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Abstract. Climatic, landscape, and host features are critical components in shaping out-
breaks of vector-borne diseases. However, the relationship between the outbreaks of vector-
borne pathogens and their environmental drivers is typically complicated, nonlinear, and may
vary by taxonomic units below the species level (e.g., strain or serotype). Here, we aim to
untangle how these complex forces shape the risk of outbreaks of Bluetongue virus (BTV); a
vector-borne pathogen that is continuously emerging and re-emerging across Europe, with sev-
ere economic implications. We tested if the ecological predictors of BTV outbreak risk were
serotype-specific by examining the most prevalent serotypes recorded in Europe (1, 4, and 8).
We used a robust machine learning (ML) pipeline and 23 relevant environmental features to fit
predictive models to 24,245 outbreaks reported in 25 European countries between 2000 and
2019. Our ML models demonstrated high predictive performance for all BTV serotypes (accu-
racies > 0.87) and revealed strong nonlinear relationships between BTV outbreak risk and
environmental and host features. Serotype-specific analysis suggests, however, that each of the
major serotypes (1, 4, and 8) had a unique outbreak risk profile. For example, temperature and
midge abundance were as the most important characteristics shaping serotype 1, whereas for
serotype 4 goat density and temperature were more important. We were also able to identify
strong interactive effects between environmental and host characteristics that were also sero-
type specific. Our ML pipeline was able to reveal more in-depth insights into the complex epi-
demiology of BTVs and can guide policymakers in intervention strategies to help reduce the
economic implications and social cost of this important pathogen.
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INTRODUCTION

Vector-borne viruses continue to have severe implica-
tions for public and animal health worldwide. Arbo-
viruses (arthropod-borne viruses) in particular are
responsible for significant global economic losses due to
the expensive intervention efforts (Braks et al. 2014).
Intervention is often difficult due to the increasing com-
plexity of emerging vector-borne disease epidemiology in
response to the changes to the vector’s ecological and
environmental drivers (i.e., abundance/temperature rela-
tionships, Nicolas et al. 2018). Vector populations

worldwide are showing rapid changes in their distribu-
tion due to ongoing shifts in the climate, landscape, and
host species characteristics (Randolph and Rogers 2010).
Thus, untangling the ecological and environmental fac-
tors that drive the emergence of arbovirus outbreaks is
critical for designing effective and efficient risk-based
surveillance systems. Machine learning (ML) algorithms
have provided fundamental, predictive insights into spa-
tial epidemiology of arboviruses vectors on both regional
and global scales (Hollings et al. 2017, Babayan et al.
2018). Recent advances that make these algorithms more
interpretable (“interpretable machine learning”; Molnar
2018b) offer new tools to interrogate further these models
to gain mechanistic insights into the drivers of pathogen
dynamics (Fountain-Jones et al. 2019).
Bluetongue virus (BTV, Orbivirus: Reoviridae) is an

RNA arbovirus that infects ruminants worldwide and is
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considered a global threat to food security with direct
and indirect impacts on the economy and public health,
respectively. BTV is mainly transmitted between hosts
by biting midges of the Culicoides spp. complex (Price
and Hardy 1954), but other modes of transmission are
possible (Backx et al. 2009). The virus only causes acute
infections in sheep (MacLachlan 1994); however, the role
of other ruminant host species in maintaining BTV cir-
culation and spread remains enigmatic. Currently, BTV
has 27 antigenically distinct serotypes (Belbis et al.
2017), while the novelty of the recently detected sero-
types 28 and 29 remain to be confirmed (Zientara et al.
2014, Schulz et al. 2016). Biting midges have a predomi-
nant role in transmitting serotypes 1–24 (Maclachlan et
al. 2015), while their role in transmitting serotypes 25–27
remains uncertain (Belbis et al. 2017). Vaccination and
livestock movement restrictions are critical components
for BTV control and prevention, but are expensive and
in some cases fail to limit the spread of emerging epi-
demics (Bhanuprakash et al. 2009). In general, the geo-
graphical distribution of BTV serotypes worldwide
follows the distributional preferences of the location of
distinct ecosystems of different Culicoides spp.
(Maclachlan et al. 2015), however, the finer-scale deter-
minants of serotype outbreak risk are unclear.
Europe as a continent is an ideal region to untangle

the determinants of BTV distributions as the continent
has experienced an upsurge in BTV outbreaks form a
diversity of serotypes in the past 20 yr, and BTV cases
have been reported consistently across countries. Sub-
Saharan Africa and the eastern Mediterranean are impli-
cated as the source of many BTV introductions into Eur-
ope (De Clercq et al. 2009). Most large BTV outbreaks
across Europe were predominantly caused by serotypes
1, 4, and 8 (Breard et al. 2007, Durand et al. 2010, Cor-
biere et al. 2012). BTV serotype 8 alone was responsible
for over 11,000 separate outbreaks in Europe. These out-
breaks have led to economic losses of approximately
EUR 2 billion in France and the Netherland alone
(Rushton and Lyons 2015). While outbreaks are continu-
ously reported across Europe on an annual basis, the
need for improved risk-based surveillance activities is
essential for reducing the impact of BTV on the region.
In the past decade, the use of machine learning (ML)
algorithms to gain insights into vector and pathogen epi-
demiology have substantially grown due to their higher
predictive performance (Hollings et al. 2017, Babayan et
al. 2018). ML methods can accommodate thousands of
predictors without overfitting and can efficiently quan-
tify complex interactions in high dimensional space
(although variable collinearity can still be a problem,
e.g., Dormann et al. 2013). Moreover, advances in inter-
pretable ML methods can interrogate these models fur-
ther to enable enhanced interpretation of the predictions
made by these powerful algorithms (Molnar 2018a). For
example, a recently developed game theory approach can
quantify which variables in an ML model can be attribu-
ted to predicting correctly (or otherwise) BTV outbreak

risk at an individual geographic location (Molnar 2018b,
Fountain-Jones et al. 2019).
Here, we apply a recently introduced multi-algorithm

ML ensemble pipeline incorporating advances in inter-
pretable machine learning to a data set consisting of over
10,000 BTV outbreaks across Europe. We used climate,
land cover features, vector, and host densities to build
spatial-risk predictive models for all BTV outbreaks as
well as for outbreaks of serotypes 1, 4, and 8 separately.
We aimed not to predict BTVoccurrence, but to generate
models to predict where outbreaks of BTV could occur
and garner macroecological insights into serotype speci-
fic outbreak risk. Given the global correlations between
serotype and vector species (Gibbs and Greiner 1994) we
expected vector density and species to also be crucial at
smaller spatial scales. In contrast, we hypothesized that
host density rather than environmental variables would
be more important for the risk of a BTV outbreaks in
general (i.e., more hosts would mean higher risk of an
outbreak more so than environmental drivers).

MATERIALS AND METHODS

Data source

We retrieved all reports of BTV outbreak occurrences
in Europe between 2000 and 2019 from the following
databases: Food and Agriculture Organization (FAO)
Global Animal Disease Information System (EMPRES-
i), the World Animal Health Information Database
(WAHIS) Interface, the World Organization for Animal
Health Bluetongue Reference Laboratories Network
(OIE-BT-Labnet), and the European Commission
Understanding Pathogen, Livestock, Environment Inter-
actions Involving Bluetongue (PALE-Blu) online data-
bases. For the Spanish outbreaks we collated the data at
municipality level from the Spanish Ministry of Agricul-
ture, Fishery and Food, and the Spanish National Refer-
ence Laboratory confirmed the date of the outbreaks.
The retrieved occurrence data comprised geographical
locations (i.e., latitude and longitude) for a total of
24,245 BTV outbreaks reported in 25 European coun-
tries (Appendix S1: Fig. S1). To lower the training error
of our ML algorithms, we removed duplicate occur-
rences reported in each unique geographical site. Early
tests utilizing multinomial models for multiple outbreak
data at each location performed poorly and were compu-
tationally expensive. Further, the interpretable machine
learning approach we employed (Fountain-Jones et al.
2019) currently cannot handle multinomial data. Thus,
the final occurrence data set comprised a total of 10,514
unique BTV positive sites of which serotype 4 was the
most prevalent (6,450 or 61% of outbreaks), followed by
serotype 1 (2,136 or 20% of outbreaks), and 8 (1,851 or
18% of outbreaks). Thus, we further divided the occur-
rence data by these three selected serotypes to model
each separately and compare it to the overall risk of
BTV in Europe. See Appendix S1: Fig. S2 for numbers
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of outbreaks through time for each serotype. Our data
sets (and code) are available; see Open Research.
For all models, we selected predictors thought to

shape midge activity (climate and land cover features) as
well as predictors with a direct link to risk to BTV out-
break risk (livestock densities and estimated midge spe-
cies present at that location). See Appendix S1: Table S1
for details of data acquisition. We retrieved climate data
with 5 minutes of arc spatial resolution from the World-
Clim archive (Fick and Hijmans 2017), which includes
19 bioclimatic features derived from monthly precipita-
tion and temperature values. However, we excluded bio-
climatic variables 8 (mean temperature of the wettest
quarter), 9 (mean temperature of the driest quarter), 18
(precipitation of the warmest quarter), and 19 (precipita-
tion of the coldest quarter) from the analyses as they are
known to be composed of spatial artefacts (Samy and
Peterson 2016). Additionally, we included the annual
average wind speed from the WorldClim archive (Fick
and Hijmans 2017) as another potential risk factor for
BTV in Europe. We obtained estimated global livestock
density data for sheep, goat, cattle, and buffalo with spa-
tial resolutions of 5 minutes of arc (Appendix S1: Table
S1) from the FAO-GeoNetwork database (Robinson et
al. 2014). These livestock density grids were estimated
based on the observed number of animals per km2 at dif-
ferent administrative levels in proximity to various envi-
ronmental features such as lands suitable for agricultural
activities (excluding water surfaces and protected lands)
(Robinson et al. 2014). Our preliminary analysis found
that 5 minutes of arc scale for the variables above led to
optimal algorithm performance. We also retrieved a geo-
graphical grid that represents an estimate of land use
worldwide with 18 discrete features (Appendix S1: Table
S1) and spatial resolution of 30 s of arc. Further, we
obtained satellite imagery for the normalized difference
vegetation index (NDVI) from the United States Geo-
graphical Survey (USGS) earth explorer database
between 2002 and 2018 (Appendix S1: Table S1) with a
spatial resolution of 10 s of arc. As NDVI imagery are
published on a weekly basis with a high spatial resolu-
tion, we generated grids based on yearly means to reduce
computational cost. Finally, we collected vector
observed occurrences (abundance) in Europe between
1901 and 2018 from the Global Biodiversity Information
Facility database and the published literature in PubMed
(Appendix S1: Table S1). When we restricted the occur-
rence data to 2000–2018 there were sites of known out-
breaks with no midge observations, so subsequently we
included the older occurrence data to fill these gaps.
When the observed geographical locations in literature
were textual, we used assigned coordinates to the cen-
troid of referred location using GeoPlaner (available
online).6 The final collected vector records comprised
2,055 geographical locations of 88 species with C. imicola
(n = 334), C. latreille (n = 309), C. obsoletus (n = 218),

C. variipennis (n = 177), and C. pulicaris (n = 146) as the
most abundant (Appendix S1: Table S2).

Data processing

We converted vector abundance data points into a
smoothed kernel density grid with a spatial resolution of
5 km2 and a search radius of 10 km2 within the extent of
the European continent using the Raster R package in R
(Hijmans et al. 2019). Thus, the kernel density grid rep-
resents the number of midge species observed within the
range of 5 km2. We also used the Raster package to con-
vert all variables (hereafter “feature,” in line with com-
puter science terminology) described above, into one
standard projection (i.e., World Geodetic System 1981;
WGS84) and map extent. We then cropped each variable
within the spatial extent of Europe so that the subse-
quent machine learning analyses covers only our study
area. Further, because our selected features have differ-
ent spatial resolutions, we aggregated and resampled
them to create a unified grid with an approximate spatial
resolution of 5 km2. Because our ML pipeline requires
an outcome with presence–absence data, we randomly
generated pseudoabsence point locations (background
data) equal to the number of observed BTV outbreaks
within the spatial extent of the European continent (i.e.,
background points were generated randomly across the
entire European continent). This approach was found to
reduce the impact of sampling bias on the predictive per-
formance of ecological niche models (Phillips et al.
2009). As BTV is a notifiable pathogen (i.e., outbreak
must be reported to government agencies) it is likely that
these pseudoabsence locations have not experienced out-
breaks of BTV. Thus, we define our predicted spatial
probabilities as potential locations for BTV occurrences
in sampled and none-sampled locations where the envi-
ronmental conditions were mostly suitable for the occur-
rence of the outbreaks. We then merged our outcome
data with the selected features into one data frame. We
assessed for collinearity between the features using an
intercorrelation matrix. We then removed features with
the largest mean absolute correlation (ρ > 0.9, see
Appendix S1: Fig. S3 for remaining correlations) for all
BTV outbreaks as well as for each of the three selected
serotype data sets. We used the Boruta R package to fur-
ther control for feature collinearity and reduce the fea-
ture sets to just those relevant for prediction. This step is
well known to increase the efficiency and performance
of ML algorithms (Kursa and Rudnicki 2010). Boruta
applies a random forest algorithm to iteratively contrast
the importance of the actual features to “shadow” fea-
tures generated by shuffling the values of each feature.
Thus, features that better predict the outcome relative to
the shadow features are kept, while features that weakly
predict the outcome relative to the shadow features are
dropped. This pre-processing step can lead to improve-
ments in model performance (Degenhardt et al. 2017).
We then randomly divided the data sets into a training6https://www.geoplaner.com
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(80%) and testing (20%) sets and used a K-fold cross-
validation approach to train the ML algorithms.
As time-lagged estimates were not available for most

of our features (e.g., yearly changes in host density
2001–2019 at appropriate spatial scales) we excluded
temporal information (i.e., date of outbreak) from our
models. Further, we did not have enough serotype out-
break data to parse into smaller temporal blocks (e.g.,
year) to match the dynamic features such as bioclimatic
data.

Model training and evaluation

We created spatially explicit predictive models for all
BTV outbreaks as well as for each of the three selected
serotypes (i.e., 1, 4, and 8). We trained the supervised
ML algorithms using the complete set of features
(Appendix S1: Table S1). We used the analytical pipeline
proposed by Fountain-Jones et al. (2019), which com-
pares supervised ML algorithms including Extreme Gra-
dient Boosting (XGB), Random Forest (RF), and
Support Vector Machine (SVM) using the R package
Caret (Kuhn 2008). We compared these three ML algo-
rithms in this pipeline as they construct classification
models in different ways, which can potentially lead to
differences in model performance (Fountain-Jones et al.
2019). Briefly, SVMs maximize the differences between
classes (in this case “outbreak” and “no outbreak” at a
location) by calculating vectors or kernel functions on a
hyperplane (Schölkopf and Smola 2002). Conversely,
RF and XGB use a hierarchical “tree” architecture to
split data into increasingly pure sets. RF fits each tree to
the data independently, whereas XGB uses a iterative
“boosting” procedure fit trees sequentially with each tree
trying the correct for the classification errors of the last
(see Fountain-Jones et al. 2019, 2020 for a more details).
We used a 10-fold cross-validation procedure to estimate
model performance parameters, including accuracy
(Acc), specificity (Sp), sensitivity (Se), and Mathew’s
correlation coefficient (MCC). We calculated each met-
ric using the average confusion matrix across all folds of
the cross-validation. The 10-fold cross-validation step
prevented artificial inflation of the accuracy as well as
overfitting due to the use of the same data for training
and validation. We used the default grid parameter set-
tings in the training process of all algorithms. We
selected the best performing algorithm to predict the
spatial probability of BTV outbreaks by comparing
the estimated validation parameters of each model using
the testing data set.

Model interpretation

We used the best performing algorithm for each data
set to infer feature importance, dependence, and overall
interactions, as well as the relationships between the fea-
ture and the outcome on randomly selected individual
sites. As predictive performance was high across

algorithms, we did not further train ensemble models,
which are more difficult to interpret. We computed fea-
ture importance using Breiman’s (2001) permutation
procedure (Breiman 2001) implemented in the iml R
package (Molnar 2018a). This feature importance mea-
sure quantifies the expected loss in predictive perfor-
mance (i.e., how the algorithm classifies BTV positive
and negative sites) for a pair of observations compared
to the full model when a specific feature has been
switched (Breiman 2001, Molnar 2018b). Thus, a feature
is unimportant if the permutation procedure does not
affect model performance. We calculated the global and
individual effects of each feature on the response and
each observation. We plotted the effects using partial
dependency (PD) plots and individual conditional
expectation (ICE) plots, respectively (Goldstein et al.
2015). However, to more easily visualize how ICE esti-
mates vary between observations, we centered the plots
on the minimum feature value to generate c-ICE plots
for the top two important (Molnar 2018b). We quanti-
fied feature interaction strength using Friedman’s H
statistic, which uses partial dependency decomposition
and accounts for the portion of variance explained by
the interaction (Friedman and Popescu 2008). Finally,
we calculated Shapley values (ϕ), a game theory
approach, from the final models to quantify individual-
level predictions for randomly selected geographical sites
and the contribution of each feature to those predictions
(Shapley 1953).

RESULTS

Our selected ML models had high predictive perfor-
mance (Mathews Correlation Coefficient (MCC) = 0.76,
Table 1). The XGB algorithm slightly outperformed
other algorithms (Table 1), and therefore was selected
for the subsequent predictions and interpretations. Per-
formance parameters (i.e., Acc, Sp, Se, and MCC) of all
ML algorithms increased when predicting serotype-
specific outbreaks (Table 1). Most of the range of pre-
dicted outbreak risk areas (P > 0.5) remained within the
spatial extent of all observed outbreaks (Fig. 1A,B), yet
there were important exceptions. For example, our sero-
type 1 model predicted the islands of Sardinia, Sicily,
Mallorca, and Ibiza as new suitable high-risk areas
(P ranging between 0.4 and 0.8), where no BTV out-
breaks were previously reported (Fig. 1C, D). For
serotype 8, even though there were only a small number
of outbreaks recorded, the Netherlands had quite high
values of outbreak risk (0.6–0.8).
Our ML pipeline inferred isothermality (temperature

variability or the ratio of mean diurnal temperature
range and the annual temperature range) followed by
goat density as the most important features associated
with the predicted spatial risk of all BTV outbreaks in
Europe (Fig. 2A). PD plots showed that spatial risk of
all BTV outbreaks sharply increased and plateaued
when isothermality ≅30% (Fig. 2B). Similarly, PD plots
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also showed increased BTV risk even at very low goat
density, but this risk also plateaued at values >500
goats per 5 km2 (Fig. 2C). Sheep density, followed by
vegetation index, had the strongest overall interactions
with other features (Fig. 3A). The interaction between
sheep and goat densities was the strongest among other
interactions, with high risk predicted when densities
>500 animals per 5 km2 (Fig. 3B, C). Further interro-
gation using Shapley values (Fig. 4A) revealed that the
randomly selected site in northern Spain indicated that
a BTV outbreak was likely observed there due to high
sheep density (>7,806 animals/5 km2) and isothermality
(≅33%). Conversely, the site that we selected in north-
ern France was likely negative (i.e., no outbreak
recorded) due to substantially small densities of goats
and sheep (<8 animals/5 km2 and <215 animals/5 km2,
respectively; Fig. 4B).
The minimum temperature of the coldest month fol-

lowed by midge abundance were the most important pre-
dictors of serotype 1 outbreaks in Europe (Fig. 2D). The
marked increase in risk of observing serotype 1 out-
breaks in locations where a threshold in the minimum
temperature of coldest month is above 3°C and at least 1
species of midges observed per 5 km2 (Fig. 2E,F). In
each case, risk plateaued at values higher than these
thresholds. The vegetation index, followed by the mini-
mum temperature of the coldest month, also had the
strongest overall interactions with other features (Fig. 3
D). For example, the strongest interaction was between
mean temperature of warmest quarter and vegetation
index (Fig. 3E). Higher and moderate vegetation indices
(NDVIs between 100 and 243) and temperatures ranging
10°–25°C increased the risk of BTVoutbreaks (Fig. 3D).
A serotype 1 outbreak was likely observed in southern
Italy due to increased temperature in the coldest month

in areas with moderate vegetation indices (≅145 NDVI
and ≅3°C, respectively; Fig. 4C). However, a serotype 1
outbreak was likely absent in northern Denmark due to
temperatures of <−12°C, and low sheep density (<215
animals/5 km2; Fig. 4D).
In contrast, goat density followed by temperature sea-

sonality were the most important predictors of serotype
four outbreaks (Fig. 2G). Risk of a serotype 4 outbreak
increased rapidly at low goat density (>500 animals/
5 km2) and high (>65%) seasonality before plateauing
(Fig. 2H, I). Sheep density, followed by temperature sea-
sonality, had the strongest overall interactions with other
predictors (Fig. 3G). Like the all BTV outbreaks model,
the strongest interaction was between sheep and goat
density using serotype 4 model (Fig. 3H,I). Shapely val-
ues revealed that serotype 4 outbreak likely observed in
southern Greece was mainly due to marked and small
increases in precipitation seasonality and mean diurnal
range, respectively (>77% and >11°C, Fig. 4E). Con-
versely, in southern Sweden, a serotype 4 outbreak was
likely absent due to decreases in sheep density and mini-
mum temperature of the coldest month (<199 animals/
5 km2 and <−9°C, Fig. 4F).
Finally, temperature seasonality and cattle density

were the most important features for predicting serotype
8 outbreaks (Fig. 2J). Moderate temperature seasonality
(≅50%) increased the risk of serotype 8 outbreaks, while
increased temperature variation throughout the year
decreased (>70%) the risk of observing serotype 8 out-
breaks (Fig. 2K). Additionally, slight rises in cattle den-
sity increased the risk of serotype 8 outbreaks (Fig. 2L).
Precipitation of the driest quarter, followed by precipita-
tion and temperature seasonality, had the strongest over-
all interactions with other predictors (Fig. 3J). Increased
precipitation during the driest months accompanied by

TABLE 1. Cross-validation summary results for XGB, RF, and SVM models.

Model Accuracy (%) Specificity (%) Sensitivity (%) MCC

All serotypes
XGB 88.20 � 0.05 87.03 � 0.05 92.99 � 0.07 0.76 � 0.00
RF 87.66 � 0.08 88.32 � 0.07 86.73 � 0.16 0.75 � 0.00
SVM 87.72 � 0.06 82.32 � 0.12 90.73 � 0.08 0.75 � 0.00

Serotype 1
XGB 94.44 � 0.12 94.29 � 0.17 97.87 � 0.13 0.89 � 0.00
RF 94.61 � 0.10 91.67 � 0.12 97.38 � 0.10 0.89 � 0.00
SVM 94.50 � 0.11 90.96 � 0.16 97.82 � 0.14 0.89 � 0.00

Serotype 4
XGB 92.55 � 0.09 90.17 � 0.11 94.71 � 0.19 0.86 � 0.00
RF 92.09 � 0.08 89.35 � 0.11 94.65 � 0.14 0.84 � 0.00
SVM 91.92 � 0.07 87.64 � 0.09 92.90 � 0.09 0.84 � 0.00

Serotype 8
XGB 96.33 � 0.05 94.74 � 0.13 94.89 � 0.13 0.90 � 0.00
RF 94.65 � 0.11 95.53 � 0.12 93.70 � 0.26 0.89 � 0.00
SVM 93.95 � 0.14 93.81 � 0.10 94.09 � 0.22 0.87 � 0.00

Notes: Model highlighted in gray was the best performing model. Values are means � SE. MCC, Mathew’s correlation coeffi-
cient; RF, Random Forest; SVM, Support Vector Machine; XGB, Extreme Gradient Boosting.
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FIG. 1. (A, C, E, G) Locations of Bluetongue virus (BTV) outbreaks reported in Europe between 2000 and 2019. (B, D, F, H) Pre-
dicted spatial riskof BTVoutbreaks using the Extreme gradient boosting (XGB) algorithm. Panels A and B indicate all BTVoutbreaks
reported in Europe. Panels C andD indicate serotype 1. Panels E and F indicate serotype 4. Panels G andH indicate serotype 8.
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small increases in cattle density elevated the risk of sero-
type 8 outbreaks (Fig. 3K, L). A serotype 8 outbreak
likely observed in central France due to shallow and
moderate increases in the abundance of midges and tem-
perature seasonality (>4 species observed per 5 km2 and
>60%; Fig. 4G). Conversely, a site in southern France
was likely negative for serotype 8 outbreaks due to sub-
stantial declines in cattle density and absence of midges

(<326 animals/5 km2 and 0 species observed/5 km2;
Fig. 4H).

DISCUSSION

Using an integrated ML pipeline and two decades of
outbreak data, we uncovered new insights into the spa-
tial epidemiology of BTV as well as the unique host and

FIG. 2. (A, D, G, J) Plots showing feature importance (i.e., environmental and demographic predictors) that contribute to BTV
risk in Europe. We used a classification error loss function (loss: ce) to calculate the relative importance of each feature. (B, C, E, F,
H, I, K, L) Centered individual conditional expectation (ICE) plots for the top two important features that contribute to BTV risk
in Europe. The plots show the relationship between the predicted spatial risk of BTV and each corresponding feature. The black
lines indicate the predicted risk of a BTV outbreak in a given geographical site, while the red line indicates the partial dependence
calculated as the average risk across all geographic locations in Europe. Panels A–C indicate all serotypes. Panels D–F indicate sero-
type 1. Panels G–I indicate serotype 4. Panels J–L indicate serotype 8.
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landscape contributions to outbreak risk in Europe.
Overall, we found that host density coupled with temper-
ature were the most important variables shaping out-
break risk, with vector abundance and precipitation of
less predictive value. Importantly, the combination of
host and temperature variables shaping outbreak risk
was unique for each subtype. Our models had high pre-
dictive performance without including temporal infor-
mation revealing that over smaller timescales (19 yr)
host and climate variables are sufficient for predicting
BTV outbreak risk. These insights not only inform risk-
based surveillance efforts in Europe but assist with
reducing the economic implications of this important

animal pathogen. Moreover, similar nonlinear interac-
tions between host species and environment are likely
important for predicting risk of other vector-borne
pathogens and we demonstrate the utility of our inter-
pretable machine learning in quantifying this complexity.
Temperature variation, vector abundance, and host

densities are critical components for the maintenance
and circulation of all BTV serotypes in Europe. Our
findings are in agreement with Samy and Peterson
(2016) that found high suitability of the environmental
conditions in southern European countries across the
Mediterranean Basin for the spread and maintenance of
BTVs (Fig. 1). However, we demonstrate that the

FIG. 3. Feature interaction plots calculated by Friedman’s H statistic. (A–C) indicate all BTV outbreaks; (D–F) indicate sero-
type 1; (G–I) indicate serotype 4; (J–L) indicate serotype 8. The four plots on the left (A, D, G, J) show overall interaction strength
of features with the other features. Plots in the middle (B, E, H, K) demonstrate the overall interaction strength of a single selected
feature with the other features. Partial dependence plots on the right (C, F, I, L) represent the top individual interactions between
two selected features that shaped the spatial risk of BTVoutbreaks. The heat matrix corresponds to the magnitude of spatial risk, in
which lighter shades of red indicate low risks, and darker shades of reds indicate high risks. The bar on the right indicates (y hat)
the relative risk of an outbreak occurrence with all other feature combinations marginalized.
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specific combination of host and environmental factors
that shaped outbreak risk was strongly serotype-specific.
Other epidemiological characteristics are likely to vary
by serotype as well. For example, serotype-level differ-
ences have also been detected in the rate of spread of ser-
otypes 1, 4, and 8 (Nicolas et al. 2018). Similarly, the
environmental determinants of spread also have a
unique serotype signature (Nicolas et al. 2018). For
genetically diverse pathogens, serotype or subtype may
be the more appropriate and meaningful taxonomic

units for epidemiological investigation as it is in other
systems (e.g., Fountain-Jones et al. 2017). However, our
models did not include the effect of past and present
vaccination campaigns in changing the risk out BTV ser-
otype outbreaks. Vaccination did slow down the spread
of serotype 1 in France during the 2008 epidemic (Pioz
et al. 2012). Yet, the role of the environmental factors in
predicting the rate of BTV spread was important for
evaluating the effectiveness of vaccination activities
(Pioz et al. 2012). Hence, our serotype-specific outbreak

FIG. 4. Feature value contributions for each respective bluetongue outbreak based on Shapley values (phi) for eight individual
geographical sites across Europe. Positive phi values indicate that this feature increased the risk of a given BTVoutbreak. Negative
values indicate that the predictor lowered the risk of a BTV outbreak emerging at a particular geographical site. The numbers next
to the features’ names indicate the observed value of that feature for that specific site. (A, B) BTV positive and negative sites for all
serotypes, (C, D) for serotype 1, (E, F) for serotype 4, and (G, H) for serotype 8. All sites observed and predicted, either positive or
negative.
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models could be used to set risk-based vaccination
zones. Future work should focus on assessing the role
vaccination in shaping the outbreak risk of each highly
prevalent serotype. Further, while our models utilized
the best data on midge diversity possible at this scale,
high resolution estimates of midge species abundance,
while difficult to collect, will likely provide more
nuanced estimates of serotype outbreak risk.
While we did not have direct measures of midge den-

sity, we found that temperature variations that are likely
proxy for vector behavior and density played a dominant
and complex role in shaping the serotype outbreak risk
(Figs. 2–4). We show that there is no linear increase risk
in BTV outbreaks with increased temperature, and each
serotype was predicted by variables related to tempera-
ture in distinctive ways. Our findings do not support that
a general increase in temperature makes BTV outbreaks
more likely (Turner et al. 2012). In contrast, our c-ICE
plots (Fig. 2B, E, I, and K) and feature interaction
(Fig. 3) plots show that the relationship between temper-
ature derivatives and BTV occurrences is nonlinear and
far more complex (Napp et al. 2016, Jacquot et al.
2017). For example, larger or smaller temperature fluctu-
ations within a month relative to the year as well as over
the course of the year maintain BTV circulation and
emergence (Brand and Keeling 2017). While there is a
common notion that mean temperatures of 20°–25°C
(Wittmann et al. 2002, Maclachlan 2010) is the thresh-
old for BTV outbreaks, our results suggest that the
occurrences of different BTV serotypes require different
thresholds of temperature fluctuations (Fig. 2B, E, I,
and K). Mean temperature alone seems not to be the
sole risk factor for an outbreak and this is supported by
other models of BTVoutbreak risk (Nicolas et al. 2018).
Finer resolution spatiotemporal models including, for
example, weekly climate data may enhance our under-
standing of outbreaks and enhance outbreak predictive
capacity.
Unlike temperature, precipitation was not as impor-

tant in shaping the outbreak risk of all BTV serotypes
(Fig. 1). However, precipitation seems to have a more
complex role in terms of the strength of interactions with
other ecological and environmental features (Fig. 3),
particularly for serotype 8 (Fig. 3K). The link between
precipitation and other environmental factors has been
documented previously (Pioz et al. 2012). For example,
heavy precipitation accompanied by extreme tempera-
ture events occurred before the emergence of serotype 8
in France between 2007 and 2008 (Pioz et al. 2012). We
provide more nuance to this observation and show that
precipitation of the driest month coupled with cattle
density shape serotype 8 outbreak risk (3L). The ability
of our ML pipeline to identify these biologically plausi-
ble nonlinear interaction thresholds shows the utility of
this approach. Our results also indicate that it requires
only a few species of Culicoides to be observed in a given
geographical location for it to be a high-risk area for
BTV (Figs. 2I, 4A–D). This finding agrees with past

studies in implicating specific species in spreading nota-
ble BTV outbreaks across Europe (Kiehl et al. 2009,
Cuellar et al. 2018).
Our results were consistent with past studies in terms

of the critical role of livestock densities in shaping the
risk of BTV in Europe (Breiman 2001, Jacquot et al.
2017). We revealed that not just sheep and cattle were
important predictors of BTV outbreaks overall, but also
goat and buffalo densities also played a role (Figs. 2, 3).
For example, we found that for serotype 4, if goat den-
sity was low, the risk of outbreaks was low even if sheep
density was high (Fig. 3). However, a limitation of our
approach is that our BTV absences may have occurred in
areas with no suitable hosts. Future work on developing
techniques to select locations of absences weighted by
host density may address this limitation. While past
studies were inconclusive about the role of goats in
maintaining BTV infections, they have always been rec-
ognized as major hosts for BTV worldwide (Hofmann et
al. 2008, Zientara et al. 2014, Savini et al. 2017, Alkha-
mis et al. 2020). The extended period of viremia of BTV
infections and the unapparent clinical signs in goats
(Coetzee et al. 2012, Vogtlin et al. 2013) makes this spe-
cies an ideal reservoir by providing the ideal conditions
for continuous emergence and re-emergence of new
strains (Savini et al. 2017). Furthermore, goat density
was found to be positively associated with the evolution
and spread of BTVs in Europe (Jacquot et al. 2017).
Therefore, restricting goat movements and mixing with
other livestock, as well as intensifying surveillance activi-
ties on their populations during emerging BTV epi-
demics, could substantially help improve control and
prevention efforts. The complexity of BTV epidemiology,
coupled with the increasing size of the data as well as
highly nonlinear host and environmental relationships
highlight the strengths of our ML approach. The ML
algorithms integrated into our pipeline were shown to
outperform simpler and commonly used algorithms such
as logistic regression (Fountain-Jones et al. 2019) and
maximum entropy models (Mi et al. 2017). Further, we
demonstrate the utility of Shapley values to explain in
finer scales what each model means in terms of spatial
risk of different BTV serotypes. This intuitive property
can be used to guide decision-makers and intervention
activities. For example, at the randomly selected site in
central France (Fig. 4G), specific thresholds of midge
abundance, cattle density, and temperature made that
site at high risk for a serotype 8 incursion. In contrast,
the other selected site in southern France (Fig. 4H) com-
pletely lacks such thresholds. Therefore, a site in central
France should be targeted as a priority for surveillance
and vaccination activities.
Further application of our ML pipeline to guide poli-

cymakers in their intervention activities will help to
reduce the economic implications of BTV outbreaks in
Europe and provide a blueprint for other regions of the
world impacted by this economically damaging virus.
More broadly, our pipeline offers a powerful way to
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merge high dimensional host, vector, and environment
data to build complex but interpretable predictive mod-
els of outbreak risk down to serotype level. Application
of similar approaches can guide not only pathogen
surveillance but also provide valuable insights into the
ecological determinants of outbreak risk for vector-
borne pathogens.
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