behaves as a thick sample.

Moreover, our findings indicate that the bending size scales as ∝S lx
Df , where = .D 2 78f  is the fractal dimen-

sion of nonspanning avalanches in three dimensions29,30,56. Similarly, for the duration distributions, the bending 
duration ∝T lx

zd, where = .z 1 7d  is the dynamical critical exponent of the 3D model, describing the scaling of the 
avalanche’s duration with the linear size. For samples of different thickness, the two sets of exponents, i.e., τ1 and 
τ2 that describe two distinct power-law regions of the distribution of avalanche size, and the corresponding expo-
nents α1 and α2 of the avalanche duration were determined by fitting the entire distribution using the expression 
(4) proposed in Model and Methods (see Supplementary Information, Fig. SI-1). The estimated values of the 
exponents τ1 and α1 and τ2 and α2 are summarised in Table SI-1 in the Supplementary Information both for the 
distributions in the central hysteresis part and the loop-integrated distributions. For the distributions in the HLC, 
where extended domain walls can occur, it is tempting to fit the simulated data with the expression derived in the 
RG theory of the interface motion. A more detailed description is given in Supplementary Information. Some 
representative examples of such fits are given in the bottom row in Fig. 5, while the corresponding fits with the 

Figure 3.  Signal selection according to the avalanche sizes for =L 256, =l 32 (a,b), and according to three 
hysteresis-loop segments for = =l L 512 (c,d). The lower panel in each case shows the corresponding power 
spectrum of the selected signals against frequency f with the slopes φ = . ± .1 84 0 02 and . ± .1 67 0 02, panel (b), 
and φ = . ± .1 835 0 014, . ± .1 673 0 008, and . ± .1 208 0 009, panel (d). Second-order fluctuation function F2(n) 
vs segment length n for =L 512 and varied thickness =l 512 top line to =l 1 bottom line (e); the two dashed 
lines have the slopes equal to the Hurst exponent H(2) in 2D and 3D case. Distributions of the height nt of the 
BHN signal for =L 256 and varied thickness l indicated in the legend, and a tangent—dashed line, (f).
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expression (4) are shown in the top row. The theoretical distribution for ε = 1 gives a satisfactory fit in the full 3D 
sample, and similarly, the expression for ε = 2 in the 2D limit. However, for the samples of finite thickness, the 
two expressions must be used separately to fit the first (3D) part and the second (2D) part of the distribution. 
Moreover, these analytical expressions do not take into account the variation of the scaling exponents with thick-
ness and the precise form of the scaling function.

Figure 4.  Avalanche distributions for different thicknesses l given in the legend (applies to all four panels). Left 
column: size distributions in the HLC (top), and loop-integrated size distributions (bottom panel, with the best 
fit of type (4) for =l 16 in the inset). Middle column: corresponding duration distributions (top panel, with the 
best fit of type (4) for =l 1 in the inset), and integrated duration distributions (bottom panel, with the best fit of 
type (4) for =l 256 in the inset). Right column: average size of avalanches 〈 〉S T having a particular duration T; 
Insets: determination of the exponents γ1 and γ2 (lower-right), and their variation with l (top-left inset). Bottom 
right panel shows the normalised average avalanche shapes 〈 〉nt  vs t/T for various l and the fixed duration 

=T 64 (main panel) and =T 2048 (inset). Fits according to (5) with a = −0.214, γ = 1.51, main panel, and 
a = −0.176, γ = 1.628, inset.

Figure 5.  In the central part of the hysteresis loop, the distribution of avalanche size P(S) for different thickness 
l = 8, 32, and 256 is fitted using the expression (4), top row, and the theoretical expression predicted for interface 
dynamics48–50, where 2D and 3D parts of the distribution are fitted separately, bottom row.
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The appearance of two scaling regions in the avalanche distributions manifests in the plots of the average size 
〈 〉S T of avalanches having duration T, shown in the right column of Fig. 4 (top panel), and the average avalanche 
shapes, (bottom panel). The corresponding scaling exponent γ, defined via 〈 〉 ∼ γS TT  (see Model and Methods), 
also appears to have distinct values γ1 for small, and γ2 for large avalanches at the intermediate thickness ≤l ltr, 
see the top inset. Within the error bars, the estimated values fall in the range γ = . ± .1 73 0 051  for large l, which 
agrees with the value found in the case of the equal sized 3D cubic lattices (γ = .1 73D3 ), while the values for 
γ = . ± .1 56 0 062  are lower, and close to the case in 2D square lattices (γ = .1 55D2 ). The average avalanche shapes 
collected from all sample thicknesses appear to be asymmetric, see the lower-right panel of Fig. 4. The longer 
avalanches appear to be more symmetrical and the value for γ estimated using the expression (5) is bigger com-
pared with the shape parameters of the short avalanches. In Supplementary Information in Table SI-2, we show 
the values of the asymmetry parameter a along with the exponent γ that are computed58 for different sample 
thicknesses and a wide range of the avalanche duration ∈T [64, 2048]. Remarkably, the values of the asymmetry 
parameter a are negative for all thicknesses, following the predictions of RG theory60.

Multiscale multifractality of the critical BHN signal.  The properties of BHN signal at different sample 
thicknesses in Fig. 3e suggest that the magnetisation fluctuations are persistent with the (standard deviation) 
Hurst exponent varying between H(2) 1 in 3D samples to ≈ .H(2) 1 29 in the 2D case. To understand the 
impact of the sample thickness on the multifractal features of BHN signals, we first analyse the two limiting cases. 
The fluctuation function Fq(n), defined by (7) in Model and Methods, is computed for the samples of size =L 512 
with =l 1 (2D sample) and =l L (3D sample), and shown in Fig. 6.

In the 2D limit, the scale invariance of the fluctuation function Fq(n), c.f. left panel in Fig. 6, shows that the 
whole signal exhibits multifractal properties for a broad range of time scales n with the generalised Hurst expo-
nents ∈ . .H q( ) [1 2, 1 8], shown in the inset. For the 3D case, however, the signal in different segments of the 
hysteresis loop exhibits different features, see also Fig. 3c,d for the signal segments and their power spectra. 
Specifically, in agreement with previous studies36, the signal in the central segment of the loop has >H q( ) 1, 
while the fluctuations at the very beginning of the loop are governed by the actual random field distribution, 
resulting in a fractional Gaussian type of noise (fGN); consequently, its multifractal spectrum remains in the 
range <H q( ) 1. For both cases the exponents H(q) are shown in the inset of the right panel of Fig. 6. As stated 
above, here we focus on the impact of thickness on the critical fluctuations, which are prominent in the central 
part of the hysteresis loop. A systematic analysis of the entire hysteresis loop for a particular sample shape is left 
for another study.

In the finite samples, the spectrum H(q) changes, depending on the ratio l/L of the thickness l relative to the 
base size L of the system, see Fig. 7. Our numerical analysis suggests that the most dramatic changes occur in small 
fluctuations region ( <q 0) and when the samples are sufficiently thin such that l L/ 1/16. More specifically, for 
relatively thick samples with ≥l L/ 1/8, left panels in Fig. 7 show that the multifractal features are apparent in a 
broad range of time scales n. For >q 0, the exponents H(q) remain in the area of the standard Hurst exponent H(2) 
of a 3D sample, whereas significant deviations occur in <q 0 region, governing small fluctuations. This part of 
spectrum gradually approaches the one observed in the bulk 3D samples when →l L, as shown in the inset.

On the other hand, the thin samples with l L/ 1/16 exhibit a time-scale dependent behaviour of the fluctua-
tion function Fq(n), c.f. right panels in Fig. 7. Here, we find that several scaling regions occur, indicated by (I)–
(IV) in the lower right panel, where different spectrum H(q) can be determined. While the multifractality in some 
of these regions is apparent (see, for example, the region (II) in Fig. 7), some of the other areas appear to have a 
narrow spectrum which is virtually monofractal, see, for example region (I). In all cases, the values of the gener-
alised Hurst exponents, shown in the inset, are in the range above the corresponding values in the 2D limit. Again, 
the most significant deviations occur in the negative part of the spectrum <q 0. See further discussion and Figs 8 
and 9 in the next section.

Figure 6.  Fluctuation function F n( )q  for different values of ∈ −q [ 10, 10] for the whole signal for the 2D sample 
of size =L 512 (left panel), and 3D sample in the HLC (right, upper panel) and the initial segment of the loop 
(right, lower panel). Insets: corresponding generalised Hurst exponents H(q) against the amplification 
parameter q, see text.
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Discussion
Our study of the magnetisation reversal processes along the effective critical disorder line R l L( , )c

eff  revealed that 
the pinning of DW at the open boundaries in the direction of small thickness can hinder the propagation of ava-
lanches and the shape of the BHN signal at all scales. For example, in the sufficiently thin samples, many small 
avalanches can occur whose scaling exponents are close to the 3D RFIM class, at the same time, large avalanches 
with the size above the bending size Sx(l), manage to propagate in the two transverse directions, resembling 
quasi-2D avalanches. The relative contribution of these two types of avalanches to the whole process gradually 
changes as the sample thickness l increases. Consequently, the fluctuations of the magnetisation in the central part 
of the hysteresis loop changes with the increased thickness. More specifically, for the thick samples,  ∼l l L/8tr , 
the fractality of the significant fluctuations ( >q 0) in the HLC virtually coincides with the spectrum of 3D sam-
ples, whereas the part of the spectrum with the dominant small fluctuations ( <q 0) varies, interpolating from the 
2D to the 3D case with increasing thickness. On the other hand, in the non-central parts of the hysteresis loop 
(excluding the very beginning, where all signals are fGN type) and along the whole hysteresis branch of thin 
samples ( <l ltr), the large and small avalanches intermittently occur, leading to a more complex behaviour of the 
fluctuation function. Consequently, the generalised Hurst exponent dependence on the time scale (interval 
length) can be observed. Interestingly, the intervals where multifractal features are apparent roughly coincide 
with the parts of the signal that are dominated by the large quasi-2D avalanches (see Fig. 8 and the discussion 
below); in both cases, the generalised Hurst exponents >H q( ) 1, and is close to the 2D sample spectrum.

To further support these findings, we selected the segments of the signal that correspond to large (small) ava-
lanches, where the bending point Sx(l) is taken from the corresponding distribution of avalanche sizes, c.f. Fig. 4. 
An example of the signal selection for =L 256 and =l 32 in shown in Fig. 9b. The fluctuation function corre-
sponding to the separate analysis of these parts of the signal is given in left panels of Fig. 8. The large avalanches, 
which mostly occur in the center of the hysteresis loop, contribute to the leading multifractal spectrum with 

>H q( ) 1, see inset in Fig. 8 for >S Sx. Small avalanches, however, exhibit more complex behaviour resulting in 

Figure 7.  Fluctuation function F n( )q  for ∈ −q [ 10, 10] computed in the central part of the hysteresis loop for 
samples of different base size L and thickness l; each pair (L, l) is indicated in the corresponding panel. Straight 
lines indicate the fitted scaling regions, and the corresponding generalised Hurst exponents H(q) are plotted 
against q in the insets. See text for more details.

Figure 8.  For the sample of base size =L 256 and thickness =l 32, the fluctuation function Fq(n) of the signal 
segments selected according to the avalanches above (below) the bending size Sx, left panels, and signals in the 
HLC for the disorder above (below) the effective critical disorder, right panels, denoted as Rc. Corresponding 
generalised Hurst exponents H(q) are shown against q in the respective insets.
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several regions with different scaling of the fluctuation function. For instance, F n( )q  in the intermediate-scale 
region, marked in Fig. 8 for <S Sx, shows different slopes than the two adjacent regions. Moreover, the smaller 
slopes of the curves for <q 0 compared to >q 0 results in a non-smooth spectrum H(q), also shown in the inset 
above. Thus, the number of small avalanches that occur due to pinning of the domain walls at the open boundary 
in samples of small thickness can lead to the observed multi-scale multifractality of these signals.

Next, we investigate whether these features of the BHN signal are exclusively related to the critical avalanches. 
We perform simulations of the magnetisation reversal in several disorders ≠R R l L( , )c

eff  sightly above the effec-
tive critical disorder, >R R l L( , )c

eff , and slightly below it. The corresponding fluctuation functions F n( )q  are given 
in the right panels of Fig. 8 for the sample of transitional thickness =l L/ 1/8tr  and =L 256. The related signal 
shapes and the singularity spectra αΨ( ) are given in Fig. 9. While the relative size of the time scale changes com-
pared to the critical fluctuations, the scale-dependent multifractality of the signal clearly persists for stronger 
disorder R R l L( , )c

eff
tr . Here, although all avalanches are smaller than the ones at the critical disorder, the 

co-occurrence of small and large avalanches can be distinguished both in the signal, see Fig. 9a, and in the ava-
lanche distributions (see Supplementary Information, Fig. SI-4). Below R l L( , )c

eff , however, the extended range of 
the time intervals with virtually monofractal behaviour appears, region (I), shifting the range of the apparent 
MFR towards larger time scale, region (II), c.f. Fig. 8 lower right panel. At such disorders, a huge avalanche of a 
prolonged duration appears, as shown in Fig. 9c, whose shape differs from the typical sharply-cut avalanches seen 
in the case of periodic boundaries that allow depinning of a DW. It is interesting to note that the left part of the 
singularity spectrum αΨ( ), which is associated with the large magnetisation fluctuations in this signal, coincides 
with the corresponding spectrum of the critical fluctuations and its part containing the selected large avalanches. 
The right parts of these spectra, representing small fluctuations (negative q) are different in each of these cases, see 
Fig. 9d. Compared to these, the spectrum αΨ( ) for the case >R R l L( , )c

eff  is shifted towards the smaller values 
α < 1, influenced by the fGN signal in the strong-disorder regime. For comparisons, the spectra H(q) of all stud-
ied signals are summarised in Fig. 9e.

As mentioned earlier, there is considerable interest in the experimental investigations of Barkhausen noise in 
thin films and samples of different thickness, e.g.7,9–16. The behaviour of Barkhausen avalanches observed in these 
systems depends on the sample composition, driving mode, and the segment of the hysteresis loop where the 
analysed signal originates, as well as the sample thickness. The alloys NixFe1−x are often studied with a fixed 

≈ .x 0 89,15,16 or variable ∈ .x [0, 0 5] composition11,12 as a good system where the properties of Barkhausen ava-
lanches can be changed by varying the thickness and composition. It should be noted that in contrast to the adia-
batic driving used in the numerical investigations, the experimental studies, for example in15,16, are performed 
with a finite sweep rate of the applied magnetic field. Moreover, samples of various thicknesses are prepared by the 
same method and, presumably, have some constant disorder, which is difficult to quantify, but will presumably 
depend on the composition and type of the alloy. In contrast, methods for modifying the disorder8 are developed 
in11,12 for films of a constant small thickness, and the domain walls are directly monitored in response to a fixed 
field. On the other hand, theoretical studies use simplifying models that can describe certain universal features of 
the underlying critical phenomena. For example, the renormalization-group studies in5,61 attempt to uncover the 
role of the depinning transition in the statistics and propagation of Barkhausen avalanches. In Supplementary 
Information, in Fig. SI-2 and Table SI-2, we have shown how the RG theory48–50,60 for the interface dynamics can 
elucidate the nature of the asymmetry of avalanche shapes as well as to describe the scaling form of the avalanche 

Figure 9.  (a–c) Noise signal in the central part of HL for >R Rc, =R Rc, and <R Rc at the transitional sample 
thickness =l 32tr  for =L 256 and the corresponding effective critical disorder, for simplicity denoted by Rc. (d) 
The singularity spectra corresponding to these signals and indicated interval range, together with the spectrum 
referring to large avalanches selection, >S Sx. (e) Generalised Hurst exponents H(q) against q for all signals 
studied in Figs 6, 7 and 8.
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size in the limiting 3D and 2D cases. Without an additional scaling field, however, the existing theoretical results 
cannot be directly extended to the avalanche distribution in samples of finite thickness; here, the two-dimensional 
and three-dimensional segments of avalanches coexist, resulting in variations of the exponents with thickness and 
a different scaling function.

If we suppose that the RFIM captures the scaling features of the Barkhausen avalanches in these disordered 
ferromagnets on the hysteresis loop, it is tempting to consider the available experimental results in view of our 
numerical investigation. In the theoretical phase diagram showing the critical line of the effective RFIM disorder at 
a finite thickness l relative to the bulk sample, R l L R( , )/c

eff
c

D3  vs l/lref, see Fig. SI-5 in Supplementary Information 
(SI), the above mentioned experimental situations comprise of a horizontal line at a fixed disorder, or a vertical line 
at a fixed thickness. Each of these lines intersects with the critical disorder line at a particular point, as illustrated in 
Fig. SI-5. Theoretically, the change of the scaling behaviour occurs at the point where the critical line is crossed. Thus, 
for the thin samples left (above) the critical line, the actual disorder appears to be stronger than the critical, while in 
the thicker samples on the right (below) the critical line, the disorder is weak, permitting large system-size ava-
lanches due to DW depinning that may occur in the inner part of the hysteresis loop. A more detailed comparison 
of the avalanche exponents measured in the crystalline samples Ni0.79Fe0.21 of different thickness in16 suggests that 
the potential constant disorder line intersects the critical line at a point corresponding to a thickness 100 nm, leav-
ing 2× and 5× thinner samples on the left of the critical line. Since none of these samples are infinitely thin, the 
corresponding line should be high enough in the phase diagram, for example, such that the theoretical critical 
thickness can be close to the theoretical ≈l L/16ref , as illustrated in Fig. SI-5 in SI. Note that these quantitative 
comparisons serve only as the RFIM description of the actual intrinsic disorder in that sample, in view of the 
observed change of the scaling exponents. Then observing that the reference thickness corresponds to 100 nm in 
these samples, we can place all other experimental data relative to this point, see Fig. SI-5 in SI. Hence, for the two 
thinner samples, the measured exponents should be dominated by the second slopes τ α( , )2 2 ; note that the meas-
ured values are in agreement with the theoretical ones shown in the Table SI-1 for the loop-integrated distributions. 
Then for the thicker samples, the exponents of the first slope τ α( , )1 1  and in the central hysteresis loop seem to dom-
inate the observed experimental distributions. Note that in this region, the distance between the critical line and the 
considered fixed disorder line is rather small; the corresponding theoretical exponents are also highlighted in the 
Table SI-1, for better comparisons. The simulated avalanche distributions along the fixed disorder line are also 
shown in Fig. SI-3a,b in SI; in this case, the second slope, which is apparent in the critical avalanches, is practically 
lost in the sub-critical disorder because of a large number of system-size avalanches (resulting in the peak at the end 
of the distribution). In the amorphous samples, however, the apparent disorder line seems to be even higher, see 
Fig. SI-5 in SI. The exponents thus coincide with the ones τ α( , )2 2  up to 2 × lref, see Table SI-1. Note also that the 
exponents in11 measured for the very thin films of varied composition < .x 0 5, including =x 0, are close to the 
second slopes τ α( , )2 2  estimated in the hysteresis loop centre, which are listed in top-right part of the Table SI-1. 
More experimental results shown in Fig. SI-5 in SI also confirm this systematic pattern of the avalanche statistics. 
Moreover, our results suggest that in such thin samples at and around the critical disorder the multi-fractal features 
of the BHN signal change with the sample thickness and that they can depend on the time interval in which the 
scaling region is considered. At the critical disorder line, some intervals have virtually mono-fractal behaviour, at 
the same time, the surrounding intervals can show apparent multi-fractality.

It should be stressed that the applications of the RFIM with the ferromagnetic interactions are limited to 
systems with strong anisotropy, resulting in collinear spins and narrow domain walls. Note, however, that 
non-collinear spin configurations appear due to topological frustrations in the case of anti-ferromagnetic inter-
actions on a complex geometry41. In ferromagnets on compact lattices, non-collinear spins are naturally described 
by vector spin models; they also allow the occurrence of thick domain walls with an internal structure, which can 
affect the domain-wall propagation65. Another issue concerns the role of thermal fluctuations in Barkhausen ava-
lanches. As the critical temperature of the studied ferromagnetic alloys is much higher than the room tempera-
ture, it is widely accepted that the deterministic (zero-temperature) dynamics suffices to describe the spin reversal 
process in bulk materials. However, the potential temperature impact on disorder-induced critical fluctuations in 
thin samples remains an open question for a future study.

Conclusions
We have demonstrated that a new type of collective dynamics can arise on the hysteresis loop due to the interplay 
of the sample geometry and critical fluctuations, studied along the critical-disorder line for different thicknesses, 
interpolating between the strictly two-dimensional and the three-dimensional systems. The geometry of the sam-
ple has a profound impact on the magnetic response of sufficiently thin systems, and it is manifested in a time-scale 
dependent multi-fractality of Barkhausen noise and double power-law distributions of the magnetisation-reversal 
avalanches, both of which differ from those known in the limiting cases of two-dimensional and three-dimensional 
geometry. The main cause of these new critical properties can be associated with the pinning of the domain walls 
at the open boundaries of thin samples, which thus constrain the avalanche shape and its propagation by effectively 
changing the role of intrinsic disorder, and causes an intermittent appearance of large and small avalanches even 
in the central segment of the hysteresis loop. These effects are most apparent in the shape of critical avalanches, but 
they can also be observed in the range of disorders close to the critical line. These findings are in agreement with 
some recent experimental results, in a restricted range of the parameters where the comparison is permitted by 
given experimentally accessible conditions. In addition to a wide range of samples with different sizes and thick-
nesses, the presented numerical results include the exact two-dimensional samples and the whole range of time 
scales, which are beyond the reach of the laboratory experiments. In this regard, our results can serve as a guide for 
further experimental investigations; they also reveal new features of the domain-wall stochasticity in thin ferro-
magnetic films, which are important for developing new technological applications.
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