- 1 Title: Associations of Perceived Neighborhood Factors and Alzheimer's Disease
- 2 Polygenic Score with Cognition: Evidence from the Health and Retirement Study
- Authors: Erin B. Ware\*1,2, Peiyao Zhu\*3, Grace Noppert1, Mingzhou Fu3, Mikayla 3
- Benbow<sup>3</sup>, Lindsay C. Kobayashi<sup>1,3</sup>, Lindsay H. Ryan<sup>1</sup>, Kelly M. Bakulski<sup>3</sup> 4

#### 5 Affiliations:

- 1 Survey Research Center, Institute for Social Research Center, University of Michigan, 6
- 7 426 Thompson St, Ann Arbor, MI, 48104, USA.
- 8 2 Population Studies Center, Institute for Social Research Center, University of
- 9 Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA.
- 10 3 School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor,
- MI, 48109, USA. 11

#### 12 **Abstract**

- We examined the relationships between neighborhood characteristics, cumulative 13
- genetic risk for Alzheimer's disease (polygenic scores for Alzheimer's disease), and 14
- cognitive function using data from the Health and Retirement Study (2008-2020, 15
- age>50). Baseline perceived neighborhood characteristics were combined into a 16
- 17 subjective neighborhood disadvantage index. Cognitive function was assessed at
- baseline and measured biennially over a 10-year follow-up period. Analyses were 18
- 19 stratified by genetic ancestry. Cox proportional hazard models analyzed associations
- 20 between neighborhood characteristics, Alzheimer's disease polygenic scores, and their
- 21 interactions on cognitive impairment.
- 22 In the European ancestries sample, a one standard deviation higher score on the
- 23 subjective neighborhood disadvantage index was associated with a higher hazard of
- 24 any cognitive impairment (HR:1.09; CI:1.03-1.15). Similarly, a one standard deviation
- 25 increase in Alzheimer's disease polygenic score was associated with a higher risk of
- 26 cognitive impairment (HR:1.10; CI:1.05-1.16). Similar effect sizes were observed when
- 27 examining cognitive impairment without dementia and dementia separately. No
- significant interactions were found. Comparable but nonsignificant trends were noted in 28
- 29 the African ancestries sample. Subjective neighborhood disadvantage index and
- Alzheimer's disease polygenic score were independently associated with incident 30
- cognitive impairment. Preventing dementia by addressing modifiable risk factors is 31
- essential. 32
- 33 **Keywords:** cognitive impairment, dementia, GxE, neighborhood, polygenic risk score,
- 34 modifiable risk factors
- 35 Acronyms: CI: confidence interval, SD: standard deviation. SNPs: single-nucleotide
- polymorphisms, GWAS: genome wide association study, BMI: body mass index, APOE: 36
- Apolipoprotein E 37

#### Introduction

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Dementia describes a group of progressive neurological disorders that severely affect individuals' memory, thinking, and social abilities (Nowrangi et al., 2011). The most common type of dementia is Alzheimer's disease, with pathology present in 60-80% of cases (Sosa-Ortiz et al., 2012). By the year 2050, an estimated 12.7 million Americans aged 65 years and older will be living with Alzheimer's disease (Matthews et al., 2019). In 2022, the estimated medical cost associated with Alzheimer's disease or other dementias amounted to \$321 billion in the United States, with spending expected to exceed \$1 trillion in 2050 (Anita Pothen Skaria, 2022), leading to a significant financial burden at both the family and national levels. Cognitive impairment nondementia(CIND) is an intermediate stage between normal cognition and dementia (Hugo and Ganguli, 2014; Morris, 2005; Winblad et al., 2004). Identifying modifiable risk factors for cognitive impairment is critical because addressing these factors during intermediate stages of cognitive decline can enhance the effectiveness of public health interventions, potentially reducing the progression to dementia and its related societal burden. In addition, understanding how these factors interact with individual susceptibilities can provide deeper insight into the pathways influencing cognitive decline and help inform strategies to reduce risk across diverse populations.

The neighborhood environment is a potential modifiable risk factor for cognitive health. Evidence suggests that neighborhood environment has been linked to risk of cognitive impairment and dementia (Letellier et al., 2018; Slawsky et al., 2022), with both objective and subjective assessments of neighborhoods offering distinct insights into the association between neighborhoods and cognition (Lee and Waite, 2018).

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Objective characteristics of neighborhoods, such as crime rates, access to amenities and neighborhood socioeconomic status, are often used to assess both neighborhood quality and the accessibly of resources in public health studies (Lee and Waite, 2018; Whitley et al., 2022). For example, in the French Three City Cohort, a population-based prospective study, women who lived in a deprived neighborhood—defined as having a low median income—had an increased risk of developing dementia and Alzheimer's disease relative to those living in non-deprived neighborhoods (Letellier et al., 2018). In a cross-sectional study of 21,008 adults aged 65 years and older from Hong Kong, more walkable neighborhoods, measured by proximity to frequently-used amenities, were associated with 3.5% lower prevalence of dementia relative to the least walkable neighborhoods (Guo, Chan, Chang, Liu, & Yip, 2019). Subjective characteristics of neighborhoods - residents' perceptions of their neighborhood environment - can be equally or more important in determining health outcome, as they directly reflect the mental and emotional responses to the environment which are not always captured by objective measures (Hong et al., 2022; Lee and Waite, 2018; Muñoz et al., 2020). Feelings of safety, cleanliness, and social support can influence leisure-time physical activity and chronic stress (Robinette et al., 2021; Tucker-Seeley et al., 2009). A sense of neighborhood belonging, and the friendliness of neighbors can influence social connectedness and feelings of loneliness (Breedvelt et al., 2022; Seifert, 2020). These factors collectively contribute to social engagement and overall mental health and are critical in maintaining cognitive function. (Iso-Markku et al., 2024; Kulshreshtha et al., 2023; Yu et al., 2023).

Genetics also play a major role in the risk of developing cognitive impairment and dementia (Fan et al., 2019; Sapkota and Dixon, 2018). Variation in the Apolipoprotein E (APOE) gene is a major genetic risk factor for Alzheimer's disease (Carmona et al., 2018). There are three major gene variants of the APOE gene, the  $\epsilon 2$ ,  $\epsilon 3$ , and  $\epsilon 4$  alleles (Carmona et al., 2018). At later ages, those with one copy of the APOE- $\epsilon 4$  allele have approximately three times increased risk of Alzheimer's disease, and those with two copies of  $\epsilon 4$  have 8-14 times increased risk, compared to the  $\epsilon 3/\epsilon 3$  genotype (Fan et al., 2019). However, genetics alone are neither sufficient nor necessary to cause dementia and it is important to understand the interplay between genetics and other factors on the risk of developing cognitive impairment.

Both genetic and environmental factors together contribute to the risk of cognitive impairment (Smith et al., 2021). Gene-by-environment interactions occur when the effect of an environment is dependent on the genotype of the individual (Kraft and Aschard, 2015). For example, in a longitudinal study of primary care patients aged 75 years or older, those with both the *APOE-*ε4 allele and low physical activity (defined as less than one physical activity per week) had a higher conversion rate (21.5%) to dementia and Alzheimer's disease, as well as a higher relative risk (relative risk: 3.02, 95% CI: 2.07, 4.42) of dementia and Alzheimer's disease, compared to those who had only one of the risk factors present (Luck et al., 2014). Investigating gene-by-environment interactions, involving neighborhoods and genetic risk factors for dementia, enhances our understanding of the manifestation of diseases and significantly impact precision medicine by enabling targeted risk prevention for individuals highly susceptible to specific environmental effects (Lau et al., 2023; Nakamura et al., 2016).

In this study, we conducted a Cox proportional hazards analysis using data from participants of European and African genetic ancestries in the United States Health and Retirement Study. Our goal was to examine the associations between perceived neighborhood characteristics and incident cognitive impairment. We categorized cognitive impairment as 1) any cognitive impairment (CIND or dementia), 2) CIND, or 3) dementia. We stratified analyses by genetic ancestry group since the polygenic scores are on different scales due to the genetic architecture of the samples. Additionally, we assessed whether the association between perceived neighborhood characteristics and cognitive impairment was modified by Alzheimer's disease polygenic score.

#### Method

# Health and Retirement Study

The Health and Retirement Study is a nationally representative, longitudinal panel study of people in the United States 50 years and older (Juster and Suzman, 1995; Sonnega et al., 2014). The Health and Retirement Study is funded by the National Institute on Aging (NIA U01AG009740) and the Social Security Administration. The Institute for Social Research at the University of Michigan conducts the Health and Retirement study. Data are collected through in-person and telephone interviews in waves occurring every two years since the study's start in 1992. To maintain its nationally representative status, the sample of participants is replenished every six years with new cohorts.

#### Neighborhood Measures

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Half of the Health and Retirement Study participants in 2008 were randomly selected to answer questions on their neighborhoods, while the other half were asked these questions during the 2010 wave (Sonnega et al., 2014). In our analysis, we established a baseline for participants based in the wave in which they were interviewed for the neighborhood questions (either 2008 or 2010). Participants were asked to rate aspects of their neighborhood as a part of a leave-behind questionnaire. Neighborhoods were defined as a participant's 'local area' or everywhere 'within a 20-minute walk or about a mile of their house.' Participant-evaluated neighborhood characteristics include: 1) There is no problem with vandalism and graffiti in this area/Vandalism and graffiti are a big problem in this area, 2) Most people in this area can be trusted/Most people in this area can't be trusted, 3) People feel safe walking alone in this area after dark/People would be afraid to walk alone in this area after dark, 4) Most people in this area are friendly/Most people in this area are unfriendly, 5) This area is kept very clean/This area is always full of rubbish and litter, 6) There are no vacant houses or storefronts in this area/There are many vacant or deserted houses or storefronts in this area. 7) People feel that they are part of/don't belong in this area. Participants were instructed to choose a value of one to seven for each of the questions, with one corresponding to the first response scale and seven corresponding to the latter response scale of each question. The responses to each neighborhood question were standardized (mean=0, standard deviation=1). Given correlations among responses to these seven questions, we created a subjective neighborhood disadvantage index using principal components analysis (Maćkiewicz and Ratajczak, 1993) to identify factors representing the most variation in the neighborhood question responses. Higher subjective neighborhood

disadvantage indexes indicate more disadvantaged neighborhoods. Secondary analyses considered a dichotomous version of the subjective neighborhood disadvantage index, with scores of 0 or below indicating the least disadvantaged neighborhoods and scores above 0 indicating the most disadvantaged neighborhoods. Additionally, we conducted supplemental analyses using each neighborhood characteristic as a separate exposure.

## **Cognitive Status**

The Health and Retirement Study collects information on participants' cognition in every data collection wave. We assessed participants' cognitive function at baseline and followed up with up to five waves of cognitive assessments over the subsequent ten years, from 2010 to 2018 for those with a 2008 baseline, and from 2012 to 2020 for those with a 2010 baseline. The Health and Retirement Study cognitive assessments include ten word immediate and delayed recall, serial 7s subtraction, counting backwards, object naming and recall of date and president and vice-president. These tests assess memory, working memory, attention and processing speed, language, and orientation and are administered via telephone (Wallace et al., 2005).

We used the Health and Retirement Study Imputation of Cognitive Functioning Measures data which provides cleaned and imputed cognitive function assessment scores (McCammon et al., 2023). Proxy respondents were excluded from our study sample at each wave. To categorize cognitive status in the Health and Retirement Study, we used the Langa-Weir approach, which uses a composite score of 0-27 from the cognitive assessments available in the Health and Retirement Study (excluding

orientation and naming objects). Individuals with scores from 0-6 were categorized as having dementia, 7-11 as CIND, and 12-27 as normal cognition (Crimmins et al., 2011).

# Polygenic score for Alzheimer's disease

The Health and Retirement Study collected saliva samples in 2006, 2008, 2010, or 2012 for DNA processing. In 2006, the mouthwash collection method was used, then from 2008 on, the Oragene DNA Collection Kit (OG250) was used. Approximately 2.4 million single nucleotide polymorphisms (SNPs) were measured using the Illumina HumanOmni2.5 BeadChip array (HumanOmni2.5-4v1, HumanOmni2.5-8v1). The University of Washington Genetics Coordinating Center performed genotyping quality control. SNPs were aligned to genome build 37/hg 19, phased using SHAPEIT2, and genetic principal components were calculated with HapMap controls (Patterson et al., 2006; Price et al., 2006). Imputation was conducted by the University of Washington Genetics Coordinating Center using IMPUTE2, to impute approximately 21 million SNPs to the 1000 Genomes Project cosmopolitan reference panel phase 3 version 5 (Weir, 2013). Genetic data for the Health and Retirement Study is available through application to the National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (https://dss.niagads.org/datasets/ng00153/).

The Health and Retirement Study used both self-identified race/ethnicity and ancestral genetic similarity to ascertain the African and European ancestries analytic samples. To account for population stratification within the two broad ancestries groups, local genetic principal components were calculated within each group and used in downstream analyses, provided by the Health and Retirement Study (Ware et al., 2021; Weir, 2013).

A polygenic score provides a quantitative summary measure of the genetic predisposition to express a the given trait (Sugrue and Desikan, 2019). The Health and Retirement Study provides polygenic scores from the International Genomics of Alzheimer's Project (IGAP) using SNPs associated with Alzheimer's disease at two genome-wide association p-value thresholds (pT): pT=0.01 and pT=1.0 (Alzheimer Disease Genetics Consortium (ADGC), et al., 2019). In this study, we used a p-value threshold of pT=0.01 and did not include linkage disequilibrium in the scores (i.e. no pruning algorithms). The APOE gene region (start: 43.38 megabases, stop: 45.43 megabases, build hg37) was removed from the polygenetic score because including it through weighted variants was insufficient to capture the substantial risk attributed to this region (Ware et al., 2019). Therefore, we treated the APOE region as a separate covariate to better account for its independent effect on dementia risk. Our primary analysis used z-score standardized polygenic scores (mean=0, standard deviation=1) within each genetic ancestry group. In subsequent analyses, we dichotomized the polygenic score for Alzheimer's disease without the APOE region at the 75th percentile to represent those in the highest quartile of genetic risk for Alzheimer's disease (Lee et al., 2024).

## **Covariate Measures**

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

We selected covariates that could be confounders of the association between neighborhood characteristics and cognitive status, based on prior evidence (Hale et al., 2020; Wang et al., 2022). Covariates were assessed at the analytical baseline (2008 or 2010) and were: age (continuous, in years), sex (male; female) highest educational attainment (above high school/GED; high school/GED; less than high school/GED),

subjective social status (self-reported standing on a ladder representing "society", continuous range 1 [low] to 10 [high]) (Adler et al., 2000), and poverty status, defined as whether household income was below the US Census poverty threshold (yes; no).

Additionally, we included an indicator variable for baseline wave (wave 2008; wave 2010) to account for potential cohort differences.

In sensitivity analyses, we considered the additional potential confounders of smoking (current, former, never), alcohol consumption (number of drinks/day when drinks), history of type 2 diabetes (yes, no), depressive symptoms (continuous), body mass index (BMI; continuous, in kg/m²), and number of physician-diagnosed chronic medical conditions (0, 1-2, 3 or more of the following: high blood pressure, diabetes, cancer, lung disease, heart disease, stroke, psychiatric problems, and arthritis), all measured at the analytical baseline (2008 or 2010). We considered these covariates in a sensitivity analysis rather than the main analysis, as although they have been associated with cognitive status (Gutwinski et al., 2018; Kim et al., 2019; Ohara et al., 2015; Qizilbash et al., 2015), they are time-varying and could be influenced by neighborhood factors. Therefore, these variables may lie on the causal pathway rather than serve as confounders.

#### Sample Selection

Eligible Health and Retirement Study participants were those who were interviewed in the 2008 and 2010 waves with complete neighborhood data (n=14,562). Then, we excluded participants with incomplete genetic (n=5,220), cognition (n=717), and covariate data (n=717) (Figure 1, Supplemental Table 1). Additionally, we excluded participants with dementia at baseline (N=148) from analyses where dementia

was the outcome. For analyses of any cognitive impairment (CIND and dementia), participants with CIND and dementia at baseline (N=1,082) were excluded. In CIND - specific analyses, we further excluded participants who developed dementia during follow-up without prior records of CIND (N=80) (Figure 1, Supplemental Table 1).

## Statistical Analysis

All the analyses were stratified by genetic ancestry (European ancestries and African ancestries). In bivariate analyses, we described the distributions of variables by cognitive functions using t-test (mean, SD) for continuous variables and chi-square test (count, %) for categorical variables. We similarly tested for differences between the included and excluded sample to note selection bias in the included sample.

We used Cox proportional hazard modeling to examine the associations between the subjective neighborhood disadvantage index and incident cognitive impairment, with effect modification by Alzheimer's disease polygenic score. In model 1, we include adjustments for sociodemographic factors (baseline age, sex, education, poverty status, subjective social status), *APOE*-ε4 carrier status, and baseline year indicator. Model 2 included additional adjustment for Alzheimer's disease polygenic score and genetic principal components. Model 3 further tested the interaction between the subjective neighborhood disadvantage index and Alzheimer's disease polygenic score. The subjective neighborhood disadvantage index, covariates, and supplementary variables were measured at baseline, with cognitive function assessed at baseline and across five follow-up waves over 10 years.

The following fully adjusted model was fitted to our dataset:

 $\lambda(t|X) = \lambda_0(t) exp(\beta_1 Neighborhood + \beta_2 PGS\_AD + \beta_3 (Neighborhood \times PGS\_AD) + \beta_4 Covariates)$ 

where  $\lambda(t|X)$  is the hazard function at time t given covariates X, and  $\lambda_0(t)$  is the baseline hazard at time t. We performed three separate comparisons using this model specification stratified by ancestries: 1) any incident cognitive impairment (CIND or dementia) as the outcome compared to normal cognition, 2) incident CIND as the outcome compared to normal cognition and 3) incident dementia as the outcome compared to no dementia, where "no dementia" includes both normal cognition and CIND. This approach maintains sample size by keeping individuals who developed CIND during follow-up, who have a higher risk of progressing to dementia, in the reference group until dementia onset. We considered P values <0.05 as indicating statistical significance.

We conducted analyses in SAS (9.4 version) and R statistical software (4.3.3 version).

#### Relative excess risk due to interaction

Additive interaction, a more relevant public health measure than multiplicative interaction, is often emphasized in epidemiology because it reflects the absolute difference in risk associated with combined exposures (Blot and Day, 1979; VanderWeele and Knol, 2014). Therefore, we calculated both multiplicative and additive interaction in the study. To assess additive interaction, we evaluated Cox proportional hazard models using dichotomized subjective neighborhood disadvantage index and Alzheimer's disease polygenic score. We then calculated relative excess risk due to interaction (RERI), to further elucidate the additive interaction between subjective neighborhood disadvantage index and Alzheimer's disease polygenic score on cognitive

impairment, due to its outstanding performance in Cox proportional hazard models (Li and Chambless, 2007). The RERI was calculated using the "epiR" package (Stevenson and Sergeant, 2008) in R statistical software (4.3.3 version). A positive RERI indicates a positive interaction or more than additivity, zero indicates no interaction, and a negative value indicates negative interaction or less than additivity (Knol et al., 2011).

# Sensitivity Analysis

In our first sensitivity models, we included a third set of variables as covariates - smoking status, alcohol consumption, BMI, diabetes, number of chronic conditions, and depression - which are time-varying factors that may lie on the causal pathway rather than act as confounders. Additionally, to determine if any individual neighborhood factor (perceived safety, trust, friendly, cleanness, vandalism, vacant, belonging - each represented by one of the seven questions in the neighborhood measures) drives the observed associations, we evaluated each individual neighborhood factor as exposures in modeling.

#### **Results**

# Descriptive analysis

In our study sample, participants who developed cognitive impairment tended to be older, female, have higher subjective neighborhood disadvantage indexes (indicating lower perceived safety, friendliness and environment), more likely to have lower education levels, and reported lower subjective social status (**Table 1**). The sample distribution, stratified by genetic ancestries, included 703 participants of African ancestries and 6,123 of European ancestries (N=6,826) for cognitive impairment

sample; 695 of African ancestries and 6,051 of European ancestries (N=6,746) for CIND sample; and 971 of African ancestries and 6,789 of European ancestries (N=7,760) for dementia sample (Figure 1, Supplemental Table 2). Additionally, individuals' responses to the seven neighborhood characteristics were correlated (Figure 2).

## **European Ancestries Sample**

## **Multivariable Analysis**

In the European ancestries sample, each standard deviation increase in the subjective neighborhood disadvantage index was associated with an 9% higher risk of developing any cognitive impairment (95% CI: 1.03, 1.15), an 8% higher risk of CIND (95% CI: 1.02-1.14), and a 13% higher risk of dementia (95% CI: 1.02-1.24) in the fully adjusted model (Table 2, Model 3). In the fully adjusted models, each standard deviation increase in the Alzheimer's disease polygenic score was associated with a 10% increased risk of any cognitive impairment and CIND (95% CI: 1.05-1.16). The Alzheimer's disease polygenic score was not significantly associated with dementia. No significant multiplicative interaction was found between the subjective neighborhood disadvantage index and Alzheimer's disease polygenic score for any of the outcomes in the European ancestries sample (Table 2).

## **RERI Analysis**

In models using dichotomous exposures (subjective neighborhood disadvantage index and Alzheimer's disease polygenic score), individuals living in the more disadvantaged neighborhoods had a 21% higher risk of any cognitive impairment (95% CI: 1.08-1.36), a 20% higher risk of CIND (95% CI: 1.06-1.35), and a 34% higher risk of

dementia (95% CI: 1.07-1.68) compared to those in the least disadvantaged neighborhoods (Supplemental Table 3). Participants with an Alzheimer's disease polygenic score in the top 25% of the sample had a 12% higher risk of developing any cognitive impairment (95% CI: 1.01-1.25). However, no significant associations were observed between the dichotomous Alzheimer's disease polygenic score and the risk of CIND (HR: 1.13; 95% CI: 0.99-1.30) or dementia (HR: 1.20; 95% CI: 0.92-1.57). Additionally, we did not observe significant additive interaction between the dichotomous subjective neighborhood disadvantage index and Alzheimer's disease polygenic score for any cognitive impairment (RERI: -0.02; 95% CI: -0.31-0.27), CIND (RERI: -0.03; 95% CI: -0.32-0.27), or dementia (RERI: 0.01; 95% CI: -0.61-0.63) (Supplemental Table 3).

# African Ancestries Sample

#### Multivariable Analysis

We observed that a one standard deviation increase in the subjective neighborhood disadvantage index was associated with a 5% higher risk of any cognitive impairment (95% CI: 0.94-1.17), a 4% higher risk of CIND (95% CI: 0.93-1.17), and a 3% higher risk of dementia (95% CI: 0.90-1.20 in the fully adjusted model; however, these associations were not statistically significant (Table 2). No significant multiplicative interaction was observed between the subjective neighborhood disadvantage index and Alzheimer's disease polygenic score in this sample.

## **RERI Analysis**

Similarly, in the RERI models with dichotomized exposures, living in the more disadvantaged neighborhoods was associated with higher risk of developing cognitive impairment, while the association was not significant (Supplemental Table 2). In addition, we found no evidence of additive interaction between the subjective neighborhood disadvantage index and Alzheimer's disease polygenic score for any cognitive impairment, CIND, or dementia in the African ancestries sample. (Supplemental Table 3).

## Sensitivity Analysis

To test the robustness of our models, we added several sensitivity covariates including smoking, alcohol consumption, BMI, diabetes, chronic conditions, and depression (Supplemental Table 4). After adjustment for sensitivity variables, the associations between subjective neighborhood disadvantage index and Alzheimer's disease polygenic score with the risk of any cognitive impairment, CIND and dementia remained robust in the European ancestries sample (Supplemental Table 4). Both multiplicative and additive interaction effects between the polygenic score for Alzheimer's disease and subjective neighborhood disadvantage index were nonsignificant (Table 2, Supplemental Table 3). In addition, all main and interaction effects of subjective neighborhood disadvantage index and Alzheimer's disease polygenic score remained non-significant in the African ancestries sample (Table 2, Supplemental Table 3).

To examine each dimension of neighborhood, we tested each neighborhood factor separately. In the European ancestries samples, when accounting for age, gender, education, poverty, *APOE*-ε4, subjective social status, and genetic principal

components in Cox models; neighborhood safety, trust, friendliness, cleanliness, vandalism, and belonging were all individually associated with higher risk of any cognitive impairment, CIND, and dementia in the European ancestries sample (Supplemental Table 5). Only neighborhood friendliness was significantly associated with risk of any cognitive impairment and CIND in the African ancestries sample (Supplemental Table 5).

## **Discussion**

Using data from a population-based, longitudinal study of older adults in the United States, we found that living in a more disadvantaged neighborhood was associated with a higher risk of developing incident cognitive impairment in European ancestries. Further, the Alzheimer's disease polygenic score was associated with cognitive impairment in individuals of European ancestries. However, there was no evidence of effect modification between the Alzheimer's disease polygenic score and subjective neighborhood disadvantage index on cognitive impairment, whether evaluated on the multiplicative or additive scale. This suggests that neighborhood characteristics influence cognitive impairment risk independent of genetic predisposition - Alzheimer's disease polygenic score. These findings underscore the significant role of neighborhood factors in cognitive impairment and highlight the need for examining targeted interventions in disadvantaged communities to potentially mitigate cognitive decline.

## **European Ancestries Findings and Consistency**

We observed that perceived neighborhood disadvantage (higher subjective neighborhood disadvantage index) was associated with an increased risk of cognitive impairment in the European ancestries sample. This finding aligns with existing literature. For example, a population-based cross-sectional study of 10,289 middle-aged and older adults indicated that a perceived traffic issue and lack of adequate parks were linked to worse cognitive function (Sylvers et al., 2022). In the National Social Life, Health, and Aging Project, higher levels of perceived neighborhood danger (1 mile radius from the home, or within a 20 minute walk of the home) were associated with lower cognitive function, while residents of more cohesive neighborhoods exhibited better cognitive performance (Lee and Waite, 2018). Similarly, a community-level study conducted in Korea with 1,974,944 participants over 50 years of age found that higher community-level social trust is associated with a reduced risk of dementia (Hong et al., 2022). In sensitivity analyses where each perceived neighborhood characteristic was considered individually, neighborhood safety, cleanliness, trust, cleanliness, vandalism and belonging were significantly associated with the risk of cognitive impairment in the European ancestries sample. This indicates that both perceived neighborhood environment and neighborhood connections are crucial risk factors for cognitive health.

# African Ancestries Findings and Consistency

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

The association between subjective neighborhood disadvantage index and cognitive impairment was also observed in African ancestries participants, but the estimate may be imprecise, with a 95% confidence interval crossing the null. We did note a significant association between higher perceived neighborhood friendliness and the lower risk of cognitive impairment in the African ancestries participants. Existing

studies indicate that, despite the significant growth of the middle-class Black Americans in the United States, many continue to live in inferior neighborhoods compared to white counterparts (Egede et al., 2023; Hobson-Prater and Leech, 2012; Sampson et al., 2002). This suggests that even with rising income levels, African ancestry communities still encounter structural inequalities that limit their access to better housing and living environments. Furthermore, these inequalities extend beyond housing to areas like education, employment, and healthcare, affecting the overall health of minority populations (Egede et al., 2024). Neighborhood friendliness and social support, while not the only factor, could play a critical role in mitigating the stressors that contribute to cognitive impairment in African ancestry population (Choi et al., 2023). Additionally, the nature of the HRS may introduce selective survival bias, as those experiencing a higher disease burden are less likely to be included or remain in the study (Czeisler et al., 2021), potentially underestimating the impact of disadvantaged neighborhoods on cognitive impairment, biasing results towards the null. This issue maybe more pronounced among racial minority groups, who are disproportionately affected by cumulative disadvantage, chronic disease, and premature mortality compared to Non-Hispanic White populations (Angel and Angel, 2006; Go et al., 2014).

## Neighborhood characteristics

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

We utilized a subjective neighborhood disadvantage index derived through principal component analysis to present neighborhood characteristics. While this approach reduces dimensionality by integrating correlated variables into a composite measure, it may not fully capture the variability across neighborhood characteristics. To address this limitation, we conducted sensitivity analyses by examining each

neighborhood characteristic individually, providing a more nuanced perspective.

Additionally, the index included only seven dimensions of subjective neighborhood characteristics, which may not comprehensively reflect the range of relevant factors.

Future research should incorporate additional variables, such as walkability, aesthetic appeal, and neighborhood diversity, to achieve a more complete assessment.

Furthermore, we measured neighborhood factors and covariates only at baseline.

Although neighborhood characteristics tend to be relatively stable – especially in this sample, the results would be more precise and dynamic if neighborhood factors were included as time-varying variables in future analyses. Our focus on subjective neighborhood characteristics is a strength, as these measures capture direct mental and emotional responses to the environment. Nevertheless, future research should also incorporate objective neighborhood measures to complement and validate our findings.

#### Genetic Factors

We found the association between the Alzheimer's disease polygenic score and cognitive impairment only among the European ancestries participants. Although previous studies have identified significant associations between the Alzheimer's disease polygenic score and cognitive impairment in both European and African ancestries populations (Altmann et al., 2020; Axelrud et al., 2018; Leonenko et al., 2019), some findings suggest that these associations may depend on the inclusion of the *APOE* locus (Harris et al., 2014; Manzali et al., 2022; Marden et al., 2016; Verhaaren et al., 2013). We observed a significant association between *APOE*-ε4 status and cognitive impairment in both European and African ancestries samples. This is consistent with other study, which found that participants with any APOE-ε4 allele had

2.42 times higher odds of developing dementia in European ancestry samples and 1.77 times higher odds in African ancestry samples compared to those without the allele (Bakulski et al., 2021). The robust association of APOE-ε4 with cognitive impairment across diverse populations reinforces its role as a significant genetic risk factor for Alzheimer's disease and related cognitive declines. (Slooter et al., 1998). Moreover, while the limited sample size of African ancestry participants may reduce the statistical power to detect significant associations, additional factors related to ancestry-specific polygenic risk scores also warrant consideration. Specifically, the polygenic risk scores used in this analysis were derived from GWASs primarily conducted in European ancestry populations (Wang et al., 2023). Such GWASs often have limited transferability to non-European populations due to differences in linkage disequilibrium, minor allele frequency, heritability, and genetic correlation across ancestries (Wang et al., 2023). Additionally, the included analytic European ancestries sample had a lower Alzheimer's disease polygenic score than the excluded sample due to missingness of covariates. This pattern raises the possibility of selection bias, which could potentially lead to underestimation of the true association between the Alzheimer's disease polygenic score and cognitive impairment in the European ancestries.

# Strengths

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

Our study stratified by ancestries, allowing for the examination of interactions between genetic and neighborhood factors within specific population subgroups. Secondly, we employed longitudinal cognitive assessments to evaluate the risk of developing cognitive impairment over time which is a strength compared to cross-sectional studies. Additionally, we incorporated subjective measurements of

neighborhood factors across seven dimensions: vandalism, cleanliness, vacancies, trust, belonging, friendliness, and safety. This detailed exploration enables a nuanced understanding of how various neighborhood aspects contribute to cognitive health outcomes over time.

# Conclusion

Our study investigated the relationship between seven subjective neighborhood characteristics—both collectively and individually—and genetic factors on the risk of cognitive impairment. We found that living in a more disadvantaged neighborhood and having a higher genetic risk for Alzheimer's disease were significantly associated with an increased risk of developing any cognitive impairment, CIND, and dementia among European ancestries participants. However, the association of neighborhood characteristics on cognitive impairment risk did not vary based on genetic risk for Alzheimer's disease. Given the evidence provided from this study and previous literature, we suggest that neighborhood is an important modifiable risk factor for cognitive health. Public health interventions should prioritize improving neighborhood safety, cleanliness, and fostering community connections (trust, friendliness and belonging), as these factors are significantly associated with the risk of cognitive impairment. Future research should incorporate longitudinal assessments of neighborhood characteristics to enhance the robustness of findings.

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

**CRediT** authorship contribution statement Erin B. Ware (conceptualization, methodology, resources, project administration, data curation, writing-original draft, writing-review & editing, supervision, funding acquisition), **Peiyao Zhu** (methodology, validation, data curation, formal analysis, writing-original draft, writing-review & editing), Grace Noppert (methodology, writing-review & editing), Mingzhou Fu (validation, writing-review & editing), Mikayla Benbow (formal analysis, methodology, data curation, writing-original draft, writing-review & editing), Lindsay Kobayashi (methodology, resources, writing-review & editing, supervision), Lindsay Ryan (methodology, data curation, writing-review & editing, supervision, funding acquisition), Kelly M. Bakulski (conceptualization, methodology, resources, data curation, writing-original draft, writing-review & editing, project administration, supervision, funding acquisition), **Declaration of interest** None. Acknowledgements We thank the participants and staff of the Health and Retirement Study. The Health and Retirement Study is supported by the National Institute on Aging (U01 AG009740). This analysis was supported by the National Institute on Aging (R01 AG055406, R01 AG067592, P30 AG072931, R01 AG075719, R01AG070953).

#### References

530

531

532

533

534

535 536

537

538

539

540

541

542

543

544

545

546

547

548

549

550 551

552

553

554

555 556

557

558

559

560

561

562

563

564

565

566

567

568

569 570

571

572

573

574 575

576

577

578

579

Adler, N.E., Epel, E.S., Castellazzo, G., Ickovics, J.R., 2000. Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy, White women. Health Psychol. 19, 586-592. https://doi.org/10.1037/0278-6133.19.6.586 Altmann, A., Scelsi, M.A., Shoai, M., De Silva, E., Aksman, L.M., Cash, D.M., Hardy, J., Schott, J.M., Alzheimer's Disease Neuroimaging Initiative, 2020. A comprehensive analysis of methods for assessing polygenic burden on Alzheimer's disease pathology and risk beyond APOE. Brain Commun. 2, fcz047. https://doi.org/10.1093/braincomms/fcz047 Alzheimer Disease Genetics Consortium (ADGC), The European Alzheimer's Disease Initiative (EADI), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE), Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer's Disease Consortium (GERAD/PERADES), Kunkle, B.W., Grenier-Boley, B., Sims, R., Bis, J.C., Damotte, V., Naj, A.C., Boland, A., Vronskaya, M., Van Der Lee, S.J., Amlie-Wolf, A., Bellenguez, C., Frizatti, A., Chouraki, V., Martin, E.R., Sleegers, K., Badarinarayan, N., Jakobsdottir, J., Hamilton-Nelson, K.L., Moreno-Grau, S., Olaso, R., Raybould, R., Chen, Y., Kuzma, A.B., Hiltunen, M., Morgan, T., Ahmad, S., Vardarajan, B.N., Epelbaum, J., Hoffmann, P., Boada, M., Beecham, G.W., Garnier, J.-G., Harold, D., Fitzpatrick, A.L., Valladares, O., Moutet, M.-L., Gerrish, A., Smith, A.V., Qu, L., Bacq, D., Denning, N., Jian, X., Zhao, Y., Del Zompo, M., Fox, N.C., Choi, S.-H., Mateo, I., Hughes, J.T., Adams, H.H., Malamon, J., Sanchez-Garcia. F., Patel, Y., Brody, J.A., Dombroski, B.A., Naranjo, M.C.D., Daniilidou, M., Eiriksdottir, G., Mukherjee, S., Wallon, D., Uphill, J., Aspelund, T., Cantwell, L.B., Garzia, F., Galimberti, D., Hofer, E., Butkiewicz, M., Fin, B., Scarpini, E., Sarnowski, C., Bush, W.S., Meslage, S., Kornhuber, J., White, C.C., Song, Y., Barber, R.C., Engelborghs, S., Sordon, S., Voijnovic, D., Adams, P.M., Vandenberghe, R., Mayhaus, M., Cupples, L.A., Albert, M.S., De Deyn, P.P., Gu, W., Himali, J.J., Beekly, D., Squassina, A., Hartmann, A.M., Orellana, A., Blacker, D., Rodriguez-Rodriguez, E., Lovestone, S., Garcia, M.E., Doody, R.S., Munoz-Fernadez, C., Sussams, R., Lin, H., Fairchild, T.J., Benito, Y.A., Holmes, C., Karamujić-Čomić, H., Frosch, M.P., Thonberg, H., Maier, W., Roshchupkin, G., Ghetti, B., Giedraitis, V., Kawalia, A., Li, S., Huebinger, R.M., Kilander, L., Moebus, S., Hernández, I., Kamboh, M.I., Brundin, R., Turton, J., Yang, Q., Katz, M.J., Concari, L., Lord, J., Beiser, A.S., Keene, C.D., Helisalmi, S., Kloszewska, I., Kukull, W.A., Koivisto, A.M., Lynch, A., Tarraga, L., Larson, E.B., Haapasalo, A., Lawlor, B., Mosley, T.H., Lipton, R.B., Solfrizzi, V., Gill, M., Longstreth, W.T., Montine, T.J., Frisardi, V., Diez-Fairen, M., Rivadeneira, F., Petersen, R.C., Deramecourt, V., Alvarez, I., Salani, F., Ciaramella, A., Boerwinkle, E., Reiman, E.M., Fievet, N., Rotter, J.I., Reisch, J.S., Hanon, O., Cupidi, C., Andre Uitterlinden, A.G., Royall, D.R., Dufouil, C., Maletta, R.G., De Rojas, I., Sano, M., Brice, A., Cecchetti, R., George-Hyslop, P.S., Ritchie, K., Tsolaki, M., Tsuang, D.W., Dubois, B., Craig, D., Wu, C.-K., Soininen, H., Avramidou, D., Albin, R.L., Fratiglioni, L., Germanou, A., Apostolova, L.G., Keller, L., Koutroumani, M., Arnold, S.E., Panza, F., Gkatzima, O., Asthana, S., Hannequin, D., Whitehead, P., Atwood, C.S., Caffarra, P., Hampel, H., Quintela, I., Carracedo, Á., Lannfelt, L., Rubinsztein, D.C., Barnes, L.L., Pasquier, F., Frölich, L., Barral, S., McGuinness, B., Beach, T.G., Johnston, J.A., Becker, J.T., Passmore, P., Bigio, E.H., Schott, J.M., Bird, T.D., Warren, J.D., Boeve, B.F., Lupton, M.K., Bowen, J.D., Proitsi, P., Boxer, A., Powell, J.F., Burke, J.R., Kauwe, J.S.K., Burns, J.M., Mancuso, M., Buxbaum, J.D., Bonuccelli, U., Cairns, N.J., McQuillin, A., Cao, C., Livingston, G., Carlson, C.S., Bass, N.J., Carlsson, C.M., Hardy, J., Carney, R.M., Bras, J., Carrasquillo, M.M., Guerreiro, R., Allen, M., Chui,

H.C., Fisher, E., Masullo, C., Crocco, E.A., DeCarli, C., Bisceglio, G., Dick, M., Ma, L.,

```
580
               Duara, R., Graff-Radford, N.R., Evans, D.A., Hodges, A., Faber, K.M., Scherer, M.,
581
               Fallon, K.B., Riemenschneider, M., Fardo, D.W., Heun, R., Farlow, M.R., Kölsch, H.,
               Ferris, S., Leber, M., Foroud, T.M., Heuser, I., Galasko, D.R., Giegling, I., Gearing, M.,
582
583
               Hüll, M., Geschwind, D.H., Gilbert, J.R., Morris, J., Green, R.C., Mayo, K., Growdon,
584
               J.H., Feulner, T., Hamilton, R.L., Harrell, L.E., Drichel, D., Honig, L.S., Cushion, T.D.,
585
               Huentelman, M.J., Hollingworth, P., Hulette, C.M., Hyman, B.T., Marshall, R., Jarvik,
586
               G.P., Meggy, A., Abner, E., Menzies, G.E., Jin, L.-W., Leonenko, G., Real, L.M., Jun,
587
               G.R., Baldwin, C.T., Grozeva, D., Karydas, A., Russo, G., Kaye, J.A., Kim, R., Jessen,
588
               F., Kowall, N.W., Vellas, B., Kramer, J.H., Vardy, E., LaFerla, F.M., Jöckel, K.-H., Lah,
589
               J.J., Dichgans, M., Leverenz, J.B., Mann, D., Levey, A.I., Pickering-Brown, S.,
590
               Lieberman, A.P., Klopp, N., Lunetta, K.L., Wichmann, H.-E., Lyketsos, C.G., Morgan, K.,
591
               Marson, D.C., Brown, K., Martiniuk, F., Medway, C., Mash, D.C., Nöthen, M.M., Masliah,
592
               E., Hooper, N.M., McCormick, W.C., Daniele, A., McCurry, S.M., Bayer, A., McDavid,
593
               A.N., Gallacher, J., McKee, A.C., Van Den Bussche, H., Mesulam, M., Brayne, C., Miller,
594
               B.L., Riedel-Heller, S., Miller, C.A., Miller, J.W., Al-Chalabi, A., Morris, J.C., Shaw, C.E.,
595
               Myers, A.J., Wiltfang, J., O'Bryant, S., Olichney, J.M., Alvarez, V., Parisi, J.E., Singleton,
596
               A.B., Paulson, H.L., Collinge, J., Perry, W.R., Mead, S., Peskind, E., Cribbs, D.H.,
597
               Rossor, M., Pierce, A., Ryan, N.S., Poon, W.W., Nacmias, B., Potter, H., Sorbi, S.,
598
               Quinn, J.F., Sacchinelli, E., Raj, A., Spalletta, G., Raskind, M., Caltagirone, C., Bossù,
599
               P., Orfei, M.D., Reisberg, B., Clarke, R., Reitz, C., Smith, A.D., Ringman, J.M., Warden,
600
               D., Roberson, E.D., Wilcock, G., Rogaeva, E., Bruni, A.C., Rosen, H.J., Gallo, M.,
601
               Rosenberg, R.N., Ben-Shlomo, Y., Sager, M.A., Mecocci, P., Saykin, A.J., Pastor, P.,
602
               Cuccaro, M.L., Vance, J.M., Schneider, J.A., Schneider, L.S., Slifer, S., Seeley, W.W.,
               Smith, A.G., Sonnen, J.A., Spina, S., Stern, R.A., Swerdlow, R.H., Tang, M., Tanzi, R.E.,
603
604
               Trojanowski, J.Q., Troncoso, J.C., Van Deerlin, V.M., Van Eldik, L.J., Vinters, H.V.,
605
               Vonsattel, J.P., Weintraub, S., Welsh-Bohmer, K.A., Wilhelmsen, K.C., Williamson, J.,
606
               Wingo, T.S., Woltjer, R.L., Wright, C.B., Yu, C.-E., Yu, L., Saba, Y., Pilotto, A., Bullido,
607
               M.J., Peters, O., Crane, P.K., Bennett, D., Bosco, P., Coto, E., Boccardi, V., De Jager,
608
               P.L., Lleo, A., Warner, N., Lopez, O.L., Ingelsson, M., Deloukas, P., Cruchaga, C., Graff,
609
               C., Gwilliam, R., Fornage, M., Goate, A.M., Sanchez-Juan, P., Kehoe, P.G., Amin, N.,
610
               Ertekin-Taner, N., Berr, C., Debette, S., Love, S., Launer, L.J., Younkin, S.G., Dartigues,
611
               J.-F., Corcoran, C., Ikram, M.A., Dickson, D.W., Nicolas, G., Campion, D., Tschanz, J.,
612
               Schmidt, H., Hakonarson, H., Clarimon, J., Munger, R., Schmidt, R., Farrer, L.A., Van
613
               Broeckhoven, C., C. O'Donovan, M., DeStefano, A.L., Jones, L., Haines, J.L., Deleuze,
614
               J.-F., Owen, M.J., Gudnason, V., Mayeux, R., Escott-Price, V., Psaty, B.M., Ramirez, A.,
615
               Wang, L.-S., Ruiz, A., Van Duijn, C.M., Holmans, P.A., Seshadri, S., Williams, J.,
616
               Amouyel, P., Schellenberg, G.D., Lambert, J.-C., Pericak-Vance, M.A., 2019. Genetic
617
               meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates
618
               Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430.
619
               https://doi.org/10.1038/s41588-019-0358-2
620
       Angel, J.L., Angel, R.J., 2006. Minority Group Status and Healthful Aging: Social Structure Still
```

Angel, J.L., Angel, R.J., 2006. Minority Group Status and Healthful Aging: Social Structure Stil Matters. Am. J. Public Health 96, 1152–1159. https://doi.org/10.2105/AJPH.2006.085530

621

622

623

- Anita Pothen Skaria, 2022. The economic and societal burden of Alzheimer disease: managed care considerations. Am. J. Manag. Care 28, S188–S196. https://doi.org/10.37765/ajmc.2022.89236
- Axelrud, L.K., Santoro, M.L., Pine, D.S., Talarico, F., Gadelha, A., Manfro, G.G., Pan, P.M.,
   Jackowski, A., Picon, F., Brietzke, E., Grassi-Oliveira, R., Bressan, R.A., Miguel, E.C.,
   Rohde, L.A., Hakonarson, H., Pausova, Z., Belangero, S., Paus, T., Salum, G.A., 2018.
   Polygenic Risk Score for Alzheimer's Disease: Implications for Memory Performance

and Hippocampal Volumes in Early Life. Am. J. Psychiatry 175, 555–563.
 https://doi.org/10.1176/appi.ajp.2017.17050529

- Bakulski, K.M., Vadari, H.S., Faul, J.D., Heeringa, S.G., Kardia, S.L.R., Langa, K.M., Smith,
   J.A., Manly, J.J., Mitchell, C.M., Benke, K.S., Ware, E.B., 2021. Cumulative Genetic Risk
   and *APOE* ε4 Are Independently Associated With Dementia Status in a Multiethnic,
   Population-Based Cohort. Neurol. Genet. 7, e576.
   https://doi.org/10.1212/NXG.000000000000576
  - Blot, W.J., Day, N.E., 1979. SYNERGISM AND INTERACTION: ARE THEY EQUIVALENT? Am. J. Epidemiol. 110, 99–100. https://doi.org/10.1093/oxfordjournals.aje.a112793
  - Breedvelt, J.J.F., Tiemeier, H., Sharples, E., Galea, S., Niedzwiedz, C., Elliott, I., Bockting, C.L., 2022. The effects of neighbourhood social cohesion on preventing depression and anxiety among adolescents and young adults: rapid review. BJPsych Open 8, e97. https://doi.org/10.1192/bjo.2022.57
  - Carmona, S., Hardy, J., Guerreiro, R., 2018. The genetic landscape of Alzheimer disease, in: Handbook of Clinical Neurology. Elsevier, pp. 395–408. https://doi.org/10.1016/B978-0-444-64076-5.00026-0
  - Choi, J., Han, S.H., Ng, Y.T., Muñoz, E., 2023. Neighborhood Cohesion Across the Life Course and Effects on Cognitive Aging. J. Gerontol. Ser. B 78, 1765–1774. https://doi.org/10.1093/geronb/gbad095
  - Crimmins, E.M., Kim, J.K., Langa, K.M., Weir, D.R., 2011. Assessment of Cognition Using Surveys and Neuropsychological Assessment: The Health and Retirement Study and the Aging, Demographics, and Memory Study. J. Gerontol. B. Psychol. Sci. Soc. Sci. 66B, i162–i171. https://doi.org/10.1093/geronb/gbr048
  - Czeisler, M.É., Wiley, J.F., Czeisler, C.A., Rajaratnam, S.M.W., Howard, M.E., 2021.
    Uncovering survivorship bias in longitudinal mental health surveys during the COVID-19 pandemic. Epidemiol. Psychiatr. Sci. 30, e45.
    https://doi.org/10.1017/S204579602100038X
  - Egede, L.E., Walker, R.J., Campbell, J.A., Linde, S., Hawks, L.C., Burgess, K.M., 2023. Modern Day Consequences of Historic Redlining: Finding a Path Forward. J. Gen. Intern. Med. 38, 1534–1537. https://doi.org/10.1007/s11606-023-08051-4
  - Egede, L.E., Walker, R.J., Williams, J.S., 2024. Addressing Structural Inequalities, Structural Racism, and Social Determinants of Health: a Vision for the Future. J. Gen. Intern. Med. 39, 487–491. https://doi.org/10.1007/s11606-023-08426-7
  - Fan, J., Tao, W., Li, X., Li, H., Zhang, J., Wei, D., Chen, Y., Zhang, Z., 2019. The Contribution of Genetic Factors to Cognitive Impairment and Dementia: Apolipoprotein E Gene, Gene Interactions, and Polygenic Risk. Int. J. Mol. Sci. 20, 1177. https://doi.org/10.3390/ijms20051177
  - Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Blaha, M.J., Dai, S., Ford, E.S., Fox, C.S., Franco, S., Fullerton, H.J., Gillespie, C., Hailpern, S.M., Heit, J.A., Howard, V.J., Huffman, M.D., Judd, S.E., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Mackey, R.H., Magid, D.J., Marcus, G.M., Marelli, A., Matchar, D.B., McGuire, D.K., Mohler, E.R., Moy, C.S., Mussolino, M.E., Neumar, R.W., Nichol, G., Pandey, D.K., Paynter, N.P., Reeves, M.J., Sorlie, P.D., Stein, J., Towfighi, A., Turan, T.N., Virani, S.S., Wong, N.D., Woo, D., Turner, M.B., 2014. Heart Disease and Stroke Statistics—2014 Update: A Report From the American Heart Association. Circulation 129. https://doi.org/10.1161/01.cir.0000441139.02102.80
- 676 Gutwinski, S., Schreiter, S., Priller, J., Henssler, J., Wiers, C., Heinz, A., 2018. Drink and Think: 677 Impact of Alcohol on Cognitive Functions and Dementia – Evidence of Dose-Related 678 Effects. Pharmacopsychiatry 51, 136–143. https://doi.org/10.1055/s-0043-118664

- Hale, J.M., Schneider, D.C., Mehta, N.K., Myrskylä, M., 2020. Cognitive impairment in the U.S.: Lifetime risk, age at onset, and years impaired. SSM - Popul. Health 11, 100577. https://doi.org/10.1016/j.ssmph.2020.100577
- Harris, S.E., Davies, G., Luciano, M., Payton, A., Fox, H.C., Haggarty, P., Ollier, W., Horan, M.,
   Porteous, D.J., Starr, J.M., Whalley, L.J., Pendleton, N., Deary, I.J., 2014. Polygenic
   Risk for Alzheimer's Disease is not Associated with Cognitive Ability or Cognitive Aging
   in Non-Demented Older People. J. Alzheimers Dis. 39, 565–574.
   https://doi.org/10.3233/JAD-131058

- Hobson-Prater, T., Leech, T.G.J., 2012. The Significance of Race for Neighborhood Social Cohesion: Perceived Difficulty of Collective Action in Majority Black Neighborhoods. J. Sociol. Soc. Welf. 39. https://doi.org/10.15453/0191-5096.3651
- Hong, J., Park, S.J., Lee, J.-K., Jeong, H.J., Oh, J., Choi, S., Jeong, S., Kim, K.H., Son, J.S., Park, S.M., 2022. Association between community-level social trust and the risk of dementia: A retrospective cohort study in the Republic of Korea. Front. Public Health 10, 913319. https://doi.org/10.3389/fpubh.2022.913319
- Hugo, J., Ganguli, M., 2014. Dementia and Cognitive Impairment. Clin. Geriatr. Med. 30, 421–442. https://doi.org/10.1016/j.cger.2014.04.001
- Iso-Markku, P., Aaltonen, S., Kujala, U.M., Halme, H.-L., Phipps, D., Knittle, K., Vuoksimaa, E., Waller, K., 2024. Physical Activity and Cognitive Decline Among Older Adults: A Systematic Review and Meta-Analysis. JAMA Netw. Open 7, e2354285. https://doi.org/10.1001/jamanetworkopen.2023.54285
- Juster, F.T., Suzman, R., 1995. An Overview of the Health and Retirement Study. J. Hum. Resour. 30, S7. https://doi.org/10.2307/146277
- Kim, J., Park, E., An, M., 2019. The Cognitive Impact of Chronic Diseases on Functional Capacity in Community-Dwelling Adults. J. Nurs. Res. 27, e3. https://doi.org/10.1097/jnr.0000000000000272
- Knol, M.J., VanderWeele, T.J., Groenwold, R.H.H., Klungel, O.H., Rovers, M.M., Grobbee, D.E., 2011. Estimating measures of interaction on an additive scale for preventive exposures. Eur. J. Epidemiol. 26, 433–438. https://doi.org/10.1007/s10654-011-9554-9
- Kraft, P., Aschard, H., 2015. Finding the missing gene–environment interactions. Eur. J. Epidemiol. 30, 353–355. https://doi.org/10.1007/s10654-015-0046-1
- Kulshreshtha, A., Alonso, A., McClure, L.A., Hajjar, I., Manly, J.J., Judd, S., 2023. Association of Stress With Cognitive Function Among Older Black and White US Adults. JAMA Netw. Open 6, e231860. https://doi.org/10.1001/jamanetworkopen.2023.1860
- Lau, M., Kress, S., Schikowski, T., Schwender, H., 2023. Efficient gene–environment interaction testing through bootstrap aggregating. Sci. Rep. 13, 937. https://doi.org/10.1038/s41598-023-28172-4
- Lee, H., Waite, L.J., 2018. Cognition in Context: The Role of Objective and Subjective Measures of Neighborhood and Household in Cognitive Functioning in Later Life. The Gerontologist 58, 159–169. https://doi.org/10.1093/geront/gnx050
- Lee, Y.C., Jung, S.-H., Shivakumar, M., Cha, S., Park, W.-Y., Won, H.-H., Eun, Y.-G., Biobank,
   P.M., Kim, D., 2024. Polygenic risk score-based phenome-wide association study of
   head and neck cancer across two large biobanks. BMC Med. 22, 120.
   https://doi.org/10.1186/s12916-024-03305-2
  - Leonenko, G., Sims, R., Shoai, M., Frizzati, A., Bossù, P., Spalletta, G., Fox, N.C., Williams, J., the GERAD consortium, Hardy, J., Escott-Price, V., 2019. Polygenic risk and hazard scores for Alzheimer's disease prediction. Ann. Clin. Transl. Neurol. 6, 456–465. https://doi.org/10.1002/acn3.716
- Letellier, N., Gutierrez, L., Carrière, I., Gabelle, A., Dartigues, J., Dufouil, C., Helmer, C., Cadot, E., Berr, C., 2018. Sex-specific association between neighborhood characteristics and

729 dementia: The Three-City cohort. Alzheimers Dement. 14, 473–482. 730 https://doi.org/10.1016/j.jalz.2017.09.015

- Li, R., Chambless, L., 2007. Test for Additive Interaction in Proportional Hazards Models. Ann. Epidemiol. 17, 227–236. https://doi.org/10.1016/j.annepidem.2006.10.009
- Luck, T., Riedel-Heller, S.G., Luppa, M., Wiese, B., Köhler, M., Jessen, F., Bickel, H., Weyerer, S., Pentzek, M., König, H.-H., Prokein, J., Ernst, A., Wagner, M., Mösch, E., Werle, J., Fuchs, A., Brettschneider, C., Scherer, M., Maier, W., 2014. Apolipoprotein E epsilon 4 genotype and a physically active lifestyle in late life: analysis of gene–environment interaction for the risk of dementia and Alzheimer's disease dementia. Psychol. Med. 44, 1319–1329. https://doi.org/10.1017/S0033291713001918
- Maćkiewicz, A., Ratajczak, W., 1993. Principal components analysis (PCA). Comput. Geosci. 19, 303–342. https://doi.org/10.1016/0098-3004(93)90090-R
- Manzali, S.B., Yu, E., Ravona-Springer, R., Livny, A., Golan, S., Ouyang, Y., Lesman-Segev, O., Liu, L., Ganmore, I., Alkelai, A., Gan-Or, Z., Lin, H.-M., Heymann, A., Schnaider Beeri, M., Greenbaum, L., 2022. Alzheimer's Disease Polygenic Risk Score Is Not Associated With Cognitive Decline Among Older Adults With Type 2 Diabetes. Front. Aging Neurosci. 14, 853695. https://doi.org/10.3389/fnagi.2022.853695
- Marden, J.R., Mayeda, E.R., Walter, S., Vivot, A., Tchetgen Tchetgen, E.J., Kawachi, I., Glymour, M.M., 2016. Using an Alzheimer Disease Polygenic Risk Score to Predict Memory Decline in Black and White Americans Over 14 Years of Follow-up. Alzheimer Dis. Assoc. Disord. 30, 195–202. https://doi.org/10.1097/WAD.000000000000137
- Matthews, K.A., Xu, W., Gaglioti, A.H., Holt, J.B., Croft, J.B., Mack, D., McGuire, L.C., 2019. Racial and ethnic estimates of Alzheimer's disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimers Dement. 15, 17–24. https://doi.org/10.1016/j.jalz.2018.06.3063
- McCammon, R.J., Fisher, G.G., Hassan, H., Faul, J.D., Rodgers, W.L., Weir, D.R., 2023. Health and Retirement Study Imputation of Cognitive Functioning Measures: 1992 2020.
- Morris, J.C., 2005. Mild cognitive impairment and preclinical Alzheimer's disease. Geriatrics Suppl, 9–14.
- Muñoz, E., Scott, S.B., Corley, R., Wadsworth, S.J., Sliwinski, M.J., Reynolds, C.A., 2020. The role of neighborhood stressors on cognitive function: A coordinated analysis. Health Place 66, 102442. https://doi.org/10.1016/j.healthplace.2020.102442
- Nakamura, S., Narimatsu, H., Sato, H., Sho, R., Otani, K., Kawasaki, R., Karasawa, S., Daimon, M., Yamashita, H., Kubota, I., Ueno, Y., Kato, T., Yoshioka, T., Fukao, A., Kayama, T., 2016. Gene–environment interactions in obesity: implication for future applications in preventive medicine. J. Hum. Genet. 61, 317–322. https://doi.org/10.1038/jhg.2015.148
- Nowrangi, M.A., Rao, V., Lyketsos, C.G., 2011. Epidemiology, Assessment, and Treatment of Dementia. Psychiatr. Clin. North Am. 34, 275–294. https://doi.org/10.1016/j.psc.2011.02.004
- Ohara, T., Ninomiya, T., Hata, J., Ozawa, M., Yoshida, D., Mukai, N., Nagata, M., Iwaki, T., Kitazono, T., Kanba, S., Kiyohara, Y., 2015. Midlife and Late-Life Smoking and Risk of Dementia in the Community: The Hisayama Study. J. Am. Geriatr. Soc. 63, 2332–2339. https://doi.org/10.1111/jgs.13794
- Patterson, N., Price, A.L., Reich, D., 2006. Population Structure and Eigenanalysis. PLoS Genet. 2, e190. https://doi.org/10.1371/journal.pgen.0020190
- Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D., 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909. https://doi.org/10.1038/ng1847
- Qizilbash, N., Gregson, J., Johnson, M.E., Pearce, N., Douglas, I., Wing, K., Evans, S.J.W., Pocock, S.J., 2015. BMI and risk of dementia in two million people over two decades: a

779 retrospective cohort study. Lancet Diabetes Endocrinol. 3, 431–436. 780 https://doi.org/10.1016/S2213-8587(15)00033-9

- Robinette, J.W., Piazza, J.R., Stawski, R.S., 2021. Neighborhood safety concerns and daily well-being: A national diary study. Wellbeing Space Soc. 2, 100047. https://doi.org/10.1016/j.wss.2021.100047
  - Sampson, R.J., Morenoff, J.D., Gannon-Rowley, T., 2002. Assessing "Neighborhood Effects": Social Processes and New Directions in Research. Annu. Rev. Sociol. 28, 443–478. https://doi.org/10.1146/annurev.soc.28.110601.141114
  - Sapkota, S., Dixon, R.A., 2018. A Network of Genetic Effects on Non-Demented Cognitive Aging: Alzheimer's Genetic Risk (CLU + CR1 + PICALM) Intensifies Cognitive Aging Genetic Risk (COMT + BDNF) Selectively for APOE □4 Carriers. J. Alzheimers Dis. 62, 887–900. https://doi.org/10.3233/JAD-170909
  - Seifert, A., 2020. Day-to-Day Contact and Help Among Neighbors Measured in the Natural Environment. Innov. Aging 4, igaa009. https://doi.org/10.1093/geroni/igaa009
  - Slawsky, E.D., Hajat, A., Rhew, I.C., Russette, H., Semmens, E.O., Kaufman, J.D., Leary, C.S., Fitzpatrick, A.L., 2022. Neighborhood greenspace exposure as a protective factor in dementia risk among U.S. adults 75 years or older: a cohort study. Environ. Health 21, 14. https://doi.org/10.1186/s12940-022-00830-6
  - Slooter, A.J.C., Cruts, M., Kalmijn, S., Hofman, A., Breteler, M.M.B., Van Broeckhoven, C., Van Duijn, C.M., 1998. Risk Estimates of Dementia by Apolipoprotein E Genotypes From a Population-Based Incidence Study: The Rotterdam Study. Arch. Neurol. 55, 964. https://doi.org/10.1001/archneur.55.7.964
  - Smith, J.A., Kho, M., Zhao, W., Yu, M., Mitchell, C., Faul, J.D., 2021. Genetic effects and gene-by-education interactions on episodic memory performance and decline in an aging population. Soc. Sci. Med. 271, 112039. https://doi.org/10.1016/j.socscimed.2018.11.019
  - Sonnega, A., Faul, J.D., Ofstedal, M.B., Langa, K.M., Phillips, J.W., Weir, D.R., 2014. Cohort Profile: the Health and Retirement Study (HRS). Int. J. Epidemiol. 43, 576–585. https://doi.org/10.1093/ije/dyu067
  - Sosa-Ortiz, A.L., Acosta-Castillo, I., Prince, M.J., 2012. Epidemiology of Dementias and Alzheimer's Disease. Arch. Med. Res. 43, 600–608. https://doi.org/10.1016/j.arcmed.2012.11.003
  - Stevenson, M., Sergeant, E., 2008. epiR: Tools for the Analysis of Epidemiological Data. https://doi.org/10.32614/CRAN.package.epiR
  - Sugrue, L.P., Desikan, R.S., 2019. What Are Polygenic Scores and Why Are They Important? JAMA 321, 1820. https://doi.org/10.1001/jama.2019.3893
  - Sylvers, D.L., Hicken, M., Esposito, M., Manly, J., Judd, S., Clarke, P., 2022. Walkable Neighborhoods and Cognition: Implications for the Design of Health Promoting Communities. J. Aging Health 34, 893–904. https://doi.org/10.1177/08982643221075509
  - Tucker-Seeley, R.D., Subramanian, S.V., Li, Y., Sorensen, G., 2009. Neighborhood Safety, Socioeconomic Status, and Physical Activity in Older Adults. Am. J. Prev. Med. 37, 207–213. https://doi.org/10.1016/j.amepre.2009.06.005
- VanderWeele, T.J., Knol, M.J., 2014. A Tutorial on Interaction. Epidemiol. Methods 3. https://doi.org/10.1515/em-2013-0005
- Verhaaren, B.F.J., Vernooij, M.W., Koudstaal, P.J., Uitterlinden, A.G., Van Duijn, C.M., Hofman, A., Breteler, M.M.B., Ikram, M.A., 2013. Alzheimer's Disease Genes and Cognition in the Nondemented General Population. Biol. Psychiatry 73, 429–434. https://doi.org/10.1016/i.biopsych.2012.04.009
- Wallace, R., Herzog, A.R., Weir, D.R., Ofstedal, M.B., Langa, K.M., Fisher, G.G., Faul, J.D.,
  Steffick, D., Fonda, S., 2005. Documentation of Cognitive Functioning Measures in the
  Health and Retirement Study. Survey Research Center.

- Wang, A.-Y., Hu, H.-Y., Ou, Y.-N., Wang, Z.-T., Ma, Y.-H., Tan, L., Yu, J.-T., 2022.
  Socioeconomic Status and Risks of Cognitive Impairment and Dementia: A systematic
  Review and Meta-Analysis of 39 Prospective Studies. J. Prev. Alzheimers Dis.
  https://doi.org/10.14283/jpad.2022.81
- Wang, Y., Kanai, M., Tan, T., Kamariza, M., Tsuo, K., Yuan, K., Zhou, W., Okada, Y., Huang, H., Turley, P., Atkinson, E.G., Martin, A.R., 2023. Polygenic prediction across populations is influenced by ancestry, genetic architecture, and methodology. Cell Genomics 3, 100408. https://doi.org/10.1016/j.xgen.2023.100408

- Ware, E., Gard, A., Schmitz, L., Faul, J., 2021. HRS Polygenic Scores Release 4.3 2006-2012 Genetic Data. Survey Research Center.
- Ware, E.B., Faul, J.D., Mitchell, C.M., Bakulski, K.M., 2019. Considering the *APOE* locus in polygenic scores for Alzheimer's disease. https://doi.org/10.1101/2019.12.10.19014365 Weir, D., 2013. Quality Control Report for Genotypic Data.
- Whitley, E., Olsen, J., Benzeval, M., 2022. Impact of subjective and objective neighbourhood characteristics and individual socioeconomic position on allostatic load: A cross-sectional analysis of an all-age UK household panel study. Health Place 78, 102930. https://doi.org/10.1016/j.healthplace.2022.102930
- Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. -O., Nordberg, A., Bäckman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., De Leon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie, K., Van Duijn, C., Visser, P., Petersen, R.C., 2004. Mild cognitive impairment beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 256, 240–246. https://doi.org/10.1111/j.1365-2796.2004.01380.x
- Yu, X., Westrick, A.C., Kobayashi, L.C., 2023. Cumulative loneliness and subsequent memory function and rate of decline among adults aged ≥50 in the United States, 1996 to 2016: Cumulative loneliness and memory aging in the US. Alzheimers Dement. 19, 578–588. https://doi.org/10.1002/alz.12734

Figure 1. Sample inclusion and exclusion flow chart for the Health and Retirement Study 2018 and 2010 wave.

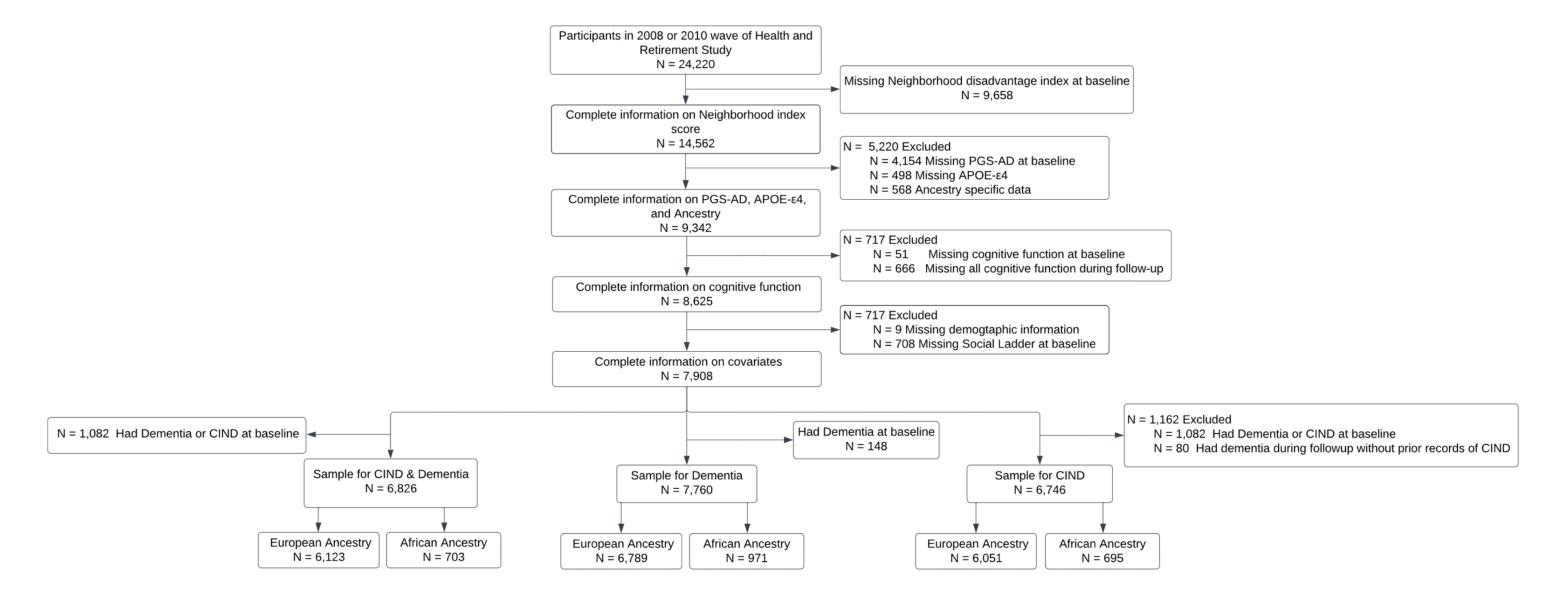
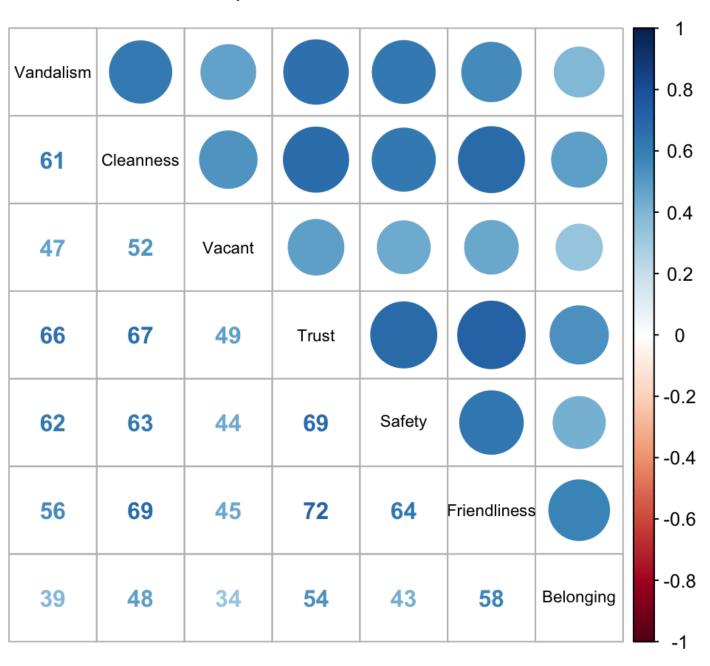




Figure 2. Correlations between neighborhood characteristics in the Health and Retirement Study 2018 and 2010 wave.



**Table 1**: Sample distribution of neighborhood disadvantage index, cognitive function, genetic characteristics, sociodemographic, behavioral, and chronic conditions by cognitive impairment (CIND and dementia), CIND, and dementia in the Health and Retirement Study, wave 2008-2010.

| New   Note   New                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Cognitive Imp                         |                                      |                              |                                        | CIND°                            | ,c                  |         |               | Dementi                       | <br>.ia <sup>c</sup>                  |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|--------------------------------------|------------------------------|----------------------------------------|----------------------------------|---------------------|---------|---------------|-------------------------------|---------------------------------------|---------|
| Neglegor                                                                                                                                                                                                        | Main Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | Normala                               | Cognitive<br>Impairment <sup>a</sup> |                              |                                        | Normala                          | CINDa               |         |               | Non-<br>dementia <sup>a</sup> | Dementiaa                             |         |
| No.   Process                                                                                                                                                                                                        | Noighborhood disadvantage index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                       | /                                    |                              |                                        |                                  | /                   |         | /             | /                             |                                       |         |
| The function discrimination of the function                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.13 (0.20)                             | -0.10 (0.00)                          | -0.03 (0.57)                         |                              | -0.13 (0.50)                           | -0.10 (0.00)                     | -0.00 (0.27)        |         | -0.10 (0.23)  | -0.11 (0.72)                  | 0.05 (1.05)                           |         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 527 (66%)                              | 2 224 (680%)                          | 1 202 (63%)                          |                              | 1 100 (670/)                           | 2 224 (68%)                      | 1 254 (6204)        |         | 5.070 (65%)   | 4 716 (66%)                   | 254 (570%)                            | '       |
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (<=0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,537 (00%)                              | 3,234 (00%)                           | 1,303 (03%)                          | l                            | 4,488 (0/%)                            | 3,234 (00%)                      | 1,234 (03%)         | I       | 3,070 (03%)   | 4,/10 (00%)                   | <i>334 (31%)</i>                      | '       |
| Mone   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,289 (34%)                              | 1,520 (32%)                           | 769 (37%)                            | I                            | 2,258 (33%)                            | 1,520 (32%)                      | 738 (37%)           | l       | 2,690 (35%)   | 2,426 (34%)                   | 264 (43%)                             | '       |
| March (2008)   Marc                                                                                                                                                                                                       | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                       |                                      | < 0.001                      | 1                                      |                                  |                     | < 0.001 |               |                               |                                       | < 0.001 |
| Monecol   Mone                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,008 (44%)                              | 2,023 (43%)                           | 985 (48%)                            | I                            | 2,971 (44%)                            | 2,023 (43%)                      | 948 (48%)           | l       | 3,436 (44%)   | 3,120 (44%)                   | 316 (51%)                             | '       |
| March   Marc                                                                                                                                                                                                       | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                       | · · ·                                | I                            | , , ,                                  |                                  | , ,                 | I       |               |                               | · · · · · ·                           |         |
| Addition ancestary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | , , , ,                               | , ,                                  | < 0.001                      |                                        |                                  | ,                   | < 0.001 |               | ,                             | ( ,                                   | < 0.001 |
| According according   POS-AD   PROS-AD   Program ancentry   AUS (0.88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 123 (90%)                              | 1 356 (92%)                           | 1 767 (85%)                          | l l                          | 6.051 (90%)                            | 4.356 (92%)                      | 1 695 (85%)         | l l     | 6 789 (87%)   | 6 337 (89%)                   | 452 (73%)                             |         |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | , , ,                                 | , , ,                                | I                            | , , ,                                  |                                  |                     | I       |               |                               | · · · · · ·                           |         |
| Emperimental and Series   -0.08 (0.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /03 (10/0)                               | 370 (0.470)                           | 303 (1370)                           | I                            | 093 (10/0)                             | 370 (0.470)                      | 297 (1370)          | I       | 9/1 (15/0)    | 003 (11/0)                    | 100 (21/0)                            |         |
| Afficiant ancentry   Diff (1935)   Diff (1946)   Diff (1                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.08 (0.98)                             | -0.12 (0.98)                          | 0.00 (0.96)                          | -<br>-                       | -0.09 (0.98)                           | -0.12 (0.98)                     | -0.01 (0.96)        | -<br>-  | -0.08 (0.98)  | -0.08 (0.98)                  | -0.05 (0.94)                          | _   '   |
| Post-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , , , , ,                                | ` ´                                   |                                      |                              | , , ,                                  | , , ,                            |                     |         | , , ,         | , i                           | · · · · ·                             |         |
| Below 75%   4,769 (78%)   3,429 (79%)   1,240 (76%)   4,719 (78%)   3,429 (79%)   1,290 (76%)   5,267 (78%)   490 (78%)   337 (75%)   5,267 (78%)   4,90 (78%)   337 (75%)   5,267 (78%)   4,90 (78%)   337 (75%)   5,267 (78%)   4,90 (78%)   337 (75%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   5,267 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4,90 (78%)   4                                                                                                                                                                                                       | , and the second | 0.00 (0.55)                              | 0.01 (0.21)                           | 0.17 (0.70)                          | l                            | 0.00 (0.55)                            | 0.01(0.2.)                       | 0.10 (0.20)         | ı       | 0.00 (0.71)   | 0.03 (0.52)                   | 0.10 (0.05)                           | '       |
| Below 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ` ",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                       |                                      | -<br>-                       | 1                                      |                                  |                     | -       |               |                               |                                       | _   '   |
| African ancestry   1,354 (22%)   927 (21%)   427 (22%)   418 (22%)   927 (21%)   418 (24%)   518 (25%)   1,407 (22%)   118 (25%)   1.00 (24%)   315 (75%)   161 (25%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315 (75%)   315                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 769 (78%)                              | 3 429 (79%)                           | 1 340 (76%)                          | I                            | 1719 (78%)                             | 3 429 (79%)                      | 1 290 (76%)         | I       | 5 267 (78%)   | 4 930 (78%)                   | 337 (75%)                             | '       |
| African ancestry   Below 75%   169 C/48)   315 (79%)   219 (72%)   531 (76%)   315 (79%)   216 (72%)   531 (76%)   315 (79%)   216 (72%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)   320 (24%)                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , ,                                    | , , ,                                 | , , ,                                | I                            | ` ` ` ` `                              | , , , , ,                        |                     | I       |               |                               | ` ,                                   | '       |
| Relow 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,334 (4470)                             | 941 (41/0)                            | 441 (47/0)                           | -                            | 1,332 (22/0)                           | 921 (21/0)                       | 400 (47/0)          | -       | 1,322 (22/0)  | 1,401 (22/0)                  | 113 (43/0)                            | _   '   |
| APOE 24 status                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 524 (76%)                                | 215 (70%)                             | 210 (72%)                            | - 1                          | 521 (76%)                              | 215 (70%)                        | 216 (73%)           | - ,     | 741 (76%)     | 612 (76%)                     | 128 (77%)                             | ·   '   |
| APOE E4 status   Comparison of e4   1,807 (26%)   1,807 (26%)   607 (29%)   1,465 (71%)   4,963 (74%)   3,554 (75%)   1,409 (71%)   5,566 (73%)   5,322 (74%)   384 (62%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%)   7,000 (74%                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` ′                                      | ` ′                                   | · · ·                                | ı                            | ` ′                                    | , i                              | · · ·               | 1       | , , ,         | ` ′                           | ` ,                                   | 7       |
| Any copies of e4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169 (2470)                               | 85 (2170)                             | 80 (28%)                             | -0.001                       | 164 (24%)                              | 85 (2170)                        | 81 (2170)           | -0.001  | 230 (24%)     | 192 (24%)                     | 38 (23%)                              | -0.001  |
| No copies of e4   \$5,019 (74%)   \$3,554 (75%)   \$1,465 (71%)   \$4,963 (74%)   \$3,554 (75%)   \$1,409 (71%)   \$0.018   \$0.018   \$0.018   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476   \$0.0476 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 007 (26%)                              | 1 200 (25%)                           | (07 (2004)                           | <0.001                       | 1 702 (2604)                           | 1 200 (25%)                      | 592 (200 <u>%</u> ) | <0.001  | 2 004 (27%)   | 1 000 (060%)                  | 224 (390%)                            | <0.001  |
| Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                       | · · ·                                | I                            | ` ` ` ` `                              | , , ,                            |                     | ı       |               |                               | · · · · · ·                           | '       |
| Maile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,019 (74%)                              | 3,554 (/5%)                           | 1,465 (/1%)                          | 0.017                        | 4,963 (74%)                            | 3,554 (75%)                      | 1,409 (71%)         | 0.010   | 5,666 (75%)   | 5,282 (74%)                   | 384 (62%)                             | 0.476   |
| Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 (74 (2006)                             | 1.010 (200%)                          | 256 (410/)                           | 0.017                        | 2 (41 (2004)                           | 1.010 (2004)                     | 002 (410/)          | 0.010   | 2 202 (4004)  | 2.055 (4004)                  | 229 (2004)                            | 0.476   |
| Age   modeRive propriet doc Interpretation (1010/260 0854 as 25 and 2 482 482 are 1030/1400/1400 at learness to destroy (which was not certified by perceivers) in the author/burder, who has granted medRiva at learness to destroy (which was not certified by perceivers) in the author/burder, who has granted medRiva at learness to destroy (which was not certified by perceivers) in the author/burder, who has granted medRiva at learness to destroy (which was not certified by perceivers) in the author/burder, who has granted medRiva at learness to destroy (which was not certified by perceivers) in the author/burder, who has granted medRiva at learness to destroy (which was not certified by perceivers). The perceivers of the pe                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                       | . ,                                  | ı                            | ` ` ` ` `                              | , , ,                            | , ,                 | 1       |               |                               |                                       | '       |
| Education Level   Education Level   Education   Educ                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.61                                    |                                       | , , ,                                | I                            |                                        |                                  |                     | ı       |               |                               | ` ,                                   | '       |
| Second   GED   2,362 (35%)   1,888 (40%)   474 (23%)   2,336 (35%)   1,888 (40%)   448 (22%)   2,489 (32%)   2,394 (34%)   95 (15%)   1,278 (62%)   1,278 (62%)   3,376 (57%)   2,643 (50%)   1,233 (62%)   1,233 (62%)   4,425 (57%)   4,103 (57%)   322 (32%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (3                                                                                                                                                                                                       | Age medRxiv preprint doi: https://doi.org/10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101/2020.06) 4.25                        | 5324002, this vers                    | ion posted March 1                   | 15, 2025. The                | 66.54 (10.04)<br>e copyright holder fr | 64.74 (9.54)<br>or this preprint | 70.83 (9.88)        | < 0.001 | 67.29 (10.28) | 66.68 (10.09)                 | 74.34 (9.76)                          | < 0.001 |
| Second   GED   2,362 (35%)   1,888 (40%)   474 (23%)   2,336 (35%)   1,888 (40%)   448 (22%)   2,489 (32%)   2,394 (34%)   95 (15%)   1,278 (62%)   1,278 (62%)   3,376 (57%)   2,643 (50%)   1,233 (62%)   1,233 (62%)   4,425 (57%)   4,103 (57%)   322 (32%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (37%)   4,257 (3                                                                                                                                                                                                       | (which was not certified by peer review lt is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ew) is the autnor/<br>s made available ι | funder, who has grunder a CC-BY-NC    | ranted medRxiv a ii                  | icense to alsr<br>icense.001 | play the preprint in                   | perpetuity.                      |                     | < 0.001 |               |                               |                                       | < 0.001 |
| Chigh School / GED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                       |                                      | ı                            |                                        |                                  | 448 (22%)           | 1       | 2,489 (32%)   | 2,394 (34%)                   | 95 (15%)                              | '       |
| Chigh School / GED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | High School / GED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,921 (57%)                              | 2,643 (56%)                           | 1,278 (62%)                          | l                            | 3,876 (57%)                            | 2,643 (56%)                      | 1,233 (62%)         | 1       | 4,425 (57%)   | 4,103 (57%)                   | 322 (52%)                             | '       |
| Poverty Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , and the second |                                          | , , ,                                 |                                      | ı                            |                                        |                                  |                     | 1       |               |                               |                                       | [ ]     |
| Above Poverty threshold Below                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                       | •                                    | < 0.001                      |                                        |                                  | •                   | < 0.001 |               |                               | •                                     | < 0.001 |
| Below Poverty threshold   308 (4.5%)   180 (3.8%)   128 (6.2%)   305 (4.5%)   180 (3.8%)   125 (6.3%)   440 (5.7%)   362 (5.1%)   78 (13%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,518 (95%)                              | 4,574 (96%)                           | 1,944 (94%)                          | I                            | 6,441 (95%)                            | 4,574 (96%)                      | 1,867 (94%)         |         | 7,320 (94%)   | 6,780 (95%)                   | 540 (87%)                             |         |
| Social Ladder         6.55 (1.66)         6.63 (1.63)         6.36 (1.70) $<0.001$ 6.55 (1.66)         6.63 (1.63)         6.35 (1.71) $<0.001$ 6.51 (1.68)         6.52 (1.67)         6.37 (1.81) $<0.049$ Sensitivity Variables         Overall         Normal         CIND         p-value         Overall         Normal dementia         Dementia         p-value           Smoking status         0.013         813 (12%)         569 (12%)         250 (12%)         813 (12%)         569 (12%)         244 (12%)         946 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)         883 (12%)         63 (10%)         -940 (12%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | , , ,                                 |                                      | I                            | ` ` ` ` `                              |                                  |                     | ı       |               |                               | · · · · · ·                           |         |
| Sensitivity Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · ·                              | ` '                                   | •                                    | < 0.001                      | ` ´                                    | · · ·                            | · · ·               | < 0.001 | ` '           |                               | ·                                     | 0.049   |
| Smoking status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sensitivity Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , ,                                      | ` ` `                                 |                                      |                              | , ,                                    | ` ` `                            |                     |         | , ,           | Non-                          | · · · · · · · · · · · · · · · · · · · |         |
| Current Smoker         819 (12%)         569 (12%)         250 (12%)         813 (12%)         569 (12%)         244 (12%)         946 (12%)         883 (12%)         63 (10%)           Former Smoker         2,917 (43%)         1,981 (42%)         936 (45%)         2,877 (43%)         1,981 (42%)         896 (45%)         3,358 (44%)         3,068 (43%)         290 (47%)           Never Smoke         3,050 (45%)         2,178 (46%)         872 (42%)         3,018 (45%)         2,178 (46%)         840 (42%)         3,411 (44%)         3,150 (44%)         261 (43%)           BMI         28.67 (6.00)         28.74 (6.01)         28.50 (5.99)         0.136         28.68 (6.00)         28.74 (6.01)         28.55 (5.97)         0.248         28.60 (6.04)         28.69 (6.05)         27.66 (5.79)         <0.001           Drinking (# drinks/day when drinks)         0.81 (1.37)         0.86 (1.35)         0.69 (1.41)         <0.001         0.81 (1.37)         0.86 (1.35)         0.69 (1.42)         <0.001         0.78 (1.38)         0.80 (1.38)         0.55 (1.42)         <0.001           Yes         1,129 (17%)         711 (15%)         418 (20%)         1,119 (17%)         711 (15%)         408 (20%)         1,369 (18%)         1,241 (17%)         128 (21%)           No         5,697 (83%)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O VCI all                                | 110111141                             |                                      | -                            | Overan                                 | 110111141                        |                     | _       |               | dementia                      |                                       |         |
| Former Smoker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 010 (100()                               | 5 (0 (100())                          | 250 (120)                            | 0.013                        | 012 (120)                              | 560 (100()                       | 244 (120/)          | 0.02    | 0.45 (1.20)   | 002 (120)                     | (100/)                                | 0.094   |
| Never Smoke $3,050 (45\%)$ $2,178 (46\%)$ $872 (42\%)$ $3,018 (45\%)$ $2,178 (46\%)$ $840 (42\%)$ $3,411 (44\%)$ $3,150 (44\%)$ $261 (43\%)$ BMI $28.67 (6.00)$ $28.74 (6.01)$ $28.50 (5.99)$ $0.136$ $28.68 (6.00)$ $28.74 (6.01)$ $28.55 (5.97)$ $0.248$ $28.69 (6.04)$ $28.69 (6.05)$ $27.66 (5.79)$ $<0.001$ Drinking (# drinks/day when drinks) $0.81 (1.37)$ $0.86 (1.35)$ $0.69 (1.41)$ $<0.001$ $<0.86 (1.35)$ $<0.69 (1.42)$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$ $<0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , ,                                    | ` '                                   | . ,                                  | l                            | , , ,                                  | , i                              | · · ·               | ı       | , , ,         | · · · · · ·                   | · · · · ·                             |         |
| BMI         28.67 (6.00)         28.74 (6.01)         28.50 (5.99)         0.136         28.68 (6.00)         28.74 (6.01)         28.55 (5.97)         0.248         28.60 (6.04)         28.69 (6.05)         27.66 (5.79)         <0.001           Drinking (# drinks/day when drinks)         0.81 (1.37)         0.86 (1.35)         0.69 (1.41)         <0.001         0.81 (1.37)         0.86 (1.35)         0.69 (1.42)         <0.001         0.78 (1.38)         0.80 (1.38)         0.55 (1.42)         <0.001           Ever have Diabetes         1,129 (17%)         711 (15%)         418 (20%)         1,119 (17%)         711 (15%)         408 (20%)         1,369 (18%)         1,241 (17%)         128 (21%)         0.037           Yes         1,129 (17%)         711 (15%)         418 (20%)         1,119 (17%)         711 (15%)         408 (20%)         1,369 (18%)         1,241 (17%)         128 (21%)         0.037           Yes         1,056 (15%)         838 (18%)         218 (11%)         5,627 (83%)         4,043 (85%)         1,584 (80%)         6,391 (82%)         5,901 (83%)         490 (79%)           Chronic Condition         20.001         20.001         20.001         20.001         20.001         20.001         20.001         20.001         20.001         20.001         20.001         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                       |                                      | ı                            |                                        |                                  |                     | 1       |               |                               | · · · · · ·                           |         |
| Drinking (# drinks/day when drinks)         0.81 (1.37)         0.86 (1.35)         0.69 (1.41)         <0.001         0.81 (1.37)         0.86 (1.35)         0.69 (1.42)         <0.001         0.78 (1.38)         0.80 (1.38)         0.55 (1.42)         <0.001           Ever have Diabetes         0.001         0.86 (1.35)         0.69 (1.41)         <0.001         0.86 (1.37)         0.86 (1.35)         0.69 (1.42)         <0.001         0.78 (1.38)         0.80 (1.38)         0.55 (1.42)         <0.001           Yes         1,129 (17%)         711 (15%)         418 (20%)         1,119 (17%)         711 (15%)         408 (20%)         1,369 (18%)         1,241 (17%)         128 (21%)           No         5,697 (83%)         4,043 (85%)         1,584 (80%)         6,391 (82%)         5,901 (83%)         490 (79%)           Chronic Condition             1,045 (15%)         838 (18%)         207 (10%)         1,156 (15%)         1,088 (15%)         68 (11%)           None         1,056 (15%)         838 (18%)         218 (11%)         1,045 (15%)         838 (18%)         207 (10%)         1,156 (15%)         1,088 (15%)         68 (11%)           1 - 2         3,630 (53%)         2,620 (55%)         1,010 (49%)         3,595 (53%)         2,620 (55%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                       |                                      | - :3:                        | ` ` ` `                                |                                  |                     | 10      |               |                               | · · · · · ·                           | - 204   |
| Ever have Diabetes $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.0037$ Yes         1,129 (17%)         711 (15%)         418 (20%)         1,119 (17%)         711 (15%)         408 (20%)         1,369 (18%)         1,241 (17%)         128 (21%)           No         5,697 (83%)         4,043 (85%)         1,654 (80%)         5,627 (83%)         4,043 (85%)         1,584 (80%)         6,391 (82%)         5,901 (83%)         490 (79%)           Chronic Condition $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$ $< 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , i                                      | · · · · · · · · · · · · · · · · · · · |                                      |                              | ` '                                    | ` '                              |                     |         |               | · · · · ·                     | , ,                                   |         |
| Yes $1,129 (17\%)$ $711 (15\%)$ $418 (20\%)$ $1,119 (17\%)$ $711 (15\%)$ $408 (20\%)$ $1,369 (18\%)$ $1,241 (17\%)$ $128 (21\%)$ No $5,697 (83\%)$ $4,043 (85\%)$ $1,654 (80\%)$ $5,627 (83\%)$ $4,043 (85\%)$ $1,584 (80\%)$ $6,391 (82\%)$ $5,901 (83\%)$ $490 (79\%)$ Chronic Condition $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.81 (1.37)                              | 0.86 (1.35)                           | 0.69 (1.41)                          |                              | 0.81 (1.37)                            | 0.86 (1.35)                      | 0.69 (1.42)         |         | 0.78 (1.38)   | 0.80 (1.38)                   | 0.55 (1.42)                           |         |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                        |                                       | :300//                               | <0.001                       | 172()                                  |                                  | :2001)              | <0.001  |               |                               | :3:5()                                | 0.037   |
| Chronic Condition         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` ` ` `                                  | ` ′                                   | . ,                                  | l                            | , , ,                                  | ` ′                              | · · ·               | 1       | ` ` ` ′       | ` ` ` '                       | •                                     |         |
| None 1,056 (15%) 838 (18%) 218 (11%) 1,045 (15%) 838 (18%) 207 (10%) 1,156 (15%) 1,088 (15%) 68 (11%) 3,630 (53%) 2,620 (55%) 1,010 (49%) 2,140 (31%) 1,296 (27%) 844 (41%) 2,106 (31%) 1,296 (27%) 810 (41%) 2,571 (33%) 2,310 (32%) 261 (42%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,697 (83%)                              | 4,043 (85%)                           | 1,654 (80%)                          |                              | 5,627 (83%)                            | 4,043 (85%)                      | 1,584 (80%)         |         | 6,391 (82%)   | 5,901 (83%)                   | 490 (79%)                             |         |
| 1 - 2       3,630 (53%)       2,620 (55%)       1,010 (49%)       3,595 (53%)       2,620 (55%)       975 (49%)       4,033 (52%)       3,744 (52%)       289 (47%)         >= 3       2,140 (31%)       1,296 (27%)       844 (41%)       2,106 (31%)       1,296 (27%)       810 (41%)       2,571 (33%)       2,310 (32%)       261 (42%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chronic Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                        |                                       |                                      | < 0.001                      | 1                                      |                                  |                     | < 0.001 |               |                               |                                       | < 0.001 |
| >= 3 2,140 (31%) 1,296 (27%) 844 (41%) 2,106 (31%) 1,296 (27%) 810 (41%) 2,571 (33%) 2,310 (32%) 261 (42%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` ` ` `                                  | ` '                                   | 218 (11%)                            | I                            | , , ,                                  | 838 (18%)                        | 207 (10%)           | I       | 1,156 (15%)   | 1,088 (15%)                   | ` '                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | , , ,                                 | 1,010 (49%)                          | I                            |                                        | 2,620 (55%)                      | 975 (49%)           | ı       | 4,033 (52%)   | 3,744 (52%)                   | 289 (47%)                             |         |
| Depression         1.08 (1.71)         0.96 (1.62)         1.35 (1.86)         <0.001         1.08 (1.71)         0.96 (1.62)         1.35 (1.88)         <0.001         1.15 (1.76)         1.11 (1.74)         1.60 (1.94)         <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >= 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,140 (31%)                              | 1,296 (27%)                           | 844 (41%)                            | ı                            | 2,106 (31%)                            | 1,296 (27%)                      | 810 (41%)           | 1       | 2,571 (33%)   | 2,310 (32%)                   | 261 (42%)                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.08 (1.71)                              | 0.96 (1.62)                           | 1.35 (1.86)                          | < 0.001                      | 1.08 (1.71)                            | 0.96 (1.62)                      | 1.35 (1.88)         | < 0.001 | 1.15 (1.76)   | 1.11 (1.74)                   | 1.60 (1.94)                           | < 0.001 |

<sup>&</sup>lt;sup>a</sup>n (%); Mean (SD)

<sup>&</sup>lt;sup>b</sup>Pearson's Chi-squared test; Welch Two Sample t-test

<sup>&</sup>lt;sup>c</sup>Average follow-up duration: Cognitive Impairment = 7.41 years; Cognitive Impairment, No Dementia (CIND) = 7.45 years; Dementia = 8.02 years.

**Table 2**: Hazard Ratios from survival analysis stratified by Ancestry, estimates present the association for each standard deviation increase in the neighborhood disadvantage index with incident cognitive impairment (CIND and dementia), CIND, and dementia, relative to normal cognition and non-dementia respectively in the US Health and Retirement Study (2008-2010 Waves).

|                                                                                                                                                                                                                                                                                                  | Cognitive Impairment vs. Normal Cognition, European Ancestry <sup>b</sup> (n=6,123) |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                                                                                                              | 3)                                                                                    | CIND vs. Normal Cognition, European Ancestry <sup>b</sup> (n=6,051)                |                                                                                                                            |                                            |                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                                                                                                                                              |                                                                                                            |                                                              | Dementia vs. Non-dementia, European Ancestry <sup>b</sup> (n=6,789)                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                              |                                                               |                                                      |                                                                                                                                                       |                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                  | Model 1 Model 2 Model 3                                                             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                       | Model 1 Model 2 Model 3                                                                                                                      |                                                                                       |                                                                                    |                                                                                                                            |                                            |                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | Model 1 Model 2 Model 3                                                                                                                      |                                                                                                            |                                                              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                              |                                                               |                                                      |                                                                                                                                                       |                                                                               |  |
|                                                                                                                                                                                                                                                                                                  | HR                                                                                  | 95% CI                                                                                                                       | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HR                                                                                       | 95% CI                                                                                                                                        | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HR                                                                                                      | 95% CI                                                                                                                                       | p-value                                                                               | HR                                                                                 | 95% CI                                                                                                                     | p-value                                    | HR                                                                   | 95% CI                                                                                                                                       | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HR                                          | 95% CI                                                                                                                                       | p-value                                                                                                    | HR                                                           | 95% CI                                                                                                                                     | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR                                                      | 95% CI                                                                                                                                       | p-value                                                       | HR                                                   | 95% CI                                                                                                                                                | p-value                                                                       |  |
| Neighborhood                                                                                                                                                                                                                                                                                     | 1.09                                                                                | 1.03, 1.15                                                                                                                   | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.09                                                                                     | 1.03, 1.15                                                                                                                                    | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.09                                                                                                    | 1.03, 1.15                                                                                                                                   | 0.002                                                                                 | 1.08                                                                               | 1.03, 1.14                                                                                                                 | 0.004                                      | 1.08                                                                 | 1.02, 1.14                                                                                                                                   | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.08                                        | 1.02, 1.14                                                                                                                                   | 0.004                                                                                                      | 1.13                                                         | 1.03, 1.24                                                                                                                                 | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.13                                                    | 1.02, 1.24                                                                                                                                   | 0.014                                                         | 1.13                                                 | 1.02, 1.24                                                                                                                                            | 0.015                                                                         |  |
| Age                                                                                                                                                                                                                                                                                              | 1.08                                                                                | 1.07, 1.08                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.08                                                                                     | 1.07, 1.08                                                                                                                                    | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.08                                                                                                    | 1.07, 1.08                                                                                                                                   | < 0.001                                                                               | 1.08                                                                               | 1.07, 1.08                                                                                                                 | < 0.001                                    | 1.08                                                                 | 1.07, 1.08                                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.08                                        | 1.07, 1.08                                                                                                                                   | < 0.001                                                                                                    | 1.12                                                         | 1.10, 1.13                                                                                                                                 | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.12                                                    | 1.10, 1.13                                                                                                                                   | < 0.001                                                       | 1.12                                                 | 1.10, 1.13                                                                                                                                            | < 0.001                                                                       |  |
| Sex medRxiv preprint doi: https://www.ntimes.com/                                                                                                                                                                                                                                                | s://doi.org/                                                                        | /10.1101/2025.0                                                                                                              | 3.14.253240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02; this v                                                                               | ersion posted Ma                                                                                                                              | arch 15, 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5. The cor                                                                                              | oyright holder for                                                                                                                           | r this preprin                                                                        | t                                                                                  |                                                                                                                            | •                                          |                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                                                                                                                                              |                                                                                                            |                                                              |                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                                                                                                                                              | •                                                             | •                                                    |                                                                                                                                                       |                                                                               |  |
| Female (which was not certific                                                                                                                                                                                                                                                                   | e <mark>d by pee</mark><br>Ref                                                      | r review) is the<br>It is made ava                                                                                           | author/funde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II, who ha                                                                               | as granted medR                                                                                                                               | xiv a license                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to display                                                                                              | the preprint in p                                                                                                                            | perpetuity.<br>Ref                                                                    | Ref                                                                                | Ref                                                                                                                        | Ref                                        | Ref                                                                  | Ref                                                                                                                                          | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref                                         | Ref                                                                                                                                          | Ref                                                                                                        | Ref                                                          | Ref                                                                                                                                        | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref                                                     | Ref                                                                                                                                          | Ref                                                           | Ref                                                  | Ref                                                                                                                                                   | Ref                                                                           |  |
| Male                                                                                                                                                                                                                                                                                             | 1.3                                                                                 | 1.18, 1.43                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.29                                                                                     | 1.18, 1.42                                                                                                                                    | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.29                                                                                                    | 1.18, 1.42                                                                                                                                   | < 0.001                                                                               | 1.31                                                                               | 1.19, 1.45                                                                                                                 | < 0.001                                    | 1.31                                                                 | 1.18, 1.44                                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.31                                        | 1.19, 1.44                                                                                                                                   | < 0.001                                                                                                    | 1.05                                                         | 0.87, 1.28                                                                                                                                 | 0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.06                                                    | 0.87, 1.29                                                                                                                                   | 0.600                                                         | 1.06                                                 | 0.88, 1.29                                                                                                                                            | 0.500                                                                         |  |
| Education                                                                                                                                                                                                                                                                                        |                                                                                     | ,                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         | ,                                                                                                                                            | <u>I</u>                                                                              |                                                                                    | ,                                                                                                                          | I                                          | I                                                                    | ,                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             | ,                                                                                                                                            |                                                                                                            |                                                              | ,                                                                                                                                          | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l.                                                      | ,                                                                                                                                            |                                                               | <u>l</u>                                             | ,                                                                                                                                                     | ,                                                                             |  |
| Above High School/GED                                                                                                                                                                                                                                                                            | Ref                                                                                 | Ref                                                                                                                          | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref                                                                                      | Ref                                                                                                                                           | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ref                                                                                                     | Ref                                                                                                                                          | Ref                                                                                   | Ref                                                                                | Ref                                                                                                                        | Ref                                        | Ref                                                                  | Ref                                                                                                                                          | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref                                         | Ref                                                                                                                                          | Ref                                                                                                        | Ref                                                          | Ref                                                                                                                                        | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref                                                     | Ref                                                                                                                                          | Ref                                                           | Ref                                                  | Ref                                                                                                                                                   | Ref                                                                           |  |
| High School/GED                                                                                                                                                                                                                                                                                  | 1.62                                                                                | 1.44, 1.82                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.62                                                                                     | 1.44, 1.82                                                                                                                                    | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.62                                                                                                    | 1.44, 1.82                                                                                                                                   | < 0.001                                                                               | 1.65                                                                               | 1.46, 1.86                                                                                                                 | < 0.001                                    | 1.65                                                                 | 1.46, 1.86                                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.65                                        | 1.46, 1.86                                                                                                                                   | < 0.001                                                                                                    | 1.58                                                         | 1.23, 2.04                                                                                                                                 | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.6                                                     | 1.24, 2.06                                                                                                                                   | < 0.001                                                       | 1.59                                                 | 1.23, 2.06                                                                                                                                            | < 0.001                                                                       |  |
| Less than High School/GED                                                                                                                                                                                                                                                                        | 3.03                                                                                | 2.56, 3.58                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.03                                                                                     |                                                                                                                                               | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.02                                                                                                    | 2.56, 3.58                                                                                                                                   | < 0.001                                                                               | 3.08                                                                               | 2.60, 3.66                                                                                                                 | < 0.001                                    | 3.08                                                                 | 2.60, 3.66                                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.08                                        | 2.59, 3.66                                                                                                                                   | < 0.001                                                                                                    | 3.93                                                         | 2.92, 5.29                                                                                                                                 | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.98                                                    | 2.95, 5.37                                                                                                                                   | < 0.001                                                       | 3.98                                                 | 2.95, 5.37                                                                                                                                            | < 0.001                                                                       |  |
| Poverty Status (Below)                                                                                                                                                                                                                                                                           |                                                                                     |                                                                                                                              | I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .4                                                                                       | <u> </u>                                                                                                                                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                              |                                                                                       |                                                                                    | , ,                                                                                                                        | l .                                        |                                                                      | ,                                                                                                                                            | Į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l.                                          | •                                                                                                                                            |                                                                                                            |                                                              | ·                                                                                                                                          | I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |                                                                                                                                              |                                                               | 1                                                    | •                                                                                                                                                     | '                                                                             |  |
| Above Poverty threshold                                                                                                                                                                                                                                                                          | Ref                                                                                 | Ref                                                                                                                          | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref                                                                                      | Ref                                                                                                                                           | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ref                                                                                                     | Ref                                                                                                                                          | Ref                                                                                   | Ref                                                                                | Ref                                                                                                                        | Ref                                        | Ref                                                                  | Ref                                                                                                                                          | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref                                         | Ref                                                                                                                                          | Ref                                                                                                        | Ref                                                          | Ref                                                                                                                                        | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref                                                     | Ref                                                                                                                                          | Ref                                                           | Ref                                                  | Ref                                                                                                                                                   | Ref                                                                           |  |
| Below Poverty threshold                                                                                                                                                                                                                                                                          | 1.28                                                                                | 0.99, 1.65                                                                                                                   | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.27                                                                                     | 0.99, 1.64                                                                                                                                    | 0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.27                                                                                                    | 0.99, 1.64                                                                                                                                   | 0.062                                                                                 | 1.28                                                                               | 0.99, 1.66                                                                                                                 | 0.060                                      | 1.27                                                                 | 0.98, 1.65                                                                                                                                   | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.27                                        | 0.98, 1.65                                                                                                                                   | 0.068                                                                                                      | 2.03                                                         | 1.39, 2.98                                                                                                                                 | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.07                                                    | 1.41, 3.04                                                                                                                                   | < 0.001                                                       | 2.07                                                 | 1.41, 3.04                                                                                                                                            | < 0.001                                                                       |  |
| APOE E4 status                                                                                                                                                                                                                                                                                   |                                                                                     |                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          | <u> </u>                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                |                                                                                                                                              |                                                                                       |                                                                                    |                                                                                                                            | l .                                        |                                                                      | ,                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | ·                                                                                                                                            |                                                                                                            |                                                              | ·                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                              |                                                               | l l                                                  | ·                                                                                                                                                     | '                                                                             |  |
| No copies of e4                                                                                                                                                                                                                                                                                  | Ref                                                                                 | Ref                                                                                                                          | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref                                                                                      | Ref                                                                                                                                           | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ref                                                                                                     | Ref                                                                                                                                          | Ref                                                                                   | Ref                                                                                | Ref                                                                                                                        | Ref                                        | Ref                                                                  | Ref                                                                                                                                          | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref                                         | Ref                                                                                                                                          | Ref                                                                                                        | Ref                                                          | Ref                                                                                                                                        | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref                                                     | Ref                                                                                                                                          | Ref                                                           | Ref                                                  | Ref                                                                                                                                                   | Ref                                                                           |  |
| Any copies of e4                                                                                                                                                                                                                                                                                 | 1.43                                                                                | 1.29, 1.59                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.42                                                                                     | 1.28, 1.57                                                                                                                                    | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.42                                                                                                    | 1.28, 1.57                                                                                                                                   | < 0.001                                                                               | 1.43                                                                               | 1.29, 1.60                                                                                                                 | < 0.001                                    | 1.42                                                                 | 1.28, 1.58                                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.42                                        | 1.28, 1.58                                                                                                                                   | < 0.001                                                                                                    | 2.06                                                         | 1.70, 2.50                                                                                                                                 | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.04                                                    | 1.68, 2.48                                                                                                                                   | < 0.001                                                       | 2.04                                                 | 1.68, 2.48                                                                                                                                            | <0.001                                                                        |  |
| Social Ladder                                                                                                                                                                                                                                                                                    | 0.93                                                                                | 0.90, 0.95                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.93                                                                                     | 0.90, 0.95                                                                                                                                    | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.93                                                                                                    | 0.90, 0.95                                                                                                                                   | < 0.001                                                                               | 0.92                                                                               | 0.89, 0.95                                                                                                                 | < 0.001                                    | 0.92                                                                 | 0.90, 0.95                                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92                                        | 0.89, 0.95                                                                                                                                   | < 0.001                                                                                                    | 0.98                                                         | 0.92, 1.04                                                                                                                                 | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98                                                    | 0.93, 1.04                                                                                                                                   | 0.600                                                         | 0.98                                                 | 0.93, 1.04                                                                                                                                            | 0.6                                                                           |  |
| Baseline wave                                                                                                                                                                                                                                                                                    |                                                                                     |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                        |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                                                                                                              | •                                                                                     |                                                                                    |                                                                                                                            | •                                          |                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | ·                                                                                                                                            |                                                                                                            |                                                              | ·                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                              | •                                                             | •                                                    | ·                                                                                                                                                     |                                                                               |  |
| Wave 1 (2008)                                                                                                                                                                                                                                                                                    | Ref                                                                                 | Ref                                                                                                                          | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref                                                                                      | Ref                                                                                                                                           | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ref                                                                                                     | Ref                                                                                                                                          | Ref                                                                                   | Ref                                                                                | Ref                                                                                                                        | Ref                                        | Ref                                                                  | Ref                                                                                                                                          | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref                                         | Ref                                                                                                                                          | Ref                                                                                                        | Ref                                                          | Ref                                                                                                                                        | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref                                                     | Ref                                                                                                                                          | Ref                                                           | Ref                                                  | Ref                                                                                                                                                   | Ref                                                                           |  |
| Wave 2 (2010)                                                                                                                                                                                                                                                                                    | 0.86                                                                                | 0.78, 0.94                                                                                                                   | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.86                                                                                     | 0.79, 0.95                                                                                                                                    | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.86                                                                                                    | 0.79, 0.95                                                                                                                                   | 0.002                                                                                 | 0.86                                                                               | 0.78, 0.95                                                                                                                 | 0.002                                      | 0.87                                                                 | 0.79, 0.95                                                                                                                                   | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86                                        | 0.79, 0.95                                                                                                                                   | 0.003                                                                                                      | 0.8                                                          | 0.67, 0.97                                                                                                                                 | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8                                                     | 0.67, 0.97                                                                                                                                   | 0.021                                                         | 0.8                                                  | 0.67, 0.97                                                                                                                                            | 0.020                                                                         |  |
| PGS-AD                                                                                                                                                                                                                                                                                           | -                                                                                   | -                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                      | 1.05, 1.16                                                                                                                                    | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.10                                                                                                    | 1.05, 1.16                                                                                                                                   | < 0.001                                                                               | -                                                                                  | -                                                                                                                          | -                                          | 1.10                                                                 | 1.05, 1.16                                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.10                                        | 1.05, 1.16                                                                                                                                   | < 0.001                                                                                                    | -                                                            | -                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.05                                                    | 0.96, 1.16                                                                                                                                   | 0.300                                                         | 1.05                                                 | 0.95, 1.16                                                                                                                                            | 0.3                                                                           |  |
| Neighborhood* PGS-AD                                                                                                                                                                                                                                                                             | -                                                                                   | -                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                        | _                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.99                                                                                                    | 0.94, 1.04                                                                                                                                   | 0.800                                                                                 | -                                                                                  | -                                                                                                                          | -                                          | -                                                                    | -                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                        | 0.94, 1.05                                                                                                                                   | 0.800                                                                                                      | -                                                            | -                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                       | -                                                                                                                                            | -                                                             | 0.98                                                 | 0.90, 1.08                                                                                                                                            | 0.7                                                                           |  |
| RERI: The most disadvantaged                                                                                                                                                                                                                                                                     |                                                                                     |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                              |                                                                                       |                                                                                    |                                                                                                                            |                                            |                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                                                                                                                                              |                                                                                                            |                                                              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                              |                                                               |                                                      |                                                                                                                                                       |                                                                               |  |
| neighborhoods*PGS-AD Above                                                                                                                                                                                                                                                                       | -                                                                                   | -                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                        | -                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.02                                                                                                   | -0.31, 0.27                                                                                                                                  |                                                                                       | -                                                                                  | -                                                                                                                          | -                                          | -                                                                    | -                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.03                                       | -0.32, 0.27                                                                                                                                  |                                                                                                            | -                                                            | -                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                       | -                                                                                                                                            | -                                                             | 0.01                                                 | -0.61, 0.63                                                                                                                                           |                                                                               |  |
| 75% <sup>a</sup>                                                                                                                                                                                                                                                                                 |                                                                                     |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          | ļ                                                                                                                                             | , '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 '                                                                                                     |                                                                                                                                              |                                                                                       |                                                                                    |                                                                                                                            |                                            |                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                                                                                                                                              |                                                                                                            |                                                              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                                                                                                              |                                                               |                                                      |                                                                                                                                                       |                                                                               |  |
|                                                                                                                                                                                                                                                                                                  | Cognitive Impairment vs. Normal Cognition, African Ancestry <sup>c</sup> (n=703)    |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         | l.                                                                                                                                           |                                                                                       | CIND vs. Normal Cognition, African Ancestry <sup>c</sup> (n=695)                   |                                                                                                                            |                                            |                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                                                                                                                                              |                                                                                                            | l l                                                          |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l .                                                     |                                                                                                                                              |                                                               | l                                                    |                                                                                                                                                       |                                                                               |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                              | e Impairm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent vs. l                                                                                |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | an Ance                                                                                                 |                                                                                                                                              |                                                                                       |                                                                                    |                                                                                                                            | CIND vs. N                                 | ormal                                                                |                                                                                                                                              | frican Ance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | estry <sup>c</sup> (n=                      | ,                                                                                                                                            |                                                                                                            |                                                              |                                                                                                                                            | Dementia v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vs. Non-                                                | dementia, Af                                                                                                                                 | rican Ance                                                    | estry <sup>c</sup> (n=                               |                                                                                                                                                       | <u> </u>                                                                      |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                     | Model 1                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          | Model 2                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | Model 3                                                                                                                                      |                                                                                       |                                                                                    | Model 1                                                                                                                    |                                            |                                                                      | Model 2                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | Model 3                                                                                                                                      |                                                                                                            |                                                              | Model 1                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | Model 2                                                                                                                                      |                                                               |                                                      | Model 3                                                                                                                                               |                                                                               |  |
|                                                                                                                                                                                                                                                                                                  | HR                                                                                  | Model 1<br>95% CI                                                                                                            | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HR                                                                                       | Model 2<br>95% CI                                                                                                                             | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HR                                                                                                      | Model 3<br>95% CI                                                                                                                            | p-value                                                                               |                                                                                    | Model 1<br>95% CI                                                                                                          | p-value                                    | HR                                                                   | Model 2<br>95% CI                                                                                                                            | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HR                                          | Model 3<br>95% CI                                                                                                                            | p-value                                                                                                    | HR                                                           | Model 1<br>95% CI                                                                                                                          | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR                                                      | Model 2<br>95% CI                                                                                                                            | p-value                                                       | HR                                                   | Model 3<br>95% CI                                                                                                                                     | p-value                                                                       |  |
| Neighborhood                                                                                                                                                                                                                                                                                     | 1.04                                                                                | Model 1<br>95% CI<br>0.93, 1.16                                                                                              | <b>p-value</b> 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR<br>1.04                                                                               | Model 2<br>95% CI<br>0.93, 1.16                                                                                                               | <b>p-value</b> 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HR<br>1.05                                                                                              | Model 3<br>95% CI<br>0.94, 1.17                                                                                                              | 0.4                                                                                   | 1.04                                                                               | Model 1<br>95% CI<br>0.93, 1.16                                                                                            | <b>p-value</b> 0.500                       | <b>HR</b> 1.04                                                       | Model 2<br>95% CI<br>0.93, 1.16                                                                                                              | <b>p-value</b> 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HR 1.04                                     | Model 3<br>95% CI<br>0.93, 1.17                                                                                                              | 0.500                                                                                                      | 1.02                                                         | Model 1<br>95% CI<br>0.89, 1.18                                                                                                            | <b>p-value</b> 0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>HR</b> 1.03                                          | Model 2<br>95% CI<br>0.89, 1.19                                                                                                              | <b>p-value</b> 0.700                                          | HR 1.03                                              | Model 3<br>95% CI<br>0.90, 1.20                                                                                                                       | 0.6                                                                           |  |
| Age                                                                                                                                                                                                                                                                                              |                                                                                     | Model 1<br>95% CI                                                                                                            | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HR                                                                                       | Model 2<br>95% CI<br>0.93, 1.16                                                                                                               | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HR                                                                                                      | Model 3<br>95% CI                                                                                                                            | _                                                                                     |                                                                                    | Model 1<br>95% CI                                                                                                          | p-value                                    | HR                                                                   | Model 2<br>95% CI                                                                                                                            | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HR                                          | Model 3<br>95% CI                                                                                                                            | •                                                                                                          |                                                              | Model 1<br>95% CI                                                                                                                          | p-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR                                                      | Model 2<br>95% CI                                                                                                                            | p-value                                                       | HR                                                   | Model 3<br>95% CI                                                                                                                                     |                                                                               |  |
| Age<br>Sex                                                                                                                                                                                                                                                                                       | 1.04<br>1.05                                                                        | Model 1<br>95% CI<br>0.93, 1.16<br>1.04, 1.07                                                                                | p-value<br>0.500<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HR<br>1.04<br>1.05                                                                       | Model 2<br>95% CI<br>0.93, 1.16<br>1.04, 1.07                                                                                                 | p-value<br>0.500<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HR<br>1.05<br>1.05                                                                                      | Model 3<br>95% CI<br>0.94, 1.17<br>1.04, 1.07                                                                                                | 0.4<br>< <b>0.001</b>                                                                 | 1.04<br>1.05                                                                       | Model 1<br>95% CI<br>0.93, 1.16<br>1.04, 1.07                                                                              | p-value<br>0.500<br><0.001                 | HR<br>1.04<br>1.05                                                   | Model 2<br>95% CI<br>0.93, 1.16<br>1.04, 1.07                                                                                                | p-value<br>0.500<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR 1.04 1.05                                | Model 3<br>95% CI<br>0.93, 1.17<br>1.04, 1.07                                                                                                | 0.500<br>< <b>0.001</b>                                                                                    | 1.02<br>1.09                                                 | Model 1<br>95% CI<br>0.89, 1.18<br>1.07, 1.11                                                                                              | p-value<br>0.800<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HR<br>1.03<br>1.09                                      | Model 2<br>95% CI<br>0.89, 1.19<br>1.07, 1.11                                                                                                | p-value<br>0.700<br><0.001                                    | HR 1.03 1.09                                         | Model 3<br>95% CI<br>0.90, 1.20<br>1.07, 1.11                                                                                                         | 0.6<br>< <b>0.001</b>                                                         |  |
| Age<br>Sex<br>Female                                                                                                                                                                                                                                                                             | 1.04<br>1.05                                                                        | Model 1 95% CI 0.93, 1.16 1.04, 1.07                                                                                         | p-value<br>0.500<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HR<br>1.04<br>1.05                                                                       | Model 2 95% CI 0.93, 1.16 1.04, 1.07                                                                                                          | p-value<br>0.500<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HR 1.05 1.05                                                                                            | Model 3 95% CI 0.94, 1.17 1.04, 1.07                                                                                                         | 0.4<br>< <b>0.001</b>                                                                 | 1.04<br>1.05<br>Ref                                                                | Model 1 95% CI 0.93, 1.16 1.04, 1.07                                                                                       | p-value<br>0.500<br><0.001                 | HR 1.04 1.05                                                         | Model 2 95% CI 0.93, 1.16 1.04, 1.07                                                                                                         | p-value<br>0.500<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR 1.04 1.05                                | Model 3<br>95% CI<br>0.93, 1.17<br>1.04, 1.07                                                                                                | 0.500<br>< <b>0.001</b>                                                                                    | 1.02<br>1.09                                                 | Model 1<br>95% CI<br>0.89, 1.18<br>1.07, 1.11<br>Ref                                                                                       | <b>p-value</b> 0.800 < <b>0.001</b> Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR 1.03 1.09                                            | Model 2<br>95% CI<br>0.89, 1.19<br>1.07, 1.11                                                                                                | p-value<br>0.700<br><0.001                                    | HR 1.03 1.09                                         | Model 3<br>95% CI<br>0.90, 1.20<br>1.07, 1.11                                                                                                         | 0.6<br>< <b>0.001</b><br>Ref                                                  |  |
| Age Sex Female Male                                                                                                                                                                                                                                                                              | 1.04<br>1.05                                                                        | Model 1<br>95% CI<br>0.93, 1.16<br>1.04, 1.07                                                                                | p-value<br>0.500<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HR<br>1.04<br>1.05                                                                       | Model 2 95% CI 0.93, 1.16 1.04, 1.07                                                                                                          | p-value<br>0.500<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HR<br>1.05<br>1.05                                                                                      | Model 3<br>95% CI<br>0.94, 1.17<br>1.04, 1.07                                                                                                | 0.4<br>< <b>0.001</b>                                                                 | 1.04<br>1.05                                                                       | Model 1<br>95% CI<br>0.93, 1.16<br>1.04, 1.07                                                                              | p-value<br>0.500<br><0.001                 | HR<br>1.04<br>1.05                                                   | Model 2<br>95% CI<br>0.93, 1.16<br>1.04, 1.07                                                                                                | p-value<br>0.500<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR 1.04 1.05                                | Model 3<br>95% CI<br>0.93, 1.17<br>1.04, 1.07                                                                                                | 0.500<br>< <b>0.001</b>                                                                                    | 1.02<br>1.09                                                 | Model 1<br>95% CI<br>0.89, 1.18<br>1.07, 1.11                                                                                              | p-value<br>0.800<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HR<br>1.03<br>1.09                                      | Model 2<br>95% CI<br>0.89, 1.19<br>1.07, 1.11                                                                                                | p-value<br>0.700<br><0.001                                    | HR 1.03 1.09                                         | Model 3<br>95% CI<br>0.90, 1.20<br>1.07, 1.11                                                                                                         | 0.6<br>< <b>0.001</b>                                                         |  |
| Age Sex Female Male Education                                                                                                                                                                                                                                                                    | 1.04<br>1.05<br>Ref<br>1.2                                                          | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53                                                                       | p-value<br>0.500<br><0.001<br>Ref<br>0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HR 1.04 1.05  Ref 1.22                                                                   | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.95, 1.56                                                                                        | p-value 0.500 <0.001  Ref 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HR 1.05 1.05 1.05                                                                                       | Model 3 95% CI 0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56                                                                                         | 0.4<br>< <b>0.001</b><br>Ref<br>0.11                                                  | 1.04<br>1.05<br>Ref<br>1.19                                                        | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52                                                                       | p-value 0.500 <0.001  Ref 0.200            | HR 1.04 1.05  Ref 1.2                                                | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54                                                                                       | p-value<br>0.500<br><0.001<br>Ref<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR 1.04 1.05 Ref 1.2                        | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54                                                                                         | 0.500<br>< <b>0.001</b> Ref 0.15                                                                           | 1.02<br>1.09<br>Ref<br>1.32                                  | Model 1<br>95% CI<br>0.89, 1.18<br>1.07, 1.11<br>Ref<br>0.96, 1.82                                                                         | p-value 0.800 <0.001  Ref 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HR 1.03 1.09  Ref 1.37                                  | Model 2<br>95% CI<br>0.89, 1.19<br>1.07, 1.11<br>Ref<br>0.99, 1.89                                                                           | p-value<br>0.700<br><0.001<br>Ref<br>0.056                    | HR 1.03 1.09 Ref 1.37                                | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89                                                                                                  | 0.6<br>< <b>0.001</b><br>Ref<br>0.053                                         |  |
| Age Sex Female Male Education Above High School/GED                                                                                                                                                                                                                                              | 1.04<br>1.05<br>Ref<br>1.2                                                          | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53                                                                       | p-value   0.500   <0.001   Ref   0.150   Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HR 1.04 1.05  Ref 1.22                                                                   | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref  0.95, 1.56                                                                                       | p-value 0.500 <0.001  Ref 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HR 1.05 1.05 1.05 Ref 1.22                                                                              | Model 3 95% CI 0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56                                                                                         | 0.4<br>< <b>0.001</b> Ref 0.11                                                        | 1.04<br>1.05<br>Ref<br>1.19                                                        | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52                                                                       | p-value 0.500 <0.001  Ref 0.200            | HR 1.04 1.05  Ref 1.2                                                | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref  0.94, 1.54                                                                                      | p-value<br>0.500<br><0.001<br>Ref<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR 1.04 1.05 Ref 1.2                        | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54                                                                                         | 0.500<br>< <b>0.001</b> Ref 0.15                                                                           | 1.02<br>1.09<br>Ref<br>1.32                                  | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82                                                                                       | p-value 0.800 <0.001  Ref 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HR 1.03 1.09  Ref 1.37                                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89                                                                                       | p-value<br>0.700<br><0.001<br>Ref<br>0.056                    | HR 1.03 1.09 Ref 1.37                                | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89                                                                                                  | 0.6<br>< <b>0.001</b> Ref 0.053                                               |  |
| Age Sex Female Male Education Above High School/GED High School/GED                                                                                                                                                                                                                              | 1.04<br>1.05<br>Ref<br>1.2                                                          | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03                                                       | p-value   0.500   <0.001   Ref   0.150   Ref   0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR 1.04 1.05  Ref 1.22                                                                   | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.95, 1.56  Ref 1.11, 2.04                                                                        | p-value   0.500   <0.001   Ref   0.110   Ref   0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HR 1.05 1.05 1.05 Ref 1.22 Ref 1.51                                                                     | Model 3 95% CI 0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05                                                                         | 0.4<br>< <b>0.001</b> Ref 0.11  Ref <b>0.009</b>                                      | 1.04<br>1.05<br>Ref<br>1.19                                                        | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09                                                       | p-value 0.500 <0.001  Ref 0.200  Ref 0.007 | HR 1.04 1.05  Ref 1.2  Ref 1.54                                      | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10                                                                       | p-value 0.500 <0.001  Ref 0.200  Ref 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR 1.04 1.05  Ref 1.2  Ref 1.54             | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11                                                                         | 0.500<br>< <b>0.001</b> Ref 0.15  Ref <b>0.007</b>                                                         | 1.02<br>1.09<br>Ref<br>1.32<br>Ref<br>2.14                   | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96                                                                       | p-value 0.800 <0.001  Ref 0.088  Ref 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HR 1.03 1.09  Ref 1.37                                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10                                                                       | p-value<br>0.700<br><0.001<br>Ref<br>0.056                    | HR 1.03 1.09 Ref 1.37                                | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09                                                                                  | 0.6<br>< <b>0.001</b> Ref 0.053  Ref <b>0.012</b>                             |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED                                                                                                                                                                                                    | 1.04<br>1.05<br>Ref<br>1.2                                                          | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53                                                                       | p-value   0.500   <0.001   Ref   0.150   Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HR 1.04 1.05  Ref 1.22                                                                   | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.95, 1.56  Ref 1.11, 2.04                                                                        | p-value 0.500 <0.001  Ref 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HR 1.05 1.05 1.05 Ref 1.22                                                                              | Model 3 95% CI 0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56                                                                                         | 0.4<br>< <b>0.001</b> Ref 0.11                                                        | 1.04<br>1.05<br>Ref<br>1.19                                                        | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52                                                                       | p-value 0.500 <0.001  Ref 0.200            | HR 1.04 1.05  Ref 1.2                                                | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref  0.94, 1.54                                                                                      | p-value<br>0.500<br><0.001<br>Ref<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HR 1.04 1.05 Ref 1.2                        | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54                                                                                         | 0.500<br>< <b>0.001</b> Ref 0.15                                                                           | 1.02<br>1.09<br>Ref<br>1.32<br>Ref<br>2.14                   | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82                                                                                       | p-value 0.800 <0.001  Ref 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HR 1.03 1.09  Ref 1.37                                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89                                                                                       | p-value<br>0.700<br><0.001<br>Ref<br>0.056                    | HR 1.03 1.09 Ref 1.37                                | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89                                                                                                  | 0.6<br>< <b>0.001</b> Ref 0.053                                               |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status                                                                                                                                                                                     | 1.04<br>1.05<br>Ref<br>1.2<br>Ref<br>1.5<br>3.02                                    | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31                                            | p-value   0.500   <0.001   Ref   0.150   Ref   0.009   <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HR 1.04 1.05  Ref 1.22  Ref 1.51 2.94                                                    | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.95, 1.56  Ref 1.11, 2.04 2.06, 4.20                                                             | p-value   0.500   <0.001     Ref   0.110     Ref   0.009   <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref<br>1.05<br>1.05<br>Ref<br>1.22                                                                      | Model 3 95% CI 0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25                                                              | 0.4<br>< <b>0.001</b> Ref<br>0.11  Ref<br><b>0.009</b> < <b>0.001</b>                 | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11                                 | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46                                            | p-value   0.500                            | Ref<br>1.54<br>3                                                     | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30                                                            | p-value   0.500   <0.001     Ref   0.200     Ref   0.007   <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HR 1.04 1.05  Ref 1.2  Ref 1.54 3.02        | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34                                                              | 0.500<br>< <b>0.001</b> Ref 0.15  Ref <b>0.007</b> < <b>0.001</b>                                          | 1.02<br>1.09<br>Ref<br>1.32<br>Ref<br>2.14<br>5.48           | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2                                                            | p-value   0.800   <0.001   Ref   0.088   Ref   0.016   <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref<br>1.37<br>Ref<br>2.21<br>5.61                      | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5                                                            | p-value 0.700 <0.001  Ref 0.056  Ref 0.012 <0.001             | HR 1.03 1.09 Ref 1.37 Ref 2.21 5.6                   | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5                                                                       | 0.6<br>< <b>0.001</b> Ref<br>0.053  Ref<br><b>0.012</b><br>< <b>0.001</b>     |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold                                                                                                                                                             | 1.04<br>1.05<br>Ref<br>1.2<br>Ref<br>1.5<br>3.02                                    | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31                                            | p-value   0.500   <0.001   Ref   0.150   Ref   0.009   <0.001   Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HR   1.04   1.05     Ref   1.22     Ref   1.51   2.94     Ref                            | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56   Ref 1.11, 2.04 2.06, 4.20  Ref                                                      | p-value   0.500   <0.001     Ref   0.110     Ref   0.009   <0.001     Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HR   1.05   1.05     Ref   1.22     Ref   1.51   2.97     Ref                                           | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25                                                            | 0.4<br>< <b>0.001</b> Ref<br>0.11  Ref<br><b>0.009</b> < <b>0.001</b>                 | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11                                 | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46                                            | p-value   0.500                            | Ref 1.54 3                                                           | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref                                                       | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HR 1.04 1.05  Ref 1.2  Ref 1.54 3.02        | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34                                                              | 0.500<br>< <b>0.001</b> Ref 0.15  Ref <b>0.007</b> < <b>0.001</b>                                          | Ref<br>1.32<br>Ref<br>2.14<br>5.48                           | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2                                                            | p-value   0.800   <0.001   Ref   0.088   Ref   0.016   <0.001   Ref   Ref   Constant   Re | HR   1.03   1.09   Ref   1.37   Ref   2.21   5.61   Ref | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5                                                            | P-value   0.700                                               | HR 1.03 1.09 Ref 1.37 Ref 2.21 5.6                   | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5                                                                       | 0.6<br>< <b>0.001</b> Ref<br>0.053  Ref<br><b>0.012</b><br>< <b>0.001</b> Ref |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold                                                                                                                                     | 1.04<br>1.05<br>Ref<br>1.2<br>Ref<br>1.5<br>3.02                                    | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31                                            | p-value   0.500   <0.001   Ref   0.150   Ref   0.009   <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HR 1.04 1.05  Ref 1.22  Ref 1.51 2.94                                                    | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.95, 1.56  Ref 1.11, 2.04 2.06, 4.20                                                             | p-value   0.500   <0.001     Ref   0.110     Ref   0.009   <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref<br>1.05<br>1.05<br>Ref<br>1.22                                                                      | Model 3 95% CI 0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25                                                              | 0.4<br>< <b>0.001</b> Ref<br>0.11  Ref<br><b>0.009</b> < <b>0.001</b>                 | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11                                 | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46                                            | p-value   0.500                            | Ref<br>1.54<br>3                                                     | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30                                                            | p-value   0.500   <0.001     Ref   0.200     Ref   0.007   <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HR 1.04 1.05  Ref 1.2  Ref 1.54 3.02        | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34                                                              | 0.500<br>< <b>0.001</b> Ref 0.15  Ref <b>0.007</b> < <b>0.001</b>                                          | 1.02<br>1.09<br>Ref<br>1.32<br>Ref<br>2.14<br>5.48           | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2                                                            | p-value   0.800   <0.001   Ref   0.088   Ref   0.016   <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref<br>1.37<br>Ref<br>2.21<br>5.61                      | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5                                                            | p-value 0.700 <0.001  Ref 0.056  Ref 0.012 <0.001             | HR 1.03 1.09 Ref 1.37 Ref 2.21 5.6                   | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5                                                                       | 0.6<br>< <b>0.001</b> Ref<br>0.053  Ref<br><b>0.012</b><br>< <b>0.001</b>     |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold APOE E4 status                                                                                                                      | 1.04<br>1.05<br>Ref<br>1.2<br>Ref<br>1.5<br>3.02                                    | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37                            | p-value   0.500   <0.001   Ref   0.150   Ref   0.009   <0.001   Ref   <0.001 | Ref<br>1.22<br>Ref<br>1.51<br>2.94                                                       | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.95, 1.56  Ref 1.11, 2.04 2.06, 4.20  Ref 1.36, 2.41                                             | p-value   0.500   <0.001   Ref   0.110   Ref   0.009   <0.001   Ref   <0.001  | Ref 1.51 2.97                                                                                           | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 1.36, 2.43                                            | 0.4<br><0.001<br>Ref<br>0.11<br>Ref<br>0.009<br><0.001<br>Ref<br><0.001               | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11                                 | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39                          | p-value   0.500                            | Ref<br>1.54<br>3<br>Ref<br>1.81                                      | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42                                            | p-value   0.500   < 0.001     Ref   0.200     Ref   0.007   < 0.001     Ref   < 0.001       Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001       Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001       Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001       Ref   < 0.001       Ref   < 0.001 | Ref<br>1.54<br>3.02<br>Ref<br>1.54<br>3.02  | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 1.37, 2.44                                              | 0.500<br><0.001<br>Ref<br>0.15<br>Ref<br>0.007<br><0.001<br>Ref<br><0.001                                  | Ref<br>1.32<br>Ref<br>2.14<br>5.48<br>Ref<br>1.86            | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65                                            | p-value   0.800   < 0.001     Ref   0.088     Ref     0.016   < 0.001     Ref   < 0.001       Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001       Ref   < 0.001     Ref   < 0.001       Ref   < 0.001       Ref   < 0.001                                                                                                                                                                                                                                                                                                                        | Ref 2.21 5.61 Ref 1.83                                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61                                            | p-value 0.700 <0.001  Ref 0.056  Ref 0.012 <0.001  Ref <0.001 | HR 1.03 1.09  Ref 1.37  Ref 2.21 5.6  Ref 1.82       | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61                                                       | 0.6<br><0.001<br>Ref<br>0.053<br>Ref<br>0.012<br><0.001<br>Ref<br><0.001      |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold APOE E4 status No copies of e4                                                                                                      | 1.04<br>1.05<br>Ref<br>1.2<br>Ref<br>1.5<br>3.02<br>Ref<br>1.78                     | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37                            | p-value   0.500   <0.001   Ref   0.150   Ref   0.009   <0.001   Ref   <0.001 | HR   1.04   1.05   Ref   1.22   Ref   1.51   2.94   Ref   1.81   Ref                     | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56   Ref 1.11, 2.04 2.06, 4.20   Ref 1.36, 2.41                                          | p-value   0.500   <0.001   Ref   0.110   Ref   0.009   <0.001   Ref   <0.001  | HR   1.05   1.05     Ref   1.22     Ref   1.51   2.97     Ref                                           | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 1.36, 2.43                                            | 0.4<br><0.001<br>Ref<br>0.11<br>Ref<br>0.009<br><0.001<br>Ref                         | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11<br>Ref<br>1.79                  | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39  Ref                     | p-value   0.500                            | Ref<br>1.54<br>3<br>Ref<br>1.81                                      | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42                                            | p-value   0.500   < 0.001     Ref   0.200     Ref   0.007   < 0.001     Ref     < 0.001     Ref     Ref       Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ref 1.54 3.02  Ref 1.83                     | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 1.37, 2.44  Ref                                         | 0.500<br><0.001<br>Ref<br>0.15<br>Ref<br>0.007<br><0.001<br>Ref<br><0.001                                  | Ref 1.32  Ref 2.14 5.48  Ref 1.86                            | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65                                            | p-value   0.800   < 0.001     Ref   0.088     Ref     < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref     < 0.001     Ref     Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref 1.37  Ref 2.21 5.61  Ref 1.83                       | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61                                            | p-value 0.700 <0.001  Ref 0.056  Ref 0.012 <0.001  Ref <0.001 | HR 1.03 1.09  Ref 1.37  Ref 2.21 5.6  Ref 1.82       | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61                                                       | 0.6<br><0.001<br>Ref<br>0.053<br>Ref<br>0.012<br><0.001<br>Ref<br><0.001      |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold APOE E4 status No copies of e4 Any copies of e4                                                                                     | Ref<br>1.2<br>Ref<br>1.5<br>3.02<br>Ref<br>1.78                                     | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37  Ref 0.80, 1.28            | p-value   0.500   <0.001   Ref   0.150   Ref   <0.009   <0.001   Ref   <0.001   Ref   >0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref<br>1.22<br>Ref<br>1.51<br>2.94<br>Ref<br>1.81                                        | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56   Ref 1.11, 2.04 2.06, 4.20   Ref 1.36, 2.41   Ref 0.80, 1.29                         | p-value   0.500   <0.001   Ref   0.110   Ref   <0.009   <0.001   Ref   <0.001   Ref   <0.001   Ref   <0.900   Ref   <0.900 | Ref 1.51 2.97  Ref 1.82                                                                                 | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 1.36, 2.43  Ref 0.79, 1.28                            | 0.4<br><0.001<br>Ref<br>0.11<br>Ref<br>0.009<br><0.001<br>Ref<br>>0.9                 | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11<br>Ref<br>1.79                  | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39  Ref 0.79, 1.27          | p-value   0.500                            | Ref 1.54 3  Ref 1.81  Ref 1.01                                       | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42  Ref 0.79, 1.28                            | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref 1.54 3.02  Ref 1.83                     | Model 3  95% CI  0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 1.37, 2.44  Ref 0.78, 1.26                            | 0.500<br><0.001  Ref<br>0.15  Ref<br>0.007<br><0.001  Ref<br><0.001                                        | Ref<br>1.32<br>Ref<br>2.14<br>5.48<br>Ref<br>1.86            | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65  Ref 1.05, 1.96                            | p-value   0.800   < 0.001     Ref   0.088     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   0.024     Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ref 1.37  Ref 2.21 5.61  Ref 1.83                       | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61  Ref 1.06, 2.00                            | p-value 0.700 <0.001  Ref 0.056  Ref 0.012 <0.001  Ref <0.001 | Ref 2.21 5.6 Ref 1.82                                | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61  Ref 1.04, 1.97                                       | 0.6 <0.001  Ref 0.053  Ref 0.012 <0.001  Ref 0.001                            |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold APOE E4 status No copies of e4 Any copies of e4 Social Ladder                                                                       | 1.04<br>1.05<br>Ref<br>1.2<br>Ref<br>1.5<br>3.02<br>Ref<br>1.78                     | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37                            | p-value   0.500   <0.001   Ref   0.150   Ref   0.009   <0.001   Ref   <0.001 | HR   1.04   1.05   Ref   1.22   Ref   1.51   2.94   Ref   1.81   Ref                     | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56   Ref 1.11, 2.04 2.06, 4.20   Ref 1.36, 2.41   Ref 0.80, 1.29                         | p-value   0.500   <0.001   Ref   0.110   Ref   0.009   <0.001   Ref   <0.001  | Ref 1.51 2.97                                                                                           | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 1.36, 2.43                                            | 0.4<br><0.001<br>Ref<br>0.11<br>Ref<br>0.009<br><0.001<br>Ref                         | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11<br>Ref<br>1.79                  | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39  Ref                     | p-value   0.500                            | Ref<br>1.54<br>3<br>Ref<br>1.81                                      | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42                                            | p-value   0.500   < 0.001     Ref   0.200     Ref   0.007   < 0.001     Ref     < 0.001     Ref     Ref       Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ref 1.54 3.02  Ref 1.83                     | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 1.37, 2.44  Ref                                         | 0.500<br><0.001<br>Ref<br>0.15<br>Ref<br>0.007<br><0.001<br>Ref<br><0.001                                  | Ref<br>1.32<br>Ref<br>2.14<br>5.48<br>Ref<br>1.86            | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65                                            | p-value   0.800   < 0.001     Ref   0.088     Ref     < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref   < 0.001     Ref     < 0.001     Ref     Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref 1.37  Ref 2.21 5.61  Ref 1.83                       | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61                                            | p-value 0.700 <0.001  Ref 0.056  Ref 0.012 <0.001  Ref <0.001 | HR 1.03 1.09  Ref 1.37  Ref 2.21 5.6  Ref 1.82       | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61                                                       | 0.6<br><0.001<br>Ref<br>0.053<br>Ref<br>0.012<br><0.001<br>Ref<br><0.001      |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold Below Poverty threshold APOE E4 status No copies of e4 Any copies of e4 Social Ladder Baseline wave                                 | Ref<br>1.2<br>Ref<br>1.5<br>3.02<br>Ref<br>1.78                                     | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37  Ref 0.80, 1.28 0.91, 1.03 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ref<br>1.04<br>1.05<br>Ref<br>1.22<br>Ref<br>1.51<br>2.94<br>Ref<br>1.81                 | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56   Ref 1.11, 2.04 2.06, 4.20   Ref 1.36, 2.41   Ref 0.80, 1.29 0.90, 1.02              | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref 1.82  Ref 1.97  Ref 1.97                                                                            | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 1.36, 2.43  Ref 0.79, 1.28 0.90, 1.02                 | 0.4<br><0.001<br>Ref<br>0.11<br>Ref<br>0.009<br><0.001<br>Ref<br><0.001               | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11<br>Ref<br>1.79                  | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39  Ref 0.79, 1.27 0.91, 1.04 | p-value   0.500                            | Ref<br>1.54<br>3<br>Ref<br>1.01<br>0.96                              | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42  Ref 0.79, 1.28 0.90, 1.03                 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref 1.54 3.02  Ref 1.83  Ref 0.99 0.96      | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 1.37, 2.44  Ref 0.78, 1.26 0.90, 1.03                   | 0.500<br><0.001  Ref<br>0.15  Ref<br>0.007<br><0.001  Ref<br><0.001                                        | Ref<br>1.32<br>Ref<br>2.14<br>5.48<br>Ref<br>1.86            | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65  Ref 1.05, 1.96 0.98, 1.16                 | P-value   0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref 1.37  Ref 2.21 5.61  Ref 1.46 1.06                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61  Ref 1.06, 2.00 0.97, 1.15                 | P-value   0.700                                               | Ref 1.37  Ref 2.21 5.6  Ref 1.43 1.06                | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61  Ref 1.04, 1.97 0.97, 1.15                            | 0.6 <0.001  Ref 0.053  Ref 0.012 <0.001  Ref 0.026 0.2                        |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold Below Poverty threshold APOE E4 status No copies of e4 Any copies of e4 Social Ladder Baseline wave Wave 1 (2008)                   | Ref<br>1.2<br>Ref<br>1.5<br>3.02<br>Ref<br>1.78<br>Ref<br>1.01<br>0.97              | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37  Ref 0.80, 1.28 0.91, 1.03 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HR   1.04   1.05   Ref   1.22   Ref   1.51   2.94   Ref   1.81   Ref   1.02   0.96   Ref | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56   Ref 1.11, 2.04 2.06, 4.20   Ref 0.80, 1.29 0.90, 1.02  Ref  Ref                     | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HR   1.05   1.05     Ref   1.22     Ref   1.51   2.97     Ref   1.82     Ref   1   0.96     Ref     Ref | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 1.36, 2.43  Ref 0.79, 1.28 0.90, 1.02                 | 0.4<br><0.001<br>Ref<br>0.11<br>Ref<br>0.009<br><0.001<br>Ref<br>>0.9<br>0.2          | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11<br>Ref<br>1.79<br>Ref<br>1 0.97 | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39  Ref 0.79, 1.27 0.91, 1.04 | p-value   0.500                            | Ref 1.54 3  Ref 1.01 0.96                                            | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42  Ref 0.79, 1.28 0.90, 1.03                 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref 1.54 3.02  Ref 1.83  Ref 0.99 0.96      | Model 3 95% CI 0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 1.37, 2.44  Ref 0.78, 1.26 0.90, 1.03                   | 0.500<br><0.001  Ref<br>0.15  Ref<br>0.007<br><0.001  Ref<br><0.001  Ref<br>>0.9<br>0.3                    | Ref 1.32  Ref 2.14 5.48  Ref 1.86  Ref 1.86                  | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65  Ref 1.05, 1.96 0.98, 1.16                 | P-value   0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref 1.37  Ref 2.21 5.61  Ref 1.46 1.06                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61  Ref 1.06, 2.00 0.97, 1.15                 | P-value   0.700                                               | Ref 1.37  Ref 2.21 5.6  Ref 1.43 1.06                | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61  Ref 1.04, 1.97 0.97, 1.15                            | 0.6 <0.001  Ref 0.053  Ref 0.012 <0.001  Ref 0.026 0.2  Ref                   |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold Below Poverty threshold APOE E4 status No copies of e4 Any copies of e4 Social Ladder Baseline wave Wave 1 (2008) Wave 2 (2010)     | Ref<br>1.2<br>Ref<br>1.5<br>3.02<br>Ref<br>1.78                                     | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37  Ref 0.80, 1.28 0.91, 1.03 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ref 1.51 2.94  Ref 1.02 0.96                                                             | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56  Ref 1.11, 2.04 2.06, 4.20  Ref 1.36, 2.41  Ref 0.80, 1.29 0.90, 1.02  Ref 0.92, 1.48 | P-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref 1.82  Ref 1.97  Ref 1.71  Ref 1.71                                                                  | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 1.36, 2.43  Ref 0.79, 1.28 0.90, 1.02  Ref 0.92, 1.48 | 0.4<br><0.001  Ref<br>0.11  Ref<br>0.009<br><0.001  Ref<br><0.001  Ref<br>>0.9<br>0.2 | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11<br>Ref<br>1.79                  | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39  Ref 0.79, 1.27 0.91, 1.04 | p-value   0.500                            | Ref<br>1.2<br>Ref<br>1.54<br>3<br>Ref<br>1.81<br>Ref<br>1.01<br>0.96 | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42  Ref 0.79, 1.28 0.90, 1.03  Ref 0.92, 1.50 | P-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref 1.54 3.02  Ref 1.83  Ref 0.99 0.96      | Model 3  95% CI  0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 1.37, 2.44  Ref 0.78, 1.26 0.90, 1.03  Ref 0.92, 1.50 | 0.500<br><0.001  Ref<br>0.15  Ref<br>0.007<br><0.001  Ref<br><0.001  Ref<br>>0.9<br>0.3  Ref<br>0.2        | Ref<br>1.32<br>Ref<br>2.14<br>5.48<br>Ref<br>1.86            | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65  Ref 1.05, 1.96 0.98, 1.16                 | p-value   0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref 1.37  Ref 2.21 5.61  Ref 1.46 1.06                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61  Ref 1.06, 2.00 0.97, 1.15  Ref 0.80, 1.50 | P-value   0.700                                               | Ref 1.37  Ref 2.21 5.6  Ref 1.43 1.06  Ref 1.41      | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61  Ref 1.04, 1.97 0.97, 1.15  Ref 0.81, 1.52            | 0.6 <0.001  Ref 0.053  Ref 0.012 <0.001  Ref 0.026 0.2  Ref 0.5               |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold APOE E4 status No copies of e4 Any copies of e4 Social Ladder Baseline wave Wave 1 (2008) Wave 2 (2010) PGS-AD                      | Ref<br>1.2<br>Ref<br>1.5<br>3.02<br>Ref<br>1.78<br>Ref<br>1.01<br>0.97              | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37  Ref 0.80, 1.28 0.91, 1.03 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HR   1.04   1.05   Ref   1.22   Ref   1.51   2.94   Ref   1.81   Ref   1.02   0.96   Ref | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56  Ref 1.11, 2.04 2.06, 4.20  Ref 1.36, 2.41  Ref 0.80, 1.29 0.90, 1.02  Ref 0.92, 1.48 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref 1.51 2.97  Ref 1.82  Ref 1.17 1.15                                                                  | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 0.79, 1.28 0.90, 1.02  Ref 0.92, 1.48 0.96, 1.38      | 0.4<br><0.001  Ref<br>0.11  Ref<br>0.009<br><0.001  Ref<br><0.001  Ref<br>>0.2  0.12  | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11<br>Ref<br>1.79<br>Ref<br>1 0.97 | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39  Ref 0.79, 1.27 0.91, 1.04 | P-value   0.500                            | Ref 1.54 3  Ref 1.01 0.96                                            | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42  Ref 0.79, 1.28 0.90, 1.03                 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref 1.54 3.02  Ref 0.99 0.96  Ref 1.17 1.13 | Model 3  95% CI  0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 0.78, 1.26 0.90, 1.03  Ref 0.92, 1.50 0.95, 1.35      | 0.500<br><0.001  Ref<br>0.15  Ref<br>0.007<br><0.001  Ref<br><0.001  Ref<br>>0.9<br>0.3  Ref<br>0.2<br>0.2 | Ref 1.32  Ref 2.14 5.48  Ref 1.86  Ref 1.44 1.06  Ref 1.12 - | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65  Ref 1.05, 1.96 0.98, 1.16  Ref 0.82, 1.53 | P-value   0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref 1.37  Ref 2.21 5.61  Ref 1.46 1.06                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61  Ref 1.06, 2.00 0.97, 1.15                 | P-value   0.700                                               | Ref 1.37  Ref 2.21 5.6  Ref 1.43 1.06  Ref 1.11 1.12 | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61  Ref 1.04, 1.97 0.97, 1.15  Ref 0.81, 1.52 0.88, 1.44 | 0.6 <0.001  Ref 0.053  Ref 0.012 <0.001  Ref 0.026 0.2  Ref 0.5 0.4           |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold APOE E4 status No copies of e4 Any copies of e4 Social Ladder Baseline wave Wave 1 (2008) Wave 2 (2010) PGS-AD Neighborhood* PGS-AD | Ref<br>1.2<br>Ref<br>1.5<br>3.02<br>Ref<br>1.78<br>Ref<br>1.01<br>0.97              | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37  Ref 0.80, 1.28 0.91, 1.03 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ref 1.51 2.94  Ref 1.02 0.96                                                             | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56  Ref 1.11, 2.04 2.06, 4.20  Ref 1.36, 2.41  Ref 0.80, 1.29 0.90, 1.02  Ref 0.92, 1.48 | P-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref 1.82  Ref 1.97  Ref 1.71  Ref 1.71                                                                  | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 1.36, 2.43  Ref 0.79, 1.28 0.90, 1.02  Ref 0.92, 1.48 | 0.4<br><0.001  Ref<br>0.11  Ref<br>0.009<br><0.001  Ref<br><0.001  Ref<br>>0.9<br>0.2 | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11<br>Ref<br>1.79<br>Ref<br>1 0.97 | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39  Ref 0.79, 1.27 0.91, 1.04 | p-value   0.500                            | Ref<br>1.2<br>Ref<br>1.54<br>3<br>Ref<br>1.81<br>Ref<br>1.01<br>0.96 | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42  Ref 0.79, 1.28 0.90, 1.03  Ref 0.92, 1.50 | P-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref 1.54 3.02  Ref 1.83  Ref 0.99 0.96      | Model 3  95% CI  0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 1.37, 2.44  Ref 0.78, 1.26 0.90, 1.03  Ref 0.92, 1.50 | 0.500<br><0.001  Ref<br>0.15  Ref<br>0.007<br><0.001  Ref<br><0.001  Ref<br>>0.9<br>0.3  Ref<br>0.2        | Ref 1.32  Ref 2.14 5.48  Ref 1.86  Ref 1.86                  | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65  Ref 1.05, 1.96 0.98, 1.16                 | p-value   0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref 1.37  Ref 2.21 5.61  Ref 1.46 1.06                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61  Ref 1.06, 2.00 0.97, 1.15  Ref 0.80, 1.50 | P-value   0.700                                               | Ref 1.37  Ref 2.21 5.6  Ref 1.43 1.06  Ref 1.41      | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61  Ref 1.04, 1.97 0.97, 1.15  Ref 0.81, 1.52            | 0.6 <0.001  Ref 0.053  Ref 0.012 <0.001  Ref 0.026 0.2  Ref 0.5               |  |
| Age Sex Female Male Education Above High School/GED High School/GED Less than High School/GED Poverty Status Above Poverty threshold Below Poverty threshold APOE E4 status No copies of e4 Any copies of e4 Social Ladder Baseline wave Wave 1 (2008) Wave 2 (2010) PGS-AD                      | Ref<br>1.2<br>Ref<br>1.5<br>3.02<br>Ref<br>1.78<br>Ref<br>1.01<br>0.97              | Model 1  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.53  Ref 1.11, 2.03 2.12, 4.31  Ref 1.34, 2.37  Ref 0.80, 1.28 0.91, 1.03 | p-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ref 1.51 2.94  Ref 1.02 0.96                                                             | Model 2  95% CI  0.93, 1.16 1.04, 1.07   Ref 0.95, 1.56  Ref 1.11, 2.04 2.06, 4.20  Ref 1.36, 2.41  Ref 0.80, 1.29 0.90, 1.02  Ref 0.92, 1.48 | P-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref 1.51 2.97  Ref 1.82  Ref 1.17 1.15                                                                  | Model 3  95% CI  0.94, 1.17 1.04, 1.07  Ref 0.96, 1.56  Ref 1.11, 2.05 2.08, 4.25  Ref 0.79, 1.28 0.90, 1.02  Ref 0.92, 1.48 0.96, 1.38      | 0.4<br><0.001  Ref<br>0.11  Ref<br>0.009<br><0.001  Ref<br><0.001  Ref<br>>0.2  0.12  | 1.04<br>1.05<br>Ref<br>1.19<br>Ref<br>1.53<br>3.11<br>Ref<br>1.79<br>Ref<br>1 0.97 | Model 1 95% CI 0.93, 1.16 1.04, 1.07  Ref 0.93, 1.52  Ref 1.12, 2.09 2.17, 4.46  Ref 1.34, 2.39  Ref 0.79, 1.27 0.91, 1.04 | P-value   0.500                            | Ref<br>1.2<br>Ref<br>1.54<br>3<br>Ref<br>1.81<br>Ref<br>1.01<br>0.96 | Model 2  95% CI  0.93, 1.16 1.04, 1.07  Ref 0.94, 1.54  Ref 1.12, 2.10 2.09, 4.30  Ref 1.36, 2.42  Ref 0.79, 1.28 0.90, 1.03  Ref 0.92, 1.50 | P-value   0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref 1.54 3.02  Ref 0.99 0.96  Ref 1.17 1.13 | Model 3  95% CI  0.93, 1.17 1.04, 1.07  Ref 0.94, 1.54  Ref 1.13, 2.11 2.10, 4.34  Ref 0.78, 1.26 0.90, 1.03  Ref 0.92, 1.50 0.95, 1.35      | 0.500<br><0.001  Ref<br>0.15  Ref<br>0.007<br><0.001  Ref<br><0.001  Ref<br>>0.9<br>0.3  Ref<br>0.2<br>0.2 | Ref 1.32  Ref 2.14 5.48  Ref 1.86  Ref 1.44 1.06  Ref 1.12 - | Model 1 95% CI 0.89, 1.18 1.07, 1.11  Ref 0.96, 1.82  Ref 1.15, 3.96 2.94, 10.2  Ref 1.30, 2.65  Ref 1.05, 1.96 0.98, 1.16  Ref 0.82, 1.53 | p-value   0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref 1.37  Ref 2.21 5.61  Ref 1.46 1.06                  | Model 2  95% CI  0.89, 1.19 1.07, 1.11  Ref 0.99, 1.89  Ref 1.19, 4.10 3.00, 10.5  Ref 1.28, 2.61  Ref 1.06, 2.00 0.97, 1.15  Ref 0.80, 1.50 | P-value   0.700                                               | Ref 1.37  Ref 2.21 5.6  Ref 1.43 1.06  Ref 1.11 1.12 | Model 3 95% CI 0.90, 1.20 1.07, 1.11  Ref 1.00, 1.89  Ref 1.19, 4.09 2.99, 10.5  Ref 1.28, 2.61  Ref 1.04, 1.97 0.97, 1.15  Ref 0.81, 1.52 0.88, 1.44 | 0.6 <0.001  Ref 0.053  Ref 0.012 <0.001  Ref 0.026 0.2  Ref 0.5 0.4           |  |

 $<sup>^</sup>a$ RERI was calculated based on the model using a dichotomized neighborhood disadvantaged neighborhoods; > 0 indicating the least disadvantaged neighborhoods) and PGS-AD (cutoff at the 75th percentile). Full model details are provided in Supplemental Table 3

<sup>&</sup>lt;sup>b</sup>European Ancestry Sample average follow-up duration: Cognitive Impairment = 7.49 years; Cognitive Impairment, No Dementia (CIND) = 7.53 years; Dementia = 8.04 years.

<sup>&</sup>lt;sup>c</sup>Aferican Ancestry Sample average follow-up duration: Cognitive Impairment = 6.71 years; Cognitive Impairment, No Dementia (CIND) = 6.77 years; Dementia = 7.85 years.