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Artificial intelligence and big data 
integration in anterior segment 
imaging for glaucoma
Sunee Chansangpetch1,2*, Mantapond Ittarat3, Wisit Cheungpasitporn4, Shan C. Lin5

Abstract:
The integration of artificial intelligence (AI) and big data in anterior segment (AS) imaging represents 
a transformative approach to glaucoma diagnosis and management. This article explores various 
AS imaging techniques, such as AS optical coherence tomography, ultrasound biomicroscopy, and 
goniophotography, highlighting their roles in identifying angle-closure diseases. The review focuses on 
advancements in AI, including machine learning and deep learning, which enhance image analysis and 
automate complex processes in glaucoma care, and provides current evidence on the performance 
and clinical applications of these technologies. In addition, the article discusses the integration of big 
data, detailing its potential to revolutionize medical imaging by enabling comprehensive data analysis, 
fostering enhanced clinical decision-making, and facilitating personalized treatment strategies. In this 
article, we address the challenges of standardizing and integrating diverse data sets and suggest that 
future collaborations and technological advancements could substantially improve the management 
and research of glaucoma. This synthesis of current evidence and new technologies emphasizes 
their clinical relevance, offering insights into their potential to change traditional approaches to 
glaucoma evaluation and care.
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Introduction

Anterior segment (AS) imaging includes 
various techniques used to visualize and 

evaluate the front part of the eye. In glaucoma, 
these techniques provide both qualitative 
and quantitative assessment of angle width, 
aiding in the detection and management of 
angle‑closure disease. In addition, they offer 
detailed views from different angles, revealing 
the anatomical relationships within AS 
structures and providing deeper insights into 
the mechanisms of angle closure. Emerging 
artificial intelligence (AI) technologies have 
shown significant potential in image analysis, 
offering the ability to learn from data and 
improve autonomously, thus providing a more 
adaptable and efficient approach to AS image 
analysis. AI technologies have proven their 

effectiveness in various aspects of glaucoma 
care, including angle parameter quantification, 
angle‑closure detection, angle grading, 
differentiation of angle‑closure mechanism 
subtypes, peripheral anterior synechiae (PAS) 
detection, and predicting treatment outcomes. 
This review aims to explore various AS 
imaging techniques, highlighting their roles 
in glaucoma management and presenting the 
latest advancements in AI that enhance image 
analysis and automate complex processes in 
glaucoma care. It also discusses the clinical 
applications of these technologies and the 
potential integration of big data in AS imaging.

Anterior Segment Imaging in 
Glaucoma

AS imaging encompasses various techniques 
used to visualize and evaluate the front 
part of the eye, including the cornea, iris, 
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lens, and anterior chamber. Some of the most common 
techniques of AS imaging include slit‑lamp photography, 
AS optical coherence tomography (AS‑OCT), ultrasound 
biomicroscopy (UBM), and goniophotography.

In glaucoma, AS imaging mostly serves as a diagnostic 
tool to aid in the detection and management of 
angle‑closure disease. This spectrum of ocular conditions, 
which includes primary angle‑closure suspect (PACS), 
primary angle‑closure, and primary angle‑closure 
glaucoma (PACG), poses a significant global health 
challenge. Angle‑closure glaucoma (ACG) is a more 
severe form of glaucoma compared to its open‑angle 
counterpart. Despite constituting only 24% of primary 
glaucoma cases, ACG is responsible for nearly half of 
the bilateral blindness caused by glaucoma worldwide.[1] 
The projected increase in the prevalence of ACG–to 23.36 
million by 2020 and 32.04 million by 2040–underscores 
the need for effective diagnostic strategies for early 
detection.[2] Differentiating between open‑angle 
glaucoma and ACG is essential for the identification 
of individuals at risk and the implementation of 
appropriate management strategies. Traditional angle 
assessment methods like gonioscopy have been a gold 
standard method for evaluating angle anatomy, but the 
inherent subjectivity and variability in gonioscopy have 
raised concerns about its accuracy and consistency. In 
addition, the technical challenges and the requirement 
for an experienced ophthalmologist to perform the 
procedure limit its widespread use.[3,4]

Cross‑sectional imaging tools such as AS‑OCT and 
UBM provide an objective evaluation of angle width. 
The quantitative parameters from these devices 
have been extensively used in the literature to both 
identify and quantitatively assess the risk of angle 
closure.[5‑7] These parameters are designed to capture 
the anatomical features of the AS, including the angle, 
iris, lens, ciliary body, and anterior chamber. The 
definitions of angle parameters typically involve certain 
distances (e.g. 250 µm, 500 µm, and 750 µm) from the 
scleral spur.[8] The parameters such as angle opening 
distance (AOD), angle recess area (ARA), trabecular iris 
space area (TISA), and trabecular iris angle (TIA) quantify 
the openness of the anterior chamber angle, measuring 
it in terms of linear distance (AOD), area (ARA, TISA), 
and angular degrees (TIA). The anterior chamber 
depth (ACD) and anterior chamber width (ACW) 
delineate the anterior chamber’s dimensions. The lens 
vault (LV) metric describes the extension to which 
the lens protrudes into the anterior chamber, and iris 
thickness (IT) gauges the thickness of the peripheral iris. 
Further, distances such as iris‑ciliary process distance, 
iris‑lens contact distance, and trabecular‑ciliary process 
distance elucidate the spatial relationships between the 
structures of the posterior chamber.[3]

In addition to quantitative assessment, AS‑OCT and UBM 
provide detailed views from different angles, revealing 
the anatomical relationships within the AS structures and 
leading to deeper insights into the mechanisms of angle 
closure. The condition can be classified morphologically 
into pupillary and nonpupillary block mechanisms. 
Pupillary block is the primary mechanism, occurring 
in both primary and secondary ACG. It involves a 
resistance to the flow of aqueous humor from the 
posterior to the anterior chamber through the pupil, 
creating a pressure gradient that pushes the iris forward 
to obstruct the trabecular meshwork. Nonpupillary block 
mechanisms, specific to primary ACG, include plateau 
iris characterized by a steep iris root and a flat central iris 
plane due to anterior rotation of the ciliary body, thick 
peripheral iris with significant circumferential folds, and 
high LV where the anterior portion of the lens protrudes 
into the anterior chamber.[9] These imaging techniques 
are instrumental in assessing these morphological 
characteristics that contribute to angle closure.

AS imaging techniques such as AS‑OCT and UBM can 
also help in evaluating and monitoring the efficacy of 
treatments like laser peripheral iridotomy (LPI). They 
can effectively visualize the results of LPI or argon 
laser peripheral iridoplasty by assessing the opening of 
the angle or the patency of the iridotomy. In addition, 
for procedures such as trabeculectomy, slit‑lamp 
photography provides a clear view of the bleb’s external 
appearance, while AS‑OCT offers complementary 
insights into the internal morphology of the bleb, 
enhancing the overall monitoring and evaluation of 
treatment outcomes.

Ultrasound biomicroscopy
UBM utilizes high‑frequency transducers to create 
images of the AS, offering resolutions between 20 and 
60 µm and a depth of tissue penetration of approximately 
4–5 mm. This method is especially valuable for 
visualizing dynamic changes within the eye, such as the 
light‑dark response, and for imaging structures located 
posterior to the iris that were previously difficult to 
examine with standard clinical methods. The real‑time, 
cross‑sectional images produced by UBM can assess 
various ocular conditions, although the technique’s 
efficacy can be influenced by the examiner’s technique 
and experience.

Optical coherence tomography
OCT uses low‑coherence interferometry to produce static 
cross‑sectional images of ocular tissues. The AS‑OCT 
is specifically tailored for imaging the front part of the 
eye, employing a laser wavelength of 1300–1310 nm for 
enhanced penetration through nontransparent tissues 
like the sclera. This differs from conventional OCT used 
for the posterior segment, which operates at wavelengths 



Taiwan J Ophthalmol - Volume 14, Issue 3, July-September 2024 321

of 830–880 nm. Notably, many posterior segment OCT 
devices now incorporate an AS module, often through 
a lens adaptor, to focus on the AS. OCT is known for its 
rapid, noncontact image acquisition, enabling the display 
of images in both cross‑sectional views of individual 
angles and whole AS views. Several AS‑OCT devices 
are currently available on the market, including the 
Visante OCT (Carl Zeiss Meditec, Dublin, CA, USA), 
which operates on time‑domain OCT technology, and 
devices such as the CASIA SS‑100 and its successor, 
the CASIA2 (Tomey, Inc., Nagoya, Japan), as well as 
the Anterion (Heidelberg Engineering, Heidelberg, 
Germany), which utilize swept‑source OCT technology.

Goniophotography
Goniophotography is an imaging technique that captures 
an image view similar to gonioscopy, allowing for 
the visual assessment of the eye’s anterior chamber 
angle. Some devices can be operated by a trained 
technician. An automated goniophotography device, 
Gonioscope GS‑1 (Nidek, Gamagori, Japan), uses a 
16‑face multi‑mirror optical gonioprism and a built‑in 
image sensor to provide a comprehensive 360° view 
of the iridocorneal angle, which can be recorded in 
one examination. On the other hand, wide‑field digital 
retinal imaging devices such as RetCam (Clarity 
Medical Systems, Inc., Pleasanton, CA, USA) and 
EyeCam (Clarity Medical Systems, Pleasanton, CA, 
USA), conventionally used for retinal imaging, have 
been adapted for goniophotography by addition of a 
130° wide‑field lens.[10,11] Modifications allow them to 
capture wide‑field images of the iridocorneal angle in 
a supine position.

Artificial Intelligence and Image Analysis

Traditional programming methods in image analysis 
operate on a predefined set of rules tailored for specific 
applications. However, their rule‑based nature means 
they are designed for particular scenarios and may not 
generalize well across varying conditions, which can limit 
their adaptability. The development of these traditional 
methods, while not requiring extensive datasets, tends 
to be time‑consuming and labor‑intensive due to the 
need for manual rule‑setting and rigorous testing. 
This limitation has prompted the shift toward more 
innovative AI methods such as machine learning (ML) 
and deep learning (DL). These advanced techniques have 
demonstrated significant potential in image analysis, 
offering the ability to learn from data and improve 
autonomously, thereby providing a more adaptable and 
efficient approach to image analysis.

AI is a part of computer science that essentially exhibits 
intelligent behavior in a way that mimics human 
cognition. This involves several facets, including the 

capacity for reasoning, learning, and adapting through 
experiences, communicating in natural language, 
and even displaying lifelike behaviors. Techniques 
employed in AI range from logical reasoning and 
learning algorithms to language processing and robotics, 
all aimed at enabling machines to perform tasks that 
typically require human intelligence.[12]

ML, a subset of AI, enables machines to glean 
knowledge from data, drawing inferences and making 
predictions.[12‑14] It comprises both supervised learning, 
which uses labeled data to forecast specific outcomes, 
and unsupervised learning, which is adept at discovering 
hidden patterns within datasets. DL, a specialized branch 
of ML, is characterized by its use of multiple layers within 
artificial neural networks. This architecture empowers 
machines to learn with greater depth from larger or 
more intricate datasets, yielding more precise inferences. 
In image analysis, traditional ML algorithms such as 
support vector machines usually require manual feature 
extraction by human experts, a process where specific 
attributes are chosen from raw data to perform a task like 
detecting pathologies in medical scans. It entails stages of 
data input, feature extraction, classification, and output, 
requiring manual intervention to identify relevant 
features.[12] However, the advent of DL, particularly 
convolutional neural networks (CNNs), streamlines 
this process by inputting data and outputting analyses 
directly. DL features are automatically tailored to specific 
tasks, eliminating the need for human intervention in 
this phase. Unlike handcrafted features, learned features 
in DL are complex and task‑specific, refined through a 
process known as back‑propagation.[12] This iterative 
feedback loop continuously improves the precision of 
the algorithm’s outputs. In general, the workflows of ML 
and DL involve preparing data, partitioning datasets, 
creating model optimization, and performing system 
evaluation. The process commences with preprocessing 
images, dataset partitioning into training, validation, and 
testing datasets, and concludes with model selection and 
evaluation against statistical metrics and benchmarks.[14]

In the medical field, image analysis involves processing 
and interpreting visual information to extract meaningful 
insights. The process starts with the input of an image, 
which then undergoes a series of analysis steps, such as 
quality control or enhancement, to improve the image’s 
clarity and usability. Localization techniques are applied 
to identify and isolate areas of interest within the image. 
The process then transitions to extracting clinically 
relevant information, tailored to the objective of the 
analysis.[15,16]

AI has the capacity to manage and interpret vast amounts 
of data with precision and speed. Once an image is 
input into the system, AI can perform tasks like quality 
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control and enhancement to ensure that the image is of 
the highest possible clarity and usability. For instance, 
AI can augment, convert, or equalize images to improve 
their utility.[16] After the initial enhancement, AI can assist 
in localizing specific regions within the image that are 
of interest, a process often followed by segmentation 
to isolate and study these areas in detail.[17] AI can also 
select the region of interest (ROI) and identify structural 
elements within the image. Quantification is another step 
where AI measures and calculates the attributes of the 
localized features, leading to more precise and objective 
analysis. The analysis may include various clinical 
parameters that AI tools help to identify as relevant. For 
clinical applications, the processed data can feed into 
tasks such as diagnosis, prediction, classification, and 
prognostication, significantly improving the efficiency of 
medical assessments. In the end, the output of the image 
analysis process is a comprehensive synthesis of all the 
previous steps, delivering results that can be directly 
utilized in clinical settings or further research. Figure 1 
summarizes the image analysis process with examples 
of AI‑assisted tasks. This overview not only highlights 
the capabilities of AI in handling complex datasets but 
also its transformative potential in advancing medical 
imaging and analysis.

Analyzing Anterior Segment Imaging

Image quality
The first step in the workflow involves image 
preprocessing, which is vital for setting a strong 

foundation for further analysis. This stage generally 
involves reducing noise in the images, such as eliminating 
specular reflections commonly found in ocular images, 
removing uneven illumination and artifacts that could 
hide critical details, and performing tasks such as 
augmentation, conversion, equalization, and enhancing 
resolution. Many of these tasks can be effectively 
supported by AI algorithms.

Several studies have utilized AI‑assisted techniques 
to assess or improve image quality in AS imaging. 
Niwas et al. proposed an automated quality assessment 
of AS‑OCT images using a Naïve Bayes classifier to 
produce a quantitative quality index.[18] The classifier’s 
performance was validated against expert assessments, 
achieving an overall accuracy of 82.9%. This ML 
approach enables objective evaluation of AS‑OCT 
image quality, aligning closely with clinical expert 
evaluations.

Ouyang et al. addressed both speckle noise and imaging 
artifacts, such as shadowing and specularity, which 
typically hinder the analysis of AS structures in OCT 
images.[19] They proposed a cascaded neural network 
framework, combining a conditional generative 
adversarial network (cGAN) with a tissue interface 
segmentation network. This hybrid approach showed 
high accuracy in segmenting tissues. This study 
represents the first to integrate a cGAN within larger 
DL frameworks for enhanced segmentation of OCT 
images, improving both visualization and performance 
of segmentation algorithms.

Figure 1: A framework for artificial intelligence‑assisted tasks in image analysis. AI = Artificial intelligence, ROI = Region of interest
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For noise reduction, Liu et al. introduced a CNN‑based 
denoising algorithm specifically designed to tackle 
speckle noise, which is prevalent in OCT images of the 
AS.[20] The approach learns the speckle noise distribution 
using a trainable OCT dataset to indirectly produce the 
denoized images. Remarkably, the algorithm preserved 
essential details and textures while maintaining strong 
edge preservation capabilities. It also processed images 
within 0.4 s, enabling practical clinical application.

More recently, Li et al. introduced an advanced generative 
AI technique using a DL‑based diffusion model to 
enhance AS‑OCT images, termed the Content‑Preserving 
Diffusion Model.[21] This unsupervised model significantly 
reduces speckle noise and transforms it into a Gaussian 
distribution through a reverse diffusion process. This 
approach preserves the inherent content of images 
while removing noise, which further facilitates better 
performance in segmentation and localization tasks.

Localization
The next step is to locate the area of interest based on the 
purpose of the analysis.

Localization involves pinpointing specific areas within an 
image where key features or objects (e.g. the iridocorneal 
angle) are located. Segmentation further aids by dividing 
the image into meaningful regions, isolating these 
critical features from the broader image. For instance, in 
angle analysis, segmentation can precisely delineate the 
boundaries of the anterior chamber angle, cornea, iris, 
ciliary body, and lens, which are vital for understanding 
the factors contributing to angle‑closure pathogenesis.

For ML, localization and segmentation are preparatory 
steps that facilitate feature extraction, ROI selection, 

and further analysis. Relevant features are selected and 
extracted to facilitate efficient learning and to increase 
the model’s accuracy. DL, by contrast, can often handle 
raw images without the need for extensive feature 
engineering due to the capability of layers within CNNs 
to automatically extract and learn the best features for 
classification tasks.

Anatomical identification or annotation not only 
serves as the initial stages of algorithm development 
but also holds significant clinical value. Measuring 
clinical parameters often relies on identifying reference 
landmarks. For instance, quantifying angle parameters 
typically depends on the location of the scleral spur, and 
less frequently on Schwalbe’s line.[22,23] The identification 
of other angle structures, such as Schlemm’s canal 
and collector channels, is important for evaluating the 
conventional outflow pathway. In addition, segmenting 
structures such as the iris, lens, and ciliary body 
enables the quantitative and qualitative assessment of 
morphological characteristics that contribute to angle 
closure.[24‑26] These tasks can be assisted by AI.

Scleral spur detection
The most common reference location in anterior chamber 
evaluation is the scleral spur. Several studies have 
developed DL algorithms for automating scleral spur 
detection in UBM,[27‑29] and AS‑OCT with Visante,[30] 
CASIA1000,[24,31] CASIA2,[32] and the Anterion,[33] as 
shown in Figure 2. The Euclidean distance error, which 
reflects the accuracy of annotation, is relatively small 
overall. The range of errors for all angle statuses is 
43–77 µm, for an open angle of 66–87 µm; and for a 
closed angle, it extends from 84 to 134 µm. Internal 
validations generally show lower errors than external 
validations, which is expected. In closed angles, there 

Figure 2: Accuracy in scleral spur identification across studies. AS‑OCT = Anterior segment optical coherence tomography
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is a noticeable increase in the error rates, which might 
suggest that closed angle status is still more challenging 
for DL algorithms to annotate accurately.

Aqueous humor outflow mapping
Huang et  al .  described ML algorithms to map 
the aqueous humor outflow (AHO) system from 
spectral‑domain (SD)‑OCT images, enabling the 
three‑dimensional (3D) reconstruction of the AHO 
system, particularly focusing on Schlemm’s canal and 
collector channels.[34] The techniques involved a Bayesian 
Ridge method for initial location approximation and a 
fuzzy hidden Markov model for the segmentation tasks. 
These approaches allowed for the identification and 
visualization of the AHO structures, offering potential 
enhancements in personalized surgical interventions and 
in understanding glaucoma pathogenesis.

Goniophotography
Goniophotography offers an alternative approach 
to assessing the angle, providing some advantages 
over traditional gonioscopy. While AS cross‑sectional 
imaging techniques such as AS‑OCT and UBM have 
constraints in directly examining the surface of the 
anterior chamber angle, which impacts the ability to 
detect key observations such as angle neovascularization, 
trabecular meshwork pigmentation, or PAS. Given these 
limitations, goniophotography offers a useful alternative, 
potentially providing an enhanced visualization of these 
pathological features.

Peroni et al. developed a DL model to perform 
segmentation (specifically of the ciliary body band, 
scleral spur, trabecular meshwork, and cornea) and 
ROI identification from goniophotographs.[35] The 
model achieved a segmentation accuracy of about 91%, 
successfully identifying appropriate ROIs in all test 
frames and pinpointing errors in segmentation outputs.

However, there is scant research thus far on the use 
of ML or DL to analyze goniophotography, especially 
in detecting pathological lesions. Future studies are 
necessary to develop models that are specifically tailored 
to effectively recognize these lesions, using large, 
targeted datasets.

Clinical application
Quantification: Clinical parameters
Even though gonioscopy is the current gold standard 
for angle evaluation, it is subjective and shows variable 
reproducibility.[3] Quantitative OCT‑based methods 
could enhance the assessment of the anterior chamber 
angle, providing a reliable complement to gonioscopy. 
Recently, DL algorithms have shown promise in 
accurately quantifying AS parameters from various 
imaging modalities.[28‑30,33,36,37]

Soh et al. developed a DL algorithm that automates the 
measurement of angle width parameters from Visante OCT 
images.[30] The intraclass correlation coefficients (ICC) 
for the angle measurements (i.e. AOD500, AOD 750, 
TISA500, TISA750) varied from 0.71 to 0.87, reflecting 
good reliability. The study also reported ICCs for 
iris and anterior chamber parameters, with ICCs 
ranging from 0.54 to 0.99. Subgroup analysis showed 
comparable ICCs between open‑angle and closed‑angle 
subgroups.

Wang et al. and Jiang et al. focused on UBM images, 
developing DL systems that quantitatively measure 
angle parameters with a high degree of accuracy.[28,29] 
Wang et al.’s study reported small mean differences 
between automated and manual measurements, with 
coefficients of variation for various angle parameters 
such as TIA500 and AOD750 ranging from 4.67% to 
16.77%. Jiang et al.’s findings showed small average 
relative errors for angle parameters under 15% and 
ICCs for all angle‑related and IT parameters exceeding 
0.88.

Bolo et al. performed external testing of a built‑in DL 
algorithm on Anterion AS‑OCT, focusing on scleral 
spur‑based biometric parameters.[33] Their study 
reported ICCs from 0.946 to 0.994 for various superior 
angle parameters. Temporal angle parameters and 
other metrics like LV and ACW also showed high 
ICCs, supporting the high performance of the DL 
algorithms in different settings. Table 1 summarizes the 
mean difference between the automated and manual 
measurements of common angle parameters across 
different studies.

Table 1: Mean difference between the automated deep learning and manual measurements of common angle 
parameters
Study Device Testing 

type
AOD500 

(mm)
AOD750 

(mm)
TISA500 

(mm2)
TISA750 

(mm2)
ARA500 
(mm2)

ARA750 
(mm2)

TIA500 
(°)

Wang W, 2021 UBM Internal 0.0012 0.0056 N/A N/A −0.003 −0.005 0.370
Bolo K, 2022 Anterion External −0.0150 N/A −0.006 N/A N/A N/A N/A
Jiang W, 2023 UBM Internal 0.0096 0.0137 0.004 0.007 0.008 0.011 0.708

External 0.0219 0.0282 0.008 0.182 0.019 0.024 1.675
Soh Z, 2024 Visante Internal 0.0100 0.0100 0.000 0.000 N/A N/A N/A
AOD=Angle opening distance, TISA=Trabecular-iris space area, ARA=Angle recess area, TIA=Trabecular iris angle, UBM=Ultrasound biomicroscopy, N/A=Not 
available
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Although studies indicate that DL algorithms are 
highly effective, with strong correlation and minimal 
error in measuring angle parameters, there may be 
some skepticism regarding the use of these parameters 
as features in diagnosing angle closure. A study by 
Fu et al. highlighted that a DL system outperformed a 
traditional ML approach, which utilized a quantitative 
feature‑based system in detecting angle closure.[36] 
The DL system demonstrated a superior area under 
the receiver operating characteristic curve (AUC), 
sensitivity, and specificity in identifying angle‑closure 
conditions.

While DL shows promise in more accurately classifying 
angle closure than traditional quantitative methods, 
these quantitative measures still hold significant value 
in the clinical management of angle closure. They are 
clinically interpretable, serve as key parameters for 
monitoring disease progression, and may be more 
appropriate for some research settings. Moreover, 
specific parameters such as AOD and TISA have been 
demonstrated to play a significant role in predicting the 
progression of primary angle closure disease (PACD) 
and in assessing the response to treatments like 
LPI.[38‑40] In addition, they are easier to communicate 
to patients during educational interactions, unlike the 
more complex outputs of DL, which can be challenging 
to explain.

Angle‑closure detection
The existing literature on the application of ML and DL 
in detecting angle closure from AS imaging presents a 
continuously evolving field. Figure 3 compiles studies using 
AS‑OCT and UBM imaging techniques.[23,28,29,36,41‑52] This plot, 
covering research from 2012 to 2023, illustrates a progression 
toward enhanced diagnostic accuracy.[23,28,29,36,41‑52] AS‑OCT, 
including time‑domain, SD, and swept‑source, along with 
UBM, has been employed to various extents, yielding AUCs 
between 0.84 and 0.98 for ML,[23,41,42,52] and 0.85 to nearly 1.00 
for DL approaches[28,29,43‑51] [Figure 3].

The initial stage of automating angle‑closure detection 
involved using ML algorithms to analyze visual 
features extracted from AS images. These features 
were either used independently,[41,42] or combined with 
clinical parameters.[23] In general, visual features, which 
offer more detailed information compared to clinical 
parameters, produced superior outcomes in determining 
angle status.[41,42] The process of feature selection usually 
focused on identifying critical anatomical landmarks, 
though occasionally it employed shape analysis.[23]

Learned features from DL algorithms may include 
image information that extends beyond what clinicians 
typically consider important for detecting angle 
closure, compared to manually extracted features from 
ML algorithms. The reported DL algorithms tend to 

Figure 3: Machine learning and deep learning performance in detecting angle closure using anterior segment imaging‑the Y‑axis on the left side of the plot lists the different 
studies by first author and publication year. The Y‑axis on the right side categorizes the criteria used for angle closure in each study. AUC = Area under the receiver operating 
characteristic curve, AS‑OCT = Anterior segment optical coherence tomography
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yield higher performance in detecting PACD than the 
ML algorithms. However, DL effectiveness is often 
limited by the need for large, annotated datasets. 
Addressing this challenge, Zheng et al. utilized 
generative AI through semi‑supervised generative 
adversarial networks (GANs).[47] The approach generates 
synthetic AS‑OCT images to enrich the training dataset, 
overcoming data scarcity and enhancing diagnostic 
precision without extensive manual labeling.

More recent studies, particularly from 2021 onwards, 
have included external testing of the algorithms 
on independent datasets, which also show high 
performance, suggesting robustness in algorithm 
performance.[46‑49] The criteria for angle‑closure detection 
predominantly rely on image‑based assessments, with 
some literature integrating gonioscopy measurements. 
The outcomes from algorithms based on gonioscopy 
criteria demonstrate more variability than those relying 
on image‑based methods, potentially due to differences 
in gonioscopy definition and the intrinsic variability 
in performing gonioscopy. In addition, comparisons 
between different algorithms remain challenging due to 
variations in study samples and equipment used.

Several studies have developed models based on 
goniophotography for detecting angle closure. The 
early work by Cheng et al. employed ML techniques to 
automate the detection of angle closure from RetCam 
images.[53] Their automated analysis focused on 
detecting and outlining focal edges associated with angle 
structures. Baskaran et al. later assessed the performance 
of this automated grading, finding good agreement with 
gonioscopy for diagnosing angle closure when two or 
more quadrants were closed (κ = 0.74).[54] The AUC for 
detecting eyes with gonioscopic angle closure was 0.954, 
comparable to manual grading.

Building on this, Chiang et al. advanced the field by 
training a CNN classifier using the Residual Network 
(ResNet) architecture on EyeCam images to detect angle 
closure.[55] Their study demonstrated that the CNN 
achieved excellent performance, with a kappa of 0.746 
and an AUC of 0.969, surpassing non‑reference human 
graders.

Hao et al. utilized AS‑OCT videos to study iris 
movements in real‑time across changing lighting 
conditions, providing a dynamic view of iris behavior 
and anterior chamber changes that enable monitoring 
of physiological responses such as pupil dilation 
and constriction.[56] Changes in iris area and volume 
have been reported to be associated with ACG.[57] To 
improve the identification of angle‑closure conditions, 
they developed a DL algorithm that leverages AS‑OCT 
video datasets to automatically extract dynamic features 

for recognizing angle‑closure eyes. This DL‑based 
temporal classifier network incorporates ResNet and 
long short‑term memory layers, proving highly effective 
in classifying angle closure with an AUC of 0.905.

Angle grading
AI demonstrates robust capabilities in classifying 
gonioscopic angle grades when employing both 
goniophotographs and AS‑OCT images.

Based on goniophotographs, Zhou et al. used the Scheie 
grading system to develop a DL model, HahrNet, which 
achieved an accuracy of 96.18%, specificity of 99.04%, and 
sensitivity of 95.94%.[58] Chiang et al. employed a CNN 
based on the ResNetarchitecture to analyze EyeCam 
goniophotographs graded according to a modified 
Shaffer classification, achieving predictive accuracies of 
97.5% for grade 0, 90.0% for grade 1, 65.5% for grade 2, 
99.0% for grade 3, and 100% for grade 4.[55]

Using AS‑OCT to compile gonioscopic grading 
scores presents more challenges compared to the 
straightforward nature of goniophotographs. Xu et al. 
applied the Shaffer grading system to swept‑source 
AS‑OCT images, documenting accuracies of 98.4% for 
grade 0, 89.1% for grade 1, 40.0% for grade 2, 87.4% for 
grade 3, and 98.9% for grade 4.[44] Notably, the accuracy for 
predicting images corresponding to grade 2 was nearly at 
chance levels, likely reflecting the low examiner certainty 
and the high dependence on dynamic examination gonio 
techniques. These gonioscopic techniques are difficult to 
accurately simulate or estimate in AI models, impacting 
the precision of predictions at this grade.

Differentiate subtypes of angle‑closure mechanisms
Given that ACG encompasses various morphological 
mechanisms, each may respond differently to specific 
treatment modalities. Studies have leveraged various ML 
approaches to enhance the classification accuracy of ACG 
subtypes, including pupillary block, plateau iris, thick 
peripheral iris roll, and exaggerated LV. A study by Bai 
et al. implemented error‑correcting output codes with 
optimized feature sets derived from AS‑OCT images, 
achieving an 87.65% classification accuracy.[59] Similarly, 
Niwas et al. in 2015 utilized AdaBoost combined with 
principal component analysis for feature reduction, 
achieving a 74.85% accuracy. Their subsequent studies 
in 2016 further refined these approaches; one utilized 
an L‑score feature selection to improve classifier power, 
reaching an 84.39% accuracy, while another introduced 
a novel feature extraction technique, achieving 89.20% 
accuracy.[60‑62]

A more recent study by another group also utilized DL 
techniques for segmenting iris curvature to classify UBM 
images into iris bombe and non‑iris bombe categories, 
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and for localizing the iris root to classify iris insertion into 
basal, middle, and apical categories.[29] Basal iris insertion 
refers to the iris root’s location at the base of the ciliary 
body near the scleral spur and is a biometric risk factor for 
angle closure. The algorithms achieved accuracies of up 
to 94% in detecting iris bombe and 86% in classifying iris 
insertion. Another study focused on predicting plateau 
iris using DL techniques by Wanichwecharungruang 
et al., who developed algorithms to predict plateau iris 
from 716 images of AS‑OCT quadrants.[63] All images 
were confirmed as plateau iris by their paired UBM 
images. The algorithm demonstrated high diagnostic 
performance with an AUC of 0.95, an accuracy of 94%, 
a sensitivity of 87.9%, and a specificity of 97.6%.

These collective efforts illustrate the capability of AI 
to distinguish between different ACG mechanisms, 
thereby aiding in facilitating better‑targeted treatments. 
Nevertheless, one of the main limitations of using AI to 
differentiate subtypes of angle‑closure mechanisms is 
the absence of a universally accepted “gold standard” 
for diagnosing these subtypes. This lack of standardized 
diagnostic criteria can lead to inconsistencies in training 
AI models. This limitation not only affects the reliability 
of AI diagnoses but also hampers the ability to effectively 
train and validate AI models on a large scale.

Peripheral anterior synechiae detection
Identifying and distinguishing between an appositional 
and synechial angle closure is crucial for clinicians to 
formulate an effective treatment plan in angle closure.[9] 
Gonioscopy, a gold standard angle examination, can 
detect PAS in synechial angle closure using a dynamic 
technique. However, both appositional and synechial 
angle closures often appear similar in static AS images. 
Efforts to use DL technology for detection have been 
explored.

Hao et al. developed a DL method that analyzes the 
spatial state of features across sequences of AS‑OCT 
images rather than single images.[64] They conducted 
imaging under both dark and bright conditions to 
utilize changes in pupil size that mimic the pressure 
effects of goniolens. The work introduced a new metric, 
time‑weighted cross‑entropy loss, to capture both 
appearance and changes in appearance. This approach 
achieved an AUC of 0.844 in differentiating between 
appositional and synechial angle closures.

Similarly, Hao et al. utilized the changes between dark 
and light conditions captured by AS‑OCT, and added 
3D iris geometrical features to assess the AS‑OCT 
images.[65] Their hybrid DL model, which combines 
two‑dimensional and 3D data, achieved an accuracy 
of 0.829 in classifying open angle, appositional, and 
synechial angle closures, with an AUC of 0.859 for 

differentiating between appositional and synechial 
closures.

Furthermore, Li et al. developed an automated digital 
gonioscopy system using dynamic swept‑source OCT 
examination under varying light conditions.[48] Their 
system, which analyzes paired light and dark data, 
demonstrated superior diagnostic performance, with 
an AUC of 0.885 at the clock‑hour level and 0.902 at the 
quadrant level for detecting PAS.

Predicting treatment outcome
AI can also aid in predicting treatment outcomes. Koh 
et al. developed an automated algorithm employing ML 
techniques to predict the efficacy of LPI in treating eyes 
suspected of PACS using time‑domain AS‑OCT.[66] They 
defined success as the change of one or more angles from 
closed to open in AS‑OCT scans after treatment. The 
algorithm utilized features such as correlation coefficients 
and the structural similarity index to predict outcomes. It 
achieved an accuracy of 89.7%, with a specificity of 95.2% 
and a sensitivity of 36.4%, based on pre‑LPI AS‑OCT 
scans only. This fully automated method aims to improve 
decision‑making regarding prophylactic LPI for PACS by 
providing an objective evaluation of potential treatment 
success, thus optimizing patient selection and reducing 
unnecessary interventions.

Glaucoma surgery
The use of AI in evaluating glaucoma surgery outcomes 
is an emerging field, with limited studies developing ML 
and DL models for trabeculectomy evaluation. These 
studies analyze only slit‑lamp photographs, in contrast 
to AI applications in detecting angle closure that often 
employ images from AS‑OCT and UBM.

Wang et al. employed a Mask region‑based CNN model 
to quantitatively assess the size of functional filtering 
blebs posttrabeculectomy.[67] Their study demonstrated 
that DL could effectively quantify bleb size, with all 
intersection over union scores exceeding 93%, indicating 
high accuracy compared to expert assessments. This 
suggests that DL could help standardize postsurgical 
evaluations, making them more objective and less reliant 
on subjective clinical judgments.

Expanding on this foundation, Mastropasqua et al. used 
ResNet architectures combined with ensemble learning 
techniques not only to assess physical dimensions but 
also to classify the overall functionality of blebs into 
three outcomes: complete success, qualified success, and 
failure. Their model achieved an AUC of 0.8, an accuracy 
of 74%, a sensitivity of 74%, and a specificity of 87%.[68]

The role of AI in glaucoma surgery is currently at an 
early stage of development. As the field stands, there 
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is substantial room for growth, particularly in areas 
such as predicting surgical outcomes and integrating 
data from various imaging modalities, including 
AS‑OCT.

Anterior Segment Imaging and “Big Data”

“Big Data” is fundamentally characterized by its 
large‑scale, complex data sets that traditional software 
struggles to process. The concept is characterized by 
the five versus: Volume, Velocity, Variety, Veracity, 
and Value. Volume addresses the massive amounts of 
data generated from various sources. Velocity refers to 
the rapid generation and movement of data. Variety 
involves the myriad types of data, from structured to 
unstructured. Veracity emphasizes the importance 
of data accuracy, with strategies in place to ensure 
reliability. Finally, value represents the core goal of 
big data analytics—to derive actionable insights for 
enhanced decision‑making and outcomes.

Big data has the potential to greatly improve health care 
by enhancing patient outcomes, increasing operational 
efficiency, and accelerating medical research. The big 
data framework starts with varied data inputs – image, 
clinical, and others – each undergoing preprocessing 
to ensure quality and uniformity. These streams then 
converge in a data integration and standardization 
phase, essential for aligning disparate data formats 
into a singular analytical data frame. At the core of 
the process lies the data mining and analytics stage, 
where algorithms extract patterns from large data 
sets. These insights are then visually presented for 
easy interpretation, guiding the final decision‑making 
process [Figure 4]. Across all these steps, AI can be 
instrumental in enhancing efficiency and accuracy 
throughout the entire process.

However, using images, including AS imaging, in big 
data frameworks poses significant challenges, mostly due 
to the complexity of analyzing unstructured image data 
that necessitates advanced algorithms for meaningful 
insights. Image quality and variability can significantly 
impact analysis accuracy. Furthermore, the interpretation 
of image data can be subjective, with inherent biases in 
collection and processing methods potentially leading to 
skewed results. Integrating image data with other types 
of data to perform comprehensive analyses also demands 
complex technical solutions, making it challenging to 
derive comprehensive insights from mixed data sources.

Currently, big data has not been directly utilized in AS 
imaging for glaucoma. However, the future integration of 
advanced AI tools, improved datasets, and collaborative 
efforts to establish data standardization systems could 
effectively promote the use of big data in this area. These 
advancements would enhance the analysis and utility 
of imaging data, potentially transforming management 
strategies and accelerating research in the glaucoma 
field [Figure 5].

Artificial intelligence tools
AI tools can be utilized across various stages of big data 
management. From preprocessing and data integration 
to analysis, visualization, and interpretation, AI enhances 
the capability to handle complex data efficiently. 
However, when it comes to specialized applications like 
AS imaging in glaucoma, there are significant challenges 
due to the absence of universally applicable, well‑trained 
AI algorithms. This shortfall is primarily attributed 
to the lack of publicly available, labeled, valid, large, 
and diverse databases for AS imaging. This situation 
contrasts with the availability of fundus photography 
and optic nerve head imaging, where datasets such 
as the digital retinal images for vessel extraction,[69] 
retinal image database for optic nerve evaluation,[70] 
ORIGA database,[71] and REFUGE (Retinal Fundus 
Glaucoma Challenge) stand as exemplars of open‑access 
resources.[72] The scarcity of high‑quality, annotated data 
limit the potential for developing robust AI models for 
AS imaging that can reliably interpret such specific 
medical images across different patient demographics 
and conditions.

Generative AI is a subset of AI technologies that utilize 
various forms of existing data to learn and generate 
new content. Generative AI models, such as GANs, are 
capable of creating new, synthetic data samples that 
are realistic and varied. These models work by training 
two neural networks simultaneously–a generator that 
creates data and a discriminator that evaluates the data’s 
authenticity. Through their iterative competition, these 
networks can produce high‑quality, diverse datasets that 
mirror real‑world variations.Figure 4: Framework for big data integration and analysis in decision‑making
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This capability of generative AI can be particularly 
beneficial in fields like AS imaging, where existing 
datasets are often scarce and limited in diversity. By 
generating synthetic images that reflect a wide range 
of anatomical variations and pathological conditions, 
generative AI can fill gaps in datasets, providing a 
richer basis for training diagnostic AI algorithms. 
Consequently, this leads to more robust and universally 
applicable AI models, enhancing their accuracy and 
reliability in clinical settings.

Data standardization system
Addressing the challenges of data integration and 
scarcity in big data necessitates a collaborative approach 
across various settings or organizations. When data 
from multiple sources are pooled together, it mitigates 
the issue of data scarcity by expanding the volume and 
diversity of data. However, the data must be uniform 
and standardized to make it analytically valuable. 
To achieve this, data standardization is required 
to transform the data into a structured, coherent, 
and analytically ready resource in the collaborative 
environment is important.

One of the systems embodying this principle is the 
observational medical outcomes partnership (OMOP) 
common data model (CDM) conducted by the observational 
health data sciences and informatics (OHDSI) community. 
The OMOP CDM is instrumental in transforming 
health‑care data into a common format that supports 
large‑scale analytics. Its primary purpose is to organize 
structured clinical data, such as diagnoses, medications, 
laboratory results, or administrative claims databases 
into a standardized framework.[73] Moreover, health level 
seven fast health‑care interoperability resources (HL7 
FHIR) is another tool for data standardization, focusing 
on interoperability and data exchange between healthcare 

systems. FHIR uses a modular, resource‑based approach 
that integrates extensive use of available standardized 
vocabularies, facilitating real‑time data exchanges 
and interactions for health‑care applications.[74] This 
ensures that data remain consistent and universally 
understandable across different health IT systems. 
In addition, the informatics for integrating biology 
and the bedside (i2b2) platform also supports data 
standardization but offers a more flexible model that 
adapts to the specific needs of biomedical researchers. 
i2b2 facilitates the integration of clinical research data 
with healthcare records within a research network, 
although it is more focused on the research aspect rather 
than broad clinical data interchanges like FHIR and 
OMOP.[75] A comparison of these platforms is shown 
in Table 2.

Although these platforms are not originally designed 
to handle image data, they can be extended through 
AI‑assisted processes and flexible modeling. Natural 
language processing algorithms can analyze the language 
within image reports, such as machine‑calculated 
parameters or other image‑related documentation. Image 
information can be extracted, annotated, or classified 
and then quantified into structured data. This structured 
information can then be mapped to the standardized 
format of OMOP CDM or managed by utilizing 
extensions in HL7 FHIR. However, the development of 
standardized terms and vocabularies for AS imaging 
remains limited. Taking OMOP CDM as an example, 
it is noteworthy that while some terms for the AS, such 
as central corneal thickness, have been integrated into 
the OMOP CDM standard vocabulary,[76] there is still 
a lack of inclusion for angle‑related parameters, which 
have not been verified or added yet. Proposing the 
inclusion of these parameters and their concepts to the 
OHDSI community would initiate their verification and 

Figure 5: Tools shaping big data in anterior segment imaging. AI = Artificial intelligence
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integration, increasing the model’s usability for further 
analysis in the glaucoma field.

Conclusions

The integration of AI with AS imaging represents a 
significant advancement in glaucoma management. 
The application of ML and DL technologies enables 
more effective analysis, promoting their adoption in 
clinical settings. With these powerful tools, clinicians 
and researchers can enhance patient outcomes more 
efficiently and automatically. However, while the 
utilization of AS imaging within big data frameworks 
shows immense promise, challenges such as data 
scarcity, standardization and algorithm training remain 
and require continued efforts to be properly addressed. 
To fully capitalize on these technological benefits, 
ongoing innovation and collaborative efforts are essential 
to navigate the complexities and unlock the full potential 
of AI‑enhanced ophthalmic diagnostics and treatment 
strategies.
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