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Prognostic implications of the expression levels of different
immunoglobulin heavy chain-encoding RNAs in early
breast cancer
Christer Larsson1✉, Anna Ehinger 2, Sofia Winslow1, Karin Leandersson 3, Marie Klintman2, Ludvig Dahl2,
Johan Vallon-Christersson 2, Jari Häkkinen 2, Cecilia Hegardt2, Jonas Manjer4, Lao Saal 2, Lisa Rydén5, Martin Malmberg 2,
Åke Borg2 and Niklas Loman2

The extent and composition of the immune response in a breast cancer is one important prognostic factor for the disease. The aim
of the current work was to refine the analysis of the humoral component of an immune response in breast tumors by quantifying
mRNA expression of different immunoglobulin classes and study their association with prognosis. We used RNA-Seq data from two
local population-based breast cancer cohorts to determine the expression of IGJ and immunoglobulin heavy (IGH) chain-encoding
RNAs. The association with prognosis was investigated and public data sets were used to corroborate the findings. Except for IGHE
and IGHD, mRNAs encoding heavy chains were generally detected at substantial levels and correlated with other immune-related
genes. High IGHG1 mRNA was associated with factors related to poor prognosis such as estrogen receptor negativity, HER2
amplification, and high grade, whereas high IGHA2 mRNA levels were primarily associated with lower age at diagnosis. High IGHA2
and IGJ mRNA levels were associated with a more favorable prognosis both in univariable and multivariable Cox models. When
adjusting for other prognostic factors, high IGHG1 mRNA levels were positively associated with improved prognosis. To our
knowledge, these results are the first to demonstrate that expression of individual Ig class types has prognostic implications in
breast cancer.
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INTRODUCTION
Breast cancer is a heterogeneous disease, which is illustrated by
differential expression of estrogen receptor (ER) and progesterone
receptor (PR), occasional prevalence of HER2 amplification, and
differences in proliferation rate which together provide the basis
for the classification of breast cancer in different subgroups. The
subgrouping has become more elaborate with the use of global
mRNA expression analysis that has led to the identification of at
least five subtypes of breast cancer—basal-like, HER2-enriched,
luminal A, luminal B, and normal-like tumors1–3. In addition,
differences in the genomic stability, somatic driver mutations, and
rearrangement patterns, show that different breast cancers indeed
represent fundamentally differential biological subsets4. The
heterogeneity has important implications for prognosis and for
choice of adjuvant systemic therapy. For instance, patients with
ER-positive tumors are advocated endocrine adjuvant therapy,
whereas HER2-amplified tumors can be targeted with antibody-
based therapy. On the other hand, for basal-like tumors that are
typically negative for both ER expression and HER2 amplification,
only chemotherapy is available today.
Other factors also contribute to heterogeneity. These include

the extent of immune response and presence of specific immune
cells in and around the tumor. The amount of tumor-infiltrating
lymphocytes5–16 or certain types of macrophages17–20, in general
or when restricted to specific breast cancer subsets, have been
shown to be important for the prognosis of the disease. Immune
metagenes have been discovered that may be prognostic in

breast cancer in general or in more limited subgroups21–27. Taken
together, there is an abundance of studies indicating that aspects
of an immune response contain prognostic information. In
addition, immune checkpoint inhibition has been demonstrated
to have a therapeutic potential in breast cancer, particularly in
triple-negative breast cancer, along with other types of
malignancies28,29.
One important component of an adaptive immune response is

the humoral immune system whose effector molecules are
constituted by antibodies. There are several classes of antibodies,
including IgM, IgD, IgG1–4, IgE, and IgA1–2. An antibody is built by
two identical heavy chains (immunoglobulin heavy (IGH)) and two
identical light chains. The heavy chain determines the class of the
antibody. During activation of the adaptive immune system B
cells, which produce antibodies that recognize relevant antigens,
undergo class switch by DNA recombination. Prior to class switch,
the B-cell normally expresses both IgD and IgM, whereas following
class switch a B-cell produces only one type of antibody of an IgM,
IgG, IgE, or IgA class. Antibodies of different classes have different
functions. For instance, IgAs are dimers predominantly produced
in the mucosa of organs that are in contact with the exterior, such
as the airways and the gastrointestinal system, but also in the
lactating breast. IgE is mainly produced during parasite infections
and can also be involved in an allergic reaction. IgD is a
membrane bound B-cell receptor together with IgM. IgM is
expressed as a pentamer early during a primary immune response
and is a potent activator of the complement system. Both IgA and
IgM depend on IGJ (joining chain of multimeric IgA and IgM) to
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Fig. 1 Expression and correlation of RNAs encoding IGJ and Ig heavy chains of different types. a, b Box plot of the log2 expression values
of RNA encoding IGJ and the constant region of the heavy chain of different Ig classes. The data are from SCAN-B (a) and Cohort270 (b). The
center line marks the median; box limits mark the upper and lower quartiles; whiskers mark 1.5× interquartile range; points mark outliers
beyond this mark. Correlation matrix of the log2 expression of the indicated mRNAs in SCAN-B (c) and Cohort270 (d). The color indicates the
level of the Pearson’s correlation coefficient. e, f The microenvironment cell population counter was used to obtain quantitative data for
stromal cell types. Pearson’s correlation coefficient between the cell type values and log2 IG mRNA levels were calculated for SCAN-B (e) and
cohort270 (f). The color indicates the levels of the correlation coefficient. g The Spearman’s correlation between indicated IG mRNAs and the
amount of lymphocytes in the tumor, estimated on tumor section.
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assemble as a functional multimer. The role of the different Ig
classes in a tumor immune response is largely unknown but they
have so far been thought to be of less importance compared to T-
cell-mediated immunity.
RNA-Seq methodology enables a detailed analysis of RNAs

expressed in a sample. Thus, it is possible to estimate the
expression of RNA encoding each class of Ig heavy chains. We
have launched the Sweden Cancerome Analysis Network—Breast

(SCAN-B) project30–32, an on-going population-based study
(clinicaltrials.gov, NCT02306096) to which we invite all new breast
cancer patients in Southern Sweden. If feasible, and as long as the
diagnostic evaluation is not jeopardized, fresh biopsies from the
primary tumors are collected and subjected to RNA-Seq analysis.
Here, we have analyzed the expression of individual IGHs and IGJ
from two cohorts of breast cancer with available RNA-Seq data
and show that they have different associations with tumor
characteristics and that at least some of them appear to have
additional prognostic value, independently of the markers used in
the clinic today.

RESULTS
Expression of IGH mRNAs in breast cancers
As a first step, the expression levels of the different Ig heavy chain
and IGJ-encoding mRNAs were compared in the SCAN-B cohort
(Fig. 1a) and in Cohort270 (Fig. 1b). Basic characteristics of the
cohorts are described in Table 1 and in “Methods” section. IGHA,
IGHG, IGHM, and IGJ mRNAs were all found at substantial levels in
most tumors whereas numbers for IGHE mRNAs were lower, being
essentially undetectable in some tumors. To analyze whether the
IGH mRNAs are coexpressed correlation matrices were generated
(Fig. 1c, d). They demonstrated that all IGHGs were coexpressed to
a large degree. IGHA1 and IGHA2 mRNA levels were highly
correlated and the individual IGHG mRNAs were also highly
correlated with each other. However, the correlation between
IGHGs and IGHAs were less prominent indicating that these Ig
classes are not always coexpressed in a tumor. IGJ was highly
correlated to both IGHM and the IGHAs, which is in line with IGJ
encoding the joining chain necessary for the production of
functional IgA dimers and IgM pentamers.
We utilized the microenvironment cell population counter33 to

obtain a score for matrix cell types and analyzed their correlation
with IGH mRNAs (Fig. 1e, f). The B-lineage cell type was the top
correlating cell type in both cohorts for all IG mRNA species
analyzed, which is in line with the mRNAs being derived from B
cells. The IGHG mRNAs were more correlated with metagenes
related to T cells, cytotoxic lymphocytes, NK cells, B-lineage, and
monocytic lineage than IGJ and IGHA mRNAs, which displayed
higher correlation with metagenes for neutrophils, endothelial
cells, and fibroblasts than IGHG mRNAs. We also estimated the
percentage of lymphocytes on a tissue section adjacent to the
piece from which RNA was extracted for RNA-Seq analysis. IGHG
mRNA levels showed a higher correlation with the percentage of
lymphocytes than IGHAmRNA levels (Fig. 1g), paralleling what was
found for most immune cell metagenes. Taken together, the data
indicate that IGHG mRNAs are more associated with an immune
response than IGHA mRNAs. For further analyses we selected
IGHG1 and IGHA2 as representative IGHG and IGHA mRNAs.
To take another approach to estimate the relation of IGH

mRNAs with processes in the tumor we performed correlation
analyses of IGHA2 and IGHG1 mRNAs with all other mRNAs,
expressed as log2 of the FPKM, obtained with the Tuxedo RNA-
Seq analysis pipeline. The top 100 correlating genes were
thereafter analyzed for enrichment in Biological Process gene
sets defined by the Gene Ontology Consortium (http://www.
geneontology.org/), retrieved from the Molecular Signature
Database (http://software.broadinstitute.org/gsea/msigdb)34. Sets
with a p value < 10–15 for either IGHG1- or IGHA2-correlating genes
were compared for enrichment (Fig. 2). Essentially all the
identified sets were related to immune system processes. The
data further indicate that the expression levels of IGHG1mRNA are
more associated with an active immune response in the tumor
than IGHA2 mRNA.

Table 1. Basic characteristics of Cohort270 and the SCAN-B cohort.

Cohort Cohort270 SCAN-B

Age at diagnosis
(years)

Median= 62 (29–92) Median= 64 (24–96)

Node status Positive 113 (43%) Positive 1167 (37%)

Negative 152 (57%) Negative 2011 (63%)

Missing 5 Missing 93

Tumor size ≤20mm 135 (50%) ≤20mm 2119 (65%)

>20mm 134 (50%) >20mm 1118 (35%)

Missing 1 Missing 34

Estrogen
receptor

Positive
(≥10%)

233 (86%) Positive
(≥10%)

2831 (92%)

Negative
(<10%)

37 (14%) Negative
(<10%)

240 (8%)

Missing 200

Progesterone
receptor

Positive
(≥10%)

205 (76%) Positive
(≥10%)

2552 (87%)

Negative
(<10%)

65 (24%) Negative
(<10%)

382 (13%)

Missing 333

HER2
amplification

Not
amplified

231 (86%) Not
amplified

2729 (87%)

Amplified 39 (14%) Amplified 420 (13%)

Missing 122

Grade Grade= 1 33 (12%) Grade= 1 495 (15%)

Grade= 2 123 (46%) Grade= 2 1532 (48%)

Grade= 3 114 (42%) Grade= 3 1183 (37%)

Missing 61

Endocrine
therapy

Missing Yes 2536 (78%)

No 714 (22%)

Missing 21

Chemotherapy Missing Yes 1299 (40%)

No 1952 (60%)

Missing 20

Recurrences No
recurrence

246 Missing

Recurrence 19

Missing 5

Follow-up
time (days)

Median= 1840
(91–2533)

Vital status Alive 222 Alive 2935

Deceased 48 Deceased 336

Follow-up
time (days)

Median= 2332
(1031–2810)

Median= 1642
(59–2474)

Year of diagnosis 2007–2010 2010–2015

Hospital Malmö All Southern Swedish
hospitals

Basic characteristics of Cohort270 and the SCAN-B cohort.
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Association with clinical and pathological parameters
The association of IGHM, IGHA2, IGJ, and IGHG1 mRNA expression
with established clinical parameters was analyzed in the SCAN-B
cohort (Fig. 3). High expression of IGHG1 mRNA was associated
with ER negativity, HER2 amplification, and high grade. The
pattern was similar but not as pronounced for IGHM. For IGHA2
and IGJ, there was no or only a weak association with ER negativity
and HER2 amplification and there was a weak association with
lower grade. For molecular subtypes, IGHA2 levels were highest in
normal-like and lowest in luminal B tumors with intermediate
levels in other subtypes whereas IGHG1 expression was higher in
basal and HER2-enriched tumors and lower in the other
subgroups. In particular for IGHA2 and IGJ expression, there was
also an association with the age of the patients with levels
decreasing with higher age.

IGH mRNAs are associated with more favorable overall survival
Different aspects of the immune profile of a tumor have been
shown to correlate to prognosis. We therefore constructed
Kaplan–Meier curves using overall survival as end point and
dichotomized the mRNA expression on greater or smaller than the
median (Fig. 4). In both the SCAN-B cohort and in Cohort270
higher levels of IGHA2 or IGJ mRNA were associated with
improved survival whereas this was not the case for IGHG1. We
also utilized the Kaplan–Meier plotter35, which is an assembly of
several breast cancer cohorts analyzed by microarray technology
and thus enables analysis of a large number of breast cancer
cases. Using the biomaRt package in R and the Ensembl database,
probes for IGHM, IGHA2, IGJ, and IGHG1 were identified and data
were dichotomized on the median. The analysis showed a clear
association of IGHA2 and IGJ with improved survival whereas no
association was seen for IGHG1, in line with the SCAN-B cohort and

the Cohort270. IGHM mRNA was also associated with improved
prognosis in the three cohorts but not as strongly as IGHA2 and
IGJ. Furthermore the Metabric cohort36,37 was used. Only IGJ of the
investigated mRNAs is annotated in this data set. For IGJ the
pattern was the same as in the other cohorts.
Since IGH mRNA expression was related to several known

prognostic markers, a multivariable Cox modeling was performed
using the SCAN-B cohort, which contains more than 3000 subjects
(Table 2). We used two different models adjusting for major
prognostic factors. One model was based on diagnostic para-
meters used in clinical routine today, while for the other one
PAM50-based subgrouping was utilized. In model 1, stratification
was done for patient age and chemotherapy treatment while ER
status, HER2 amplification, node status, tumor size and grade were
included as variables. Model 2 was stratified for PAM50 subgroup,
patient age and chemotherapy while including node status and
tumor size as variables. For IGH mRNAs, the normalized log2
expression value was used as continuous variable.
The Cox modeling revealed an independent association of

IGHA2 mRNA expression with improved prognosis (HR= 0.86, 95%
CI: 0.76, 0.97 for model 1 and HR= 0.85, 95% CI: 0.76, 0.97 for
model 2). The multivariable modeling demonstrated that, when
adjusted for other prognostic markers, IGHG1 mRNA was also
associated with better survival (HR= 0.86, 95% CI: 0.76, 0.97 for
model 1 and HR= 0.85, 95% CI: 0.76, 0.97 for model 2). Lastly, both
IGJ and IGHM mRNAs were also associated with improved survival
in both models. The same models were applied for IGJ in the
Metabric cohort which revealed a similar association with
prognosis in model 1 (HR= 0.93, 95% CI: 0.89, 0.97) and a
tendency to an association in model 2 (HR= 0.96, 95% CI:
0.91, 1.00).

Fig. 2 Enrichment of gene ontology sets among genes correlating with IGHA2 and IGHG1 mRNAs. All mRNAs in the SCAN-B cohort were
analyzed for correlation with IGHA2 and IGHG1 mRNA expression. The top 100 correlating genes for each IG mRNA were selected for
enrichment analysis. The enrichment was analyzed performed using the Biological Process sets defined by the Gene Ontology Consortium.
Fisher’s test was used to evaluate enrichment. The graph shows the −log10 of the p value from the Fisher’s tests of indicated Gene Ontology
Biological Process gene sets for the top 100 IGHA2- (blue) and IGHG1- (red) correlating genes. Results are shown for gene sets with a p value <
10–15 for either IGHA2- or IGHG1-correlating genes.
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Fig. 3 Expression of Ig heavy chain-encoding RNAs in relation to clinico-pathological parameters. Box and scatter plots of the log2
expression levels of indicated RNA species in relation to ER status, HER2 amplification, NHG grade, PAM50 subtypes, and age at diagnosis for
the SCAN-B cohort. The p values were calculated with the t-test comparing positive with negative status (ER and HER2) and grade 1 versus
grade 3. For age the p value was extracted from linear regression modeling using tlm function in R. The PAM50 subtypes are basal (B), HER2-
enriched (H2), luminal A (LA), luminal B (LB), and normal-like (N). In box plots the center line marks the median; box limits mark the upper and
lower quartiles; whiskers mark 1.5x interquartile range; points mark outliers beyond this mark.
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Association of IG mRNAs with recurrence-free survival
We next analyzed the association of the mRNA expression levels
with recurrence-free survival for the cohorts where these data are
available (Fig. 5). IGJ mRNA was associated with improved
outcome in all data sets. For IGHA2 and IGHM mRNA the pattern
was the same in the KM-plotter data set and a nonsignificant
tendency to an association was seen in the Cohort270. IGHG1
mRNA expression was, as for overall survival, not associated with
recurrence-free survival.

There are too few subjects in Cohort270 for multivariable
modeling and there are no data on recurrence in the SCAN-B
cohort. We therefore performed Cox modeling with the
Cohort270 stratifying for each of the factors age, node status,
tumor size, ER status, HER2 status, and grade separately (Table 3).
IGJmRNA was associated with improved survival in all models and
the same was true for IGHA2 mRNA, except when stratifying for
grade where the p value was 0.098. IGHG1 mRNA was not
associated with prognosis in any of the models.

Fig. 4 Association of IG mRNA expression with overall survival. Breast cancers from four data sets were grouped based on if the expression
of IGHM, IGHA2, IGJ, and IGHG1 mRNA was larger (red curves) or smaller (black curves) than the median expression. The figures display
Kaplan–Meier curves for the indicated mRNAs (top titles) and cohorts (titles to the left) using overall survival as end point. The follow-up time
on the x-axis is indicated in years. The p values were estimated with the log rank test. The y-axes indicate years after diagnosis and number at
risk in the groups.
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Analysis of breast cancer subgroups
The size of the SCAN-B cohort allows for analysis of breast cancer
subgroups (Table 4). The analyses were done both in subgroups
defined by ER and PR positivity and HER2 amplification as well as
those defined by the PAM50 subtypes. Cox modeling was done in
the subgroups adjusting for node status, tumor size, age of the
patient, and chemotherapy treatment. Both IGHA2 and IGJ mRNA
expression were positively associated with prognosis in the
partially overlapping triple-negative (HR= 0.47, 95% CI: 0.27,
0.77 for IGHA2 and HR= 0.58, 95% CI: 0.39, 0.93 for IGJ) and basal-
like (HR= 0.68, 95% CI: 0.52, 0.88 for IGHA2 and HR= 0.69, 95% CI:
0.51, 0.94 for IGJ) breast cancers, whereas neither IGHM nor IGHG1
mRNA was significantly associated with prognosis in these groups.
However, there was a tendency to an association of IGHG1 mRNA
and given the limited size of the cohort a prognostic value of
IGHG1 mRNA in these subgroups cannot be excluded. In the ER-
positive HER2-negative subgroups none of the IGH mRNAs were
significantly associated with prognosis but if the analysis was
restricted to patients with age at diagnosis below the median all
four (IGHM, IGHA2, IGJ, and IGHG1) mRNAs were associated with
improved prognosis. In the generally ER-positive Luminal A and B
subtypes the association was not significant with the exception for
IGHG1 in Luminal A cancers restricted to patients with age at
diagnosis below 65 years (HR: 0.50, 95% CI: 0.26, 0.96).

Association of IGHA2 mRNA with prognosis in relation to immune
cell metagenes
The IGHA mRNA levels were not as strongly associated with
immune cell metagenes as most other Ig heavy chain species (Fig.
1). The relationship between IGHA2 mRNA levels and these
metagenes was therefore examined using Cox modeling of the
SCAN-B cohort (Fig. 6). In addition, we included metagenes

encoding cytokines representative of Th1, Th2, and Th17 cells38 as
well as FOXP3 which is a marker for regulatory T cells. The models
were also adjusted for PAM50 subgroup, tumor size, node status,
patient age, and chemotherapy treatment. In models with all cases
there was a higher hazard ratio of IGHA2 upon adjustment of
some immune cell metagenes. The hazard ratio remained below 1
but the 95% confidence interval crossed 1 for the T-cell, NK-cell,
and B-lineage metagenes. The shift was most evident for the B-
lineage which also was the metagene that showed the highest
correlation with IGHA2 mRNA expression. However, when the
analysis was restricted to basal-like tumors there were only
marginal effects on the IGHA2 hazard ratio upon adjustment for
the immune metagenes.

DISCUSSION
Here, we demonstrate an association of the amount of mRNAs
encoding different Ig classes in the primary tumor with breast
cancer prognosis. The association is primarily seen for IgA2- and
IgJ-encoding RNAs, but the data indicate that upon adjustment for
other prognostic factors there is a prognostic association also for
IgG1. The pattern, in particular for IgA2 and IgJ, is seen in several
data sets.
It is increasingly apparent that the immune response in a tumor

modulates the aggressiveness of the cancer. While there are
numerous reports on the importance of the cellular adaptive
immune response, such as T cells, in breast cancer8,9 less is known
about the humoral branch although the number of B-lymphocytes
in a tumor has been indicated to have prognostic information7.
RNA-Seq methodology enables detailed information of which
RNAs that are expressed in a sample. Thereby it is possible to
analyze which classes of immunoglobulins that are synthesized in
a tumor and to what extent.

Table 2. Overall survival – multivariable Cox models.

Variable IGHM
HR

IGHM
p value

IGHA2
HR

IGHA2
p value

IGJ
HR

IGJ
p value

IGHG1
HR

IGHG1
p value

Metabric
IGJ
HR

Metabric
IGJ
p value

Model 1— stratified for age, chemotherapy

Ig gene log2 expr 0.86
0.76–0.97

0.014 0.86
0.76–0.97

0.012 0.88
0.77–0.99

0.041 0.86
0.76–0.97

0.015 0.93
0.89–0.97

<0.001

Node status pos vs neg 1.11
0.86–1.43

0.436 1.12
0.86–1.45

0.388 1.12
0.86–1.45

0.405 1.10
0.85–1.43

0.461 1.42
1.23–1.65

<0.001

Size >20 mm 1.74
1.33–2.28

<0.001 1.75
1.34–2.28

<0.001 1.76
1.35–2.29

<0.001 1.77
1.36–2.31

<0.001 1.36
1.19–1.57

<0.001

ER status pos vs neg 0.53
0.35–0.79

0.002 0.54
0.36–0.81

0.003 0.55
0.36–0.82

0.004 0.52
0.34–0.79

0.002 0.84
0.69–1.03

0.097

HER2 status pos vs neg 1.31
0.89–1.91

0.166 1.31
0.90–1.92

0.164 1.29
0.88–1.89

0.185 1.32
0.90–1.93

0.159 1.45
1.18–1.78

<0.001

Grade 3 vs 1 or 2 1.62
1.22–2.14

<0.001 1.54
1.16–2.04

0.003 1.55
1.17–2.06

0.002 1.67
1.26–2.21

<0.001 1.17
1.01–1.35

0.033

Model 2—stratified for PAM50 subtype, age, chemotherapy

Ig gene log2 expr 0.84
0.75–0.94

0.003 0.85
0.76–0.96

0.010 0.85
0.75–0.97

0.008 0.85
0.76–0.96

0.008 0.96
0.91–1.00

0.055

Node status pos vs neg 1.49
1.16–1.92

0.002 1.50
1.17–1.93

0.002 1.50
1.17–1.92

0.002 1.49
1.16–1.92

0.002 1.52
1.30–1.79

<0.001

Size >20 mm 1.76
1.37–2.27

<0.001 1.77
1.37–2.28

<0.001 1.77
1.38–2.28

<0.001 1.79
1.39–2.30

<0.001 1.30
1.12–1.51

<0.001

Multivariable Cox proportional hazards models of SCAN-B (first eight columns) and Metabric with overall survival as end point. Two models were analyzed for
each Ig mRNA. The normalized log2 Ig mRNA expression was used as continuous variable in both models. Model 1 also include node status, tumor size, ER
status, HER2 status, and grade as variables and stratification was done for patient age and chemotherapy treatment. Model 2 included node status and tumor
size as variables and stratification was done for PAM50 subtype, patient age, and chemotherapy treatment. Data indicate hazard ratios with 95% confidence
intervals (italics) and p-values. The number of cases in the SCAN-B cohort was 2817 (265 events) in Model 1 and 3131 (310 events) in Model 2. For Metabric
there were 1960 cases with 1128 events.
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Which Ig class that a B-cell will produce is determined during
the activation of an adaptive humoral immune response. The
cytokine environment is generally believed to steer the class
switch of a B-cell. IgAs are mainly associated with mucosal tissue
and released to external lumina such as the lung or the intestine
and considered to exert a first line defense against pathogens in
these locations. IgA is also the major immunoglobulin in breast
milk. A substantial expression of IgA mRNAs in mammary tissue
would therefore be expected.
IGHA2 expression was not as much correlated to indicators of an

immune response as was the case for IGHG mRNAs. Instead we
found that IGHA2 mRNA in tumors decreases with the age of the
patient, a pattern that was much less pronounced for IGHG1 and
IGHM. This may reflect a regression of active mammary tissue that
conceivably comes with higher age. High levels of IGHA2 mRNAs
would then be found in tumors that resemble active and mature
mammary tissue. An association of IGHA2 expression with
prognosis may therefore be related both to an association with
more mature mammary tissue and with an active immune
response.

The association of IGHA2 with overall survival was found in
three different data sets and in a fourth—Metabric—the same
pattern was seen for IGJ, the expression of which correlates with
that of IGHA2. It was also independent of other prognostic factors
in essentially all models, further highlighting that it may provide
added information regarding breast cancer prognosis.
The association of IGHA2 expression with prognosis was strong

in basal-like and triple-negative cancers. For these cancers tumor-
infiltrating lymphocytes, and in particular CD8-positive cells, have
been linked to improved prognosis14,39,40. The IGHA2 mRNA levels
correlate with metagenes for these cell types, which may imply
that the markers represent the same characteristics in the tumor.
However, for this subtype the association of IGHA2 with prognosis
was largely independent of immune cell metagene levels.
Furthermore, IGHG1 mRNA levels, which were not as strongly
associated with prognosis in basal-like cancers, display a higher
correlation with immune cell metagenes than IGHA2 mRNA. The
association of IGHA2 mRNA with improved prognosis may to some
degree be related both to a higher immune activity in the tumor
but, considering its lower correlation with immune metagenes
and its independence of them in basal-like tumors in association

Fig. 5 Association of IG mRNA expression with recurrence-free survival. Breast cancers from three data sets were grouped based on if the
expression of IGHM, IGHA2, IGJ, and IGHG1 mRNA was larger (red curves) or smaller (black curves) than the median expression. The figures
display Kaplan–Meier curves for the indicated mRNAs (top titles) and cohorts (titles to the left) using recurrence-free survival as end point. The
follow-up time on the x-axis is indicated in years. The p values were estimated with the log rank test. The y-axes indicate years after diagnosis
and number at risk in the groups.
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with prognosis, other IGHA2-associated features are conceivably of
importance.
Contrasting IGHA2 mRNA, IGHG1 was associated with features

linked to poor prognosis, such as ER negativity, HER2 amplifica-
tion, and higher grade, which is in line with what has been
reported for B-lymphocytes in breast cancer tissue7. IGHG1 mRNA
levels were also more correlated with metagenes associated with
an immune response which makes it conceivable that the IgG
production, more than IgA production, reflects an active immune
response in a tumor.
Given the association of IGHG1 with factors linked to poor

prognosis it would be expected that there is no association with
higher IGHG1 levels and favorable prognosis. However, using the
SCAN-B cohort for which a multivariable analysis was possible,
adjustment for other known prognostic factors demonstrated an
association of higher IGHG1 levels with improved prognosis. IgG is
more associated with cellular immunity than other Ig species.
IGHG mRNAs also displayed the highest correlation with
metagenes for cells of the adaptive immune response. The IGHG1
association with prognosis may therefore conceivably represent
an active immune response. Thus, the data indicate that an active
immune response is associated with poor prognostic factor, but
when adjusting for these it is associated with improved prognosis.
This is in line with reports that a B-cell signature, when adjusted
for IL-8 expression is prognostic in triple-negative breast cancers41,
that a B-cell signature is associated with good prognosis
particularly in cancers with high proliferation rate42 or in basal-
like and HER2-enriched tumors43, and that the amount of B-
lymphocytes is associated with improved prognosis particularly in
grade 3 and ER-negative tumors7. It suggests that, when other
prognostic factors are equal, an active immune response is
beneficial for the outcome.
There are some limitations to the study. These include that the

results rely on only one major method, RNA-Seq, and the relatively
short follow-up time which provides for a limited number of
events, particularly when analyzing subgroups. More analyses are
planned for and needed to deeper understand the implications of
the differences in mRNA levels detected here. In particular it
would be of large interest to gain further insight in the clonality
and specificity of the antibodies that the mRNAs encode and
whether they primarily represent antitumoral antibodies or natural
antibodies or if they reflect the milk-producing function of the
mammary gland. Therefore, analyses addressing the specificity of
the antibodies encoded by the mRNA would significantly benefit

the understanding of the association of IGH mRNAs and
clinical data.
Differences in association with prognosis and/or prognostic

factors between IGHA- and IGHG-encoding mRNAs have recently
been observed in malignant melanoma44. In that context IGHA
was associated with poor prognosis whereas higher levels of IGHG
were associated with more favorable outcome. It was suggested
that this may reflect the immune modulators secreted by IgA-
producing cells which could suppress an immune response. Breast
cancer is not as sensitive to immune modulators as melanoma
which may be one reason for the differences in IGHA association
with prognosis.
Our data highlight IGH-encoding mRNAs as potentially impor-

tant prognostic markers in early breast cancer. We also observe
differential expression of different Ig-subtypes in different breast
cancer subtypes and report a potential difference in the
prognostic value of the expression of the IgG and IgA classes.
The use of B cells or immunoglobulin production as prognostic
markers in breast cancer may benefit from a refined analysis
taking into account which antibody classes that are produced in
a tumor.

METHODS
Cohorts
Cohort270. From September 2007 all breast cancer patients operated at
Skåne University Hospital in Malmö were asked for consent for molecular
analyses of their tumor. Fresh pieces from the primary tumors were stored
at −80 °C prior to RNA extraction and RNA-Seq analysis30. For tumors
which the pathologist deemed it impossible to remove a piece without
jeopardizing the diagnostic work no piece was taken. From patients
operated between September 2007 and the middle of 2010 270 tumors
were identified for which the RNA-Seq analysis was of sufficient quality and
for which the patient had no previous history of cancer, had not been
subjected to neoadjuvant treatment or had no incidence of tumor in the
contralateral breast. The obtaining of clinical and pathological data has
been described31. Briefly, ER status, HER2 status, and Nottingham
Histological Grade were scored by three pathologists. Other clinical data
were retrieved from the Swedish Breast Cancer Register. Overall survival
and recurrence, defined as local, regional, or distant metastasis, were used
as end point. The data were retrieved from medical records. The molecular
and some clinical data of this cohort (Cohort270) are stored at GEO
(GSE81538).

SCAN-B cohort. Starting September 2010 all newly diagnosed breast
cancer patients in the South Swedish Health Care Region were asked to
participate in the SCAN-B project30–32 (clinicaltrials.gov, NCT02306096,

Table 3. Recurrence free survival – stratified models.

Strata IGHM
HR

IGHM
p value

IGHA2
HR

IGHA2
p value

IGJ
HR

IGJ
p value

IGHG1
HR

IGHG1
p value

Age 0.70
0.43–1.16

0.168 0.60
0.38–0.94

0.026 0.53
0.33–0.85

0.009 1.04
0.64–1.71

0.868

Node status 0.61
0.37–1.00

0.052 0.57
0.37–0.88

0.012 0.47
0.30–0.76

0.002 0.94
0.58–1.54

0.819

Size 0.71
0.46–1.10

0.128 0.66
0.44–0.99

0.043 0.58
0.38–0.89

0.012 1.04
0.66–1.62

0.875

ER status 0.59
0.37–0.94

0.027 0.59
0.39–0.90

0.013 0.50
0.33–0.77

0.002 0.91
0.56–1.49

0.720

HER2 status 0.67
0.42–1.06

0.085 0.62
0.41–0.94

0.023 0.54
0.35–0.83

0.005 1.08
0.68–1.73

0.741

Grade 0.66
0.43–1.01

0.054 0.70
0.46–1.07

0.098 0.56
0.37–0.85

0.006 0.82
0.53–1.26

0.370

Univariable Cox proportional hazards models of the cohort270 with recurrence-free survival as end point. The modeling was done with the normalized log2 of
the expression of indicated Ig mRNA and each model was stratified for variable indicated in the rightmost column. Data indicate hazard ratios with 95%
confidence intervals (italics) and p values.
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tumor collection starting date August 2010, estimated ending August
2031), which largely uses the same procedures as described for Cohort270
above. From patients operated between late 2010 and early 2015, 3271
cases were identified that were primary breast cancer without diagnosis of
disseminated disease. For this population-based cohort (SCAN-B) overall
survival was used as end point. Clinical data were obtained from the
Swedish Breast Cancer Register and overall survival data from the Swedish
Population Register31. The molecular and clinical data are stored at GEO
(GSE96058).
The two cohorts are summarized in Table 1. All included patients gave

informed written consent. All patients were treated according to regional
treatment guidelines that had been defined according to national and
international treatment recommendations. The studies have been
approved by the Lund Regional Ethical Review Board (Dnr 2007/155,
2009/658, 2010/383, 2012/58, and 2013/459).

Tissue handling, RNA extraction, and RNA sequencing
Following surgery the specimen was transported on ice to the pathology
unit, where a piece was excised from the tumor and immediately put in
−80 °C (Cohort270) or RNAlater (SCAN-B). This was only done when the
excision with certainty would not influence the diagnostic work. Thus, too
small tumors and tumors with too diffuse borders were excluded which
also ensures that the excised piece only contains material from within the
tumor. RNA was extracted using the AllPrep DNA/RNA Kit (Qiagen) and
sequencing libraries were prepared using 1 µg RNA as a target amount.
The libraries were sequenced on an IlluminaHiSeq2000 or NextSeq500 and
the reads were processed with an implemented Tuxedo pipeline utilizing
Bowtie245, Tophat246, Cufflinks47,48, and hg19 reference genome annota-
tion as described30.

Calculation of IGH expression levels
Using the biomaRt49 package in R, chromosome positions of exons within
the IGH locus were retrieved from Ensembl. Reads aligned to the locus
were thereafter retrieved from BAM files using the RSamtools and
GenomicRanges50 packages in R. Only reads with mapping quality above

10 were used for subsequent analysis. Based on the CIGAR parameter the
number of bases from a read that had been aligned to an exon was
allocated to the specific exon. The number of bases allocated to each exon
for the same IGH class type was summed and divided by the sum of the
length of the exons (in bases) and the number of reads from the library
that had been aligned to the genome. The number was multiplied with 106

and following addition of 1 the value was log2-transformed. We have thus
obtained a number representing the log2 of counts per base per million
reads. The same procedure was done for the IGJ locus as an internal
control to compare the expression estimate from our method with the
Tuxedo pipeline expression estimate. The IGJ locus is useful as a control
since it is included as a target transcript in our Tuxedo pipeline, whereas
the IGH class is not. An almost perfect correlation (R= 0.99) was obtained
for the expression levels of IGJ using our method and the log2 FPKM
obtained with the Tuxedo pipeline.

Tumor composition
For the SCAN-B cohort the piece of the tumor that was used for RNA
extraction was also used for construction of a tissue microarray. For each
tumor a pathologist analyzes a hematoxylin–eosin-stained tissue micro-
array section for estimation of the percentage of invasive cancer, in situ
cancer, fat tissue, stroma, lymphocytes, and normal breast tissue. These
data were obtained for 2513 of the 3271 tumors in the cohort.

Data analysis
All statistical analyses were done with R (version 3.6.1). Cox proportional
hazards modeling was done using the coxph function. For multivariable
analyses subjects with missing data were excluded. ER status (positive
versus negative), HER2 amplification (positive versus negative), node
positivity (>1 node versus no positive node), and tumor size (>20 versus
≤20mm) were used as categorical values. ER and PR status were
considered positive if there were more than 10% positive cells which is
the standard definition for Swedish clinical practice and therefore is
uniformly registered in clinical records. Grade was dichotomized (grade 3
versus grades 1 and 2). The Ig mRNA expression data was either

Table 4. Overall survival – multivariable Cox models of breast cancer subgroups.

Subset IGHM
HR

IGHM
p value

IGHA2
HR

IGHA2
p value

IGJ
HR

IGJ
p value

IGHG1
HR

IGHG1
p value

ER/HER2 subgroups, models adjusted for grade, size, node status, age, chemotherapy

ER− PR− HER2−, n= 133, events= 24 0.74
0.50–1.10

0.141 0.47
0.29–0.77

0.002 0.58
0.36–0.93

0.025 0.68
0.44–1.05

0.081

ER+ HER2−, n= 2324, events= 202 0.88
0.76–1.02

0.089 0.91
0.79–1.05

0.189 0.92
0.79–1.06

0.241 0.89
0.77–1.03

0.120

ER+ HER2−, age < 66, n= 1213, events= 53 0.72
0.53–0.96

0.026 0.72
0.55–0.95

0.018 0.70
0.53–0.93

0.015 0.71
0.52–0.96

0.026

HER2+, n= 382, events= 46 0.83
0.60–1.15

0.261 0.79
0.55–1.14

0.205 0.85
0.59–1.23

0.396 0.81
0.60–1.11

0.189

PAM50 subgroups, models adjusted for size, node status, age, chemotherapy

Basal, n= 314, events= 62 0.79
0.61–1.02

0.066 0.68
0.52–0.88

0.003 0.69
0.51–0.94

0.019 0.78
0.60–1.02

0.074

HER2 enriched, n= 298, events= 48 0.80
0.60–1.06

0.116 0.72
0.53–0.98

0.036 0.76
0.55–1.05

0.097 0.76
0.57–1.00

0.049

Luminal A, n= 1597, events= 110 0.83
0.66–1.04

0.112 0.95
0.77–1.17

0.620 0.92
0.75–1.13

0.416 0.83
0.65–1.05

0.119

Luminal A, age<65, n= 798, events= 19 0.58
0.31–1.08

0.086 0.62
0.36–1.08

0.090 0.61
0.36–1.04

0.070 0.50
0.26–0.96

0.037

Luminal B, n= 706, events= 76 0.93
0.76–1.13

0.459 0.91
0.71–1.15

0.424 0.87
0.67–1.14

0.316 0.89
0.72–1.10

0.293

Luminal B, age < 66, n= 373, events= 21 0.77
0.51–1.16

0.210 0.74
0.46–1.17

0.195 0.70
0.42–1.17

0.175 0.91
0.60–1.36

0.636

Multivariable Cox proportional hazards models in breast cancer subgroups of the SCAN-B cohort. The hazard ratio with 95% confidence interval in italics and p
value for the normalized log2 expression of indicated Ig mRNAs in each subgroup are shown. Overall survival was used as end point. The subgroups were
based on either parameters used in clinical diagnostics today, such as ER and HER2 status, or the PAM50 subgroups as indicated. All models were adjusted for
tumor size, lymph node status, patient age, and chemotherapy treatment. Models for subgroups based on hormone receptor and HER2 status were also
adjusted for grade.
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dichotomized on the median for Kaplan–Meier curves and for analysis of
association with clinical variables using Fisher or chi-squared tests or used
as continuous variables in Cox proportional hazard models and in t-tests
comparing levels between different groups. Age was binned in five year
intervals. In multivariable Cox models ER status, HER2 amplification, grade,
node positivity, tumor size, and Ig mRNA expression were included as
variables, whereas stratification was made for age, PAM50 subgroups,
chemotherapy, and cohort (Metabric).
Calculations with the microenvironment cell population counter33 were

done using the MCPcounter package in R applying the MCPcounter.
estimate function to all samples.
For gene set enrichment analysis, Gene Ontology Biological Process sets

(http://www.geneontology.org/) were retrieved from the Molecular Signa-
ture Database, using version 7.0 (http://software.broadinstitute.org/gsea/
msigdb)34. The enrichment of gene sets was analyzed with Fisher’s test.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
RNA-Seq data and clinical data of cohort Cohort270 are publicly available in NCBI
Gene Expression Omnibus here: https://identifiers.org/geo:GSE8153851. RNA-Seq data
and clinical data of cohort SCAN-B, are also publicly available in NCBI Gene
Expression Omnibus here: https://identifiers.org/geo:GSE9605852. Tumor character-
istics and patient data for cohorts Cohort270 and SCAN-B, are publicly available in the
figshare repository 10.6084/m9.figshare.1204032653. METABRIC36,37 data analyzed
during this study, are publicly available in cBioPortal for cancer genomics here:
https://identifiers.org/cbioportal:brca_metabric.
For microarray sets the Kaplan–Meier plotter website (http://kmplot.com/analysis/)

was used35. The probes used were selected using biomaRt package in R and the
Ensembl database with “affy_hg_u133a” as filter. Data were downloaded as text files
and the Kaplan–Meier plots were generated with R.
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