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The subloading-friction model is capable of describing
static friction, the smooth transition from static to
kinetic friction and the recovery to static friction
after sliding stops or sliding velocity decreases. This
causes a negative rate sensitivity (i.e. a decrease in
friction resistance with increasing sliding velocity). A
generalized subloading-friction model is formulated
in this article by incorporating the concept of
overstress for viscoplastic sliding velocity into the
subloading-friction model to describe not only
negative rate sensitivity but also positive rate
sensitivity (i.e. an increase in friction resistance
with increasing sliding velocity) at a general sliding
velocity ranging from quasi-static to impact sliding.
The validity of the model is verified by numerical
experiments and comparisons with test data obtained
from friction tests using a lubricated steel specimen.

1. Introduction
The rate-and-state friction model (e.g. [1–4]), the basic
idea of which is the dependence of the shear stress or
friction coefficient on the rate of sliding and some state
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variables based on experimental data [5,6], has been widely used for the prediction of earthquake
phenomena and occasionally for characterizing solid friction (e.g. [7]). An earthquake is a
typical irreversible phenomenon which can be described appropriately by elasoplasticity but
the rate-and-state friction model is not based on elastoplasticity; the latter is premised on
(i) decomposition of the rate of deformation or sliding into the reversible, i.e. elastic part and
the irreversible, i.e. plastic part, (ii) incorporation of the yield condition, and (iii) the potential
flow rule of plastic strain rate or plastic sliding rate. Therefore, the rate-and-state friction model
would be limited to one-dimensional sliding, as seen in earthquake faults in which the sliding
direction does not vary markedly.

Constitutive equations of friction within the framework of elastoplasticity were formulated
first as rigid-plasticity [8,9]. Subsequently, they were extended to elasto-perfect-plasticity [10–16].
Further, isotropic hardening was introduced [17,18]. However, these equations fall within the
framework of conventional elastoplasticity, which assumes a friction-yield surface enclosing a
purely elastic domain. Therefore, they are incapable of describing not only the accumulation of
plastic sliding displacement during cyclic loading of contact stress but also the transition from
static to kinetic friction and the recovery of static friction.

Conventional elastoplasticity models introduce the yield surface enclosing a purely elastic
domain [19]. The models, therefore, have limitations: (i) the plastic (irreversible) strain rate due to
the rate of stress inside the yield surface cannot be predicted and (ii) the smooth transition from
the elastic to the plastic state is not described but an abrupt transition is described, and hence an
accumulation of the plastic strain under cyclic loading of stress even at high-stress levels near the
yield stress cannot be predicted. In addition, the models require some cumbersome procedures:
(iii) yield judgement is required in the analyses and thus the determination of the yield point,
i.e. the offset value (plastic strain) for yielding is required, which is accompanied by arbitrariness
and cumbersomeness and (iv) an operation to pull back the stress to the yield surface is required
when stress jumps out from the yield surface in numerical calculations.

All the above-mentioned limitations of conventional elastoplasticity models have been
resolved by the subloading-surface model [20–23], as explained in the following.

The basic features of the formulation in the subloading-surface model are as follows. (i) The
plastic strain rate develops continuously as the stress approaches the yield surface, which is
renamed the normal-yield surface. (ii) The subloading-surface that passes through the stress and
has a similar shape and orientation to the normal-yield surface, and the ratio of the size of the
subloading-surface to that of the normal-yield surface, called the normal-yield ratio, which ranges
from zero to unity, are introduced to describe the degree of approach of stress to the normal-
yield surface. (iii) The evolution rule of the normal-yield ratio is formulated such that the ratio
is attracted to unity in the plastic loading process. (iv) The plastic strain rate is formulated so
as to develop continuously as the normal-yield ratio approaches unity. Then, the elastoplastic
deformation behaviour is described in the subloading-surface model as follows. (i) A smooth
elastic–plastic transition is described. (ii) Yield judgement is not required in the analyses and
thus, needless to say, the determination of the offset value for yielding is not required. (iii) Stress
is automatically attracted to the normal-yield surface during the plastic loading process, leading
to high efficiency and accuracy in numerical calculations.

Consequently, the subloading-surface model is regarded as an appropriate constitutive model
for a wide class of irreversible mechanical phenomena, as follows. (i) Monotonic and cyclic
loading behaviours can be described realistically [23]. (The standard implementation of the
subloading-surface model to the commercial finite-element method software Marc (MSC Software
Ltd) will soon be available to Marc users.) (ii) The overstress model is modified to be applicable
to the description of elastoplastic deformation at the general rate, ranging from quasi-static to
impact loading [22]; the previous overstress model is not applicable to impact loading, as it
results in an unrealistic prediction of only an elastic response with infinite strength. (iii) The
damage model [24] and the phase transformation model [25] are modified to describe softening
behaviour appropriately. (iv) The basis for constitutive modelling of the fatigue phenomenon
induced under a low-stress amplitude is established [26]. (v) Exact finite strain elastoplasticity
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(hyperelastic-based plasticity) based on the multiplicative decomposition of the deformation
gradient is formulated rigorously, as done by Hashiguchi & Yamakawa [27] for monotonic
loading behaviour and by Hashiguchi [28] for general loading behaviour including cyclic loading
behaviour. It is desirable to formulate a constitutive equation with a high generality and the
universality, while any unconventional model, i.e. a cyclic plasticity model other than the
subloading-surface model, has not been extended to multiplicative finite strain theory. (vi) The
crystal plasticity analysis, in which slip analyses in numerous slip systems are required, is realized
rationally with high efficiency because a yield judgement is not required and the stress is pulled
back automatically to the yield surface [28,29]. Consequently, the subloading-surface model is
valid for the description of irreversible mechanical behaviour in solids for rate-independent and
rate-dependent behaviours ranging from the micro- to the macro-level for pressure-independent
and pressure-dependent materials for finite deformation, combining both physical relevance and
numerical efficiency.

We now concentrate our discussion on the friction phenomena in solids. With the exception
of an isolated body floating in a vacuum, all bodies in the natural world are in contact with
other bodies and thus subject to friction. The theoretical basis for the description of friction
phenomena was established by the friction model based on the concept of the subloading surface,
called the subloading-friction model [30,31]. The simplest formulation of the subloading-friction
model also provides the basis for crystal plasticity analysis [28,29]. The subloading-friction
model assumes that the plastic sliding velocity develops gradually as the contact stress (traction)
approaches the friction-yield surface, based on the concept of the subloading surface [20,21,29].
It describes the friction resistance such that it first reaches a peak, i.e. static friction, then
gradually decreases to a minimum, i.e. kinetic friction, and it recovers as sliding stops or sliding
velocity decreases. The model is based on the fact that the friction coefficient decreases by plastic
sliding, which breaks the adhesion between surface asperities on the contact surface, but it
recovers with time, which causes the reconstruction of adhesion. Thus, negative rate sensitivity
(i.e. a decrease in friction resistance with increasing sliding velocity) is described; such sensitivity
is observed in dry friction without lubrication. By contrast, the positive rate sensitivity (i.e. an
increase in the friction resistance with increasing sliding velocity) is observed in the sliding
between lubricated surfaces or between soft solids, e.g. indium, Teflon and various polymers,
which is often called the fluid friction or the wet friction.

Dry friction and fluid friction exhibit high and low friction resistances and large and small
differences between static friction and kinetic friction, respectively. Furthermore, the stick–slip
phenomenon is often induced by dry friction [32], in which friction resistance fluctuates upwards
and downwards intensely and intermittently. It should be avoided in machine elements such as
gears and bearings in order to induce smooth movement. By contrast, fluid friction with a positive
rate sensitivity does not cause the stick–slip phenomenon, but its theoretical prediction is of
importance for mechanical designs of lubricated machinery elements such as gears and bearings
in which low friction resistance is desirable and of wheel tyres travelling on wet roads in which
high friction resistance is required for high braking performance, and so forth.

This paper begins by giving a detailed physical interpretation of the subloading-friction
model, which is then extended to the generalized subloading-friction model. The generalized
model is capable of describing not only the negative rate sensitivity but also the positive
rate sensitivity for an arbitrary sliding velocity ranging from quasi-static to impact sliding by
introducing the concept of overstress [33,34] for the elasto-viscoplastic deformation behaviour.
Numerical experiments for several settings of material parameters are presented to clarify
the effects of the material parameters on friction resistance and the physical meanings of
these parameters contained in the subloading-overstress friction model. Furthermore, friction
tests using a lubricated steel specimen are performed to examine the validity of the model.
These test results are reproduced in simulations using the subloading-overstress friction model.
Consequently, it is verified that the subloading-overstress friction model is capable of describing
friction phenomena with positive rate sensitivity in addition to negative rate sensitivity for an
arbitrary sliding velocity ranging from quasi-static to impact sliding.
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2. Physical interpretation and basic formulation of the subloading-friction
model

The subloading-friction model [30,31] for negative rate sensitivity observed in dry friction is
reviewed below. We add concise physical interpretations along with the basic mathematical
formulation in preparation for the generalization of the model to describe not only negative but
also positive rate sensitivities for an arbitrary sliding velocity.

(a) Definitions of basic mechanical variables
The sliding velocity vector v̄, which is defined as the relative velocity of the counter (slave) body
to the main (master) body, is orthogonally decomposed into the normal sliding velocity vector v̄n

and the tangential sliding velocity vector v̄t to the contact surface

v̄ = v̄n + v̄t = −v̄nn + v̄ttv, (2.1)

where
v̄n = (v̄ • n)n = (n ⊗ n)v̄ = −v̄nn, v̄t = v̄ − v̄n = (I − n ⊗ n)v̄ = v̄ttv. (2.2)

I is the second-order identity tensor possessing the components of Kronecker’s delta δij (δij = 1
for i = j and δij = 0 for i �= j), n is the unit outward-normal vector of the main body, and

v̄n ≡ −n • v̄n = −n • v̄, v̄t = ‖v̄t‖, tv ≡ v̄t

‖v̄t‖ (n • tv = 0, ‖tv‖ = 1). (2.3)

The minus sign is added to the definition of v̄n so that friction increases as the counter body
approaches the main body. The symbolic notations u ⊗ vw = u(v • w) and (Tv)i = Tirvr with
Einstein’s summation convention being used for arbitrary vectors u, v, w and arbitrary second-
order tensor T, and ‖ ‖ denotes the magnitude (i.e. norm). An observed velocity of a material
particle depends on the velocities of the observer and is thus not an objective quantity. On the
other hand, the observed velocities of material particles of the main and the counter bodies on a
contact surface are affected identically by the velocity of the observer, noting that these material
particles possess the same position. Consequently, their relative velocity, i.e. the sliding velocity
v̄, is an objective quantity, which is independent of the observer.

Here, it is further assumed that v̄ is additively decomposed into an elastic sliding velocity v̄e

and a plastic sliding velocity v̄p, i.e.
v̄ = v̄e + v̄p. (2.4)

The elastic sliding velocity is infinitesimal because it is induced by the elastic deformations
of asperities on the contact surface; it is uniquely related to the rate of contact stress. On the
other hand, the plastic sliding velocity is induced by the mutual slips between the surfaces of
the main and the counter bodies and thus it is finite usually. Then, the direction of the plastic
sliding velocity is given by the plastic potential function of the contact stress and thus depends
on the contact stress but is independent of the rate of contact stress, as will be formulated in
§2c(iii). Hence, the rate of contact stress is not determined uniquely by the sliding velocity,
making it difficult to carry out the analysis if the elastic sliding velocity is not given. Therefore,
we incorporate the elastic sliding velocity analogously to the elastic strain rate in ordinary
elastoplastic constitutive equations.

Furthermore, v̄n and v̄t split additively into elastic and plastic parts as follows:

v̄n = v̄e
n + v̄p

n, v̄t = v̄e
t + v̄p

t (2.5)

with
v̄e = v̄e

n + v̄e
t = −v̄e

nn + v̄e
t te

v, v̄p = v̄p
n + v̄p

t = −v̄
p
nn + v̄

p
t tp

v, (2.6)

where
v̄e

n = (v̄e • n)n = (n ⊗ n)v̄e = −v̄e
nn, v̄e

t = v̄e − v̄e
n = (I − n ⊗ n)v̄e = v̄e

t te
v (2.7)
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and
v̄p

n = (v̄p • n)n = (n ⊗ n)v̄p = −v̄
p
nn, v̄p

t = v̄p − v̄p
n = (I − n ⊗ n)v̄p = v̄

p
t tp

v, (2.8)

setting

v̄e
n ≡ −n • v̄e

n = −n • v̄e, v̄e
t = ‖v̄e

t ‖, te
v ≡ v̄e

t
‖v̄e

t ‖
(n • te

v = 0, ‖te
v‖ = 1) (2.9)

and

v̄
p
n ≡ −n • v̄p

n = −n • v̄p, v̄
p
t = ‖v̄p

t ‖, tp
v ≡ v̄p

t

‖v̄p
t ‖

(n • tp
v = 0, ‖tp

v‖ = 1). (2.10)

The contact stress (traction) vector f acting on the main body orthogonally splits into the normal
traction vector fn and the tangential traction vector ft,

f = fn + ft = −fnn + fttf , (2.11)

where
fn ≡ (n • f)n = (n ⊗ n)f = −fnn, ft ≡ f − fn = (I − n ⊗ n)f = fttf (2.12)

and

fn ≡ −n • f, ft = ‖ft‖, tf ≡ ft

‖ft‖ (n • tf = 0, ‖tf ‖ = 1). (2.13)

The minus sign is added to the definition of fn such that friction is generated when the normal
contact stress applied to the main body is compressive.

(b) Elastic sliding velocity
Assuming that a solid does not split under moderate deformations, a hyperelastic constitutive
relation possessing the elastic potential energy function is adopted for the elastic part of
deformation in the exact finite strain theory [27]. By contrast, surface asperities on the main
body adhere to different surface asperities on the counter body one after another during a sliding
process and thus the hyperelastic relation would not hold in the friction phenomenon. Then,
recalling the hypoelastic relation in terms of the Cauchy stress and the elastic strain rate (the
symmetric part of the elastic velocity gradient) for the elastic deformation of solids [35], let the
elastic sliding velocity be formulated as follows:

v̄e = Ce−1
◦
f,

◦
f = Cev̄e, (2.14)

where (◦) stands for the corotational rate [29]. The corotational time-derivative
◦
f of contact stress

in equation (2.11) is orthogonally decomposed into normal and tangential parts to the contact
surface as ◦

f =
◦
fn +

◦
ft, (2.15)

where ◦
f =

•
f −ωcf,

◦
fn =

•
fn − ωcfn,

◦
ft =

•
ft − ωcft, (2.16)

noting
◦
f = (fn + ft)• − ωc(fn + ft) =

•
fn − ωcfn +

•
ft − ωcft. (2.17)

The second-order tensor ωc is the spin of the contact surface. The objectivity of the corotational

contact stress rate
◦
f in equation (2.16)1 can be confirmed by the fact that

◦
f is formulated such that

the influence of rigid-body rotation, ωcf, is excluded from the material-time derivative
•
f.

The second-order tensor Ce is the contact elastic modulus tensor given by

Ce = αnn ⊗ n + αt(I − n ⊗ n), Ce−1 = 1
αn

n ⊗ n + 1
αt

(I − n ⊗ n), (2.18)

where αn and αt are the normal and tangential contact elastic constants, respectively, in the contact
surface. These values are set large because the elastic sliding is caused by elastic deformations of
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the surface asperities. Actually, we may choose αn, αt = 102 ∼ 105 GPa mm−1 for common metals
as the penalty parameters. Equation (2.14) with equation (2.18) leads to

v̄e = 1
αn

◦
fn + 1

αt

◦
ft,

◦
f = αnv̄e

n + αtv̄e
t . (2.19)

(c) Formulation of plastic sliding velocity
In this section, the plastic sliding velocity is formulated on the basis of the concept of the
subloading surface [20,29].

(i) Normal friction-yield and subloading-friction surfaces

Let the friction-yield surface be given by

f (f) = μ, (2.20)

where μ is the hardening/softening function describing the expansion/contraction of the friction-
yield surface. The friction-yield stress function f (f) for the Coulomb friction law is given by

f (f) = ft
fn

, (2.21)

for which μ specifies the coefficient of friction. Equation (2.21) will be adopted for actual
calculations in later sections.

The abrupt transition from the elastic to the plastic sliding state is described if the interior of
the friction-yield surface is assumed to be a purely elastic domain. However, the plastic sliding
velocity is induced even by the rate of contact stress inside the friction-yield surface and it
develops gradually as contact stress approaches the friction-yield surface, thereby exhibiting the
smooth elastic–plastic transition. Then, to describe the plastic sliding velocity induced by the rate
of contact stress inside the friction-yield surface, we incorporate the following postulate based on
experimental facts [22,29].

Fundamental postulate of unconventional elastoplasticity (subloading-surface concept). The contact
stress approaches the friction-yield surface when the plastic sliding velocity is induced but it
recedes from the friction-yield surface when only the elastic sliding velocity is induced.

In this context, it is first required to incorporate the three-dimensional measure which describes
the approaching degree of the contact stress to the friction-yield surface, renamed the normal
friction-yield surface, in order to formulate the plastic sliding velocity based on the subloading-
surface concept. Then, let the following subloading-friction surface, which always passes through
the current contact stress and maintains a similar shape and orientation to the normal friction-
yield surface, be introduced:

f (f) = rμ, (2.22)

where r (0 ≤ r ≤ 1) is the ratio of the size of the subloading-friction surface to that of the normal
friction-yield surface and is called the normal friction-yield ratio, playing the role of the measure of
the approaching degree of contact stress to the normal friction-yield surface. For the Coulomb-
type friction-yield surface, the normal friction-yield ratio is given by the ratio of the size of the
cross-section of the subloading-friction surface to that of the normal friction-yield surface on the
constant normal contact stress plane as shown in figure 1.

On the basis of the above-mentioned fundamental postulate of elastoplastic sliding, the rate of
the normal friction-yield ratio r must satisfy the following conditions:

•
r

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

→ +∞ for r = 0 : quasi-elastic sliding state

>0 for 0 < r < 1 : sub-friction-yield state

=0 for r = 1 : normal friction-yield state

(<0 for r > 1 : over normal friction-yield state)

for v̄p �= 0 (2.23)
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normal contact

stress plane

fn

ft

tn

f
ê3 = n

subloading-sliding surface

normal sliding-yield surface

ft / fn = m

ft / fn = rm

∂ f (f)
–∂ f

ê1

ê2

(=tn)

l
r tf

contact surface

∂ f (f)
∂ f

∂ f (f)
(n • n)∂ f

∂ f (f)
(n • n)∂ f

Figure 1. Coulomb-type normal friction-yield and subloading-friction surfaces. (Online version in colour.)

U
–

(r)

v– e π 0,

v– p π 0, r

v– p = 0

v– p π 0

0 1

Figure 2. Function Ū(r) for the evolution rule of the normal friction-yield ratio r. (Online version in colour.)

and

•
r

{
=0 for v̄e = 0

<0 for v̄e �= 0
for v̄p = 0. (2.24)

Taking equation (2.23) into account, let the evolution rule for the normal friction-yield ratio in the
plastic sliding process be formulated as

•
r = Ū(r)‖v̄p‖ for v̄p �= 0, (2.25)

where Ū(r) is a monotonically decreasing function of r satisfying the conditions

Ū(r)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

→ +∞ for r = 0 : quasi-elastic sliding state

>0 for 0 < r < 1 : sub-friction-yield state

=0 for r = 1 : normal friction-yield state

(<0 for r > 1 : over normal friction-yield state),

(2.26)

the general trend of which is illustrated in figure 2.
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An explicit example of the function Ū(r) is

Ū(r) = ũ cot
(π

2
r
)

, (2.27)

where ũ is a material constant. Equations (2.25) with equation (2.27) can be analytically integrated
in the case of a monotonic sliding process as

r = 2
π

cos−1
{

cos
(π

2
r0

)
exp

[
−π

2
ũ(ūp − ūp

0 )
]}

, ūp − ūp
0 = 2

π

1
ũ

ln
cos

(
π
2 r0

)
cos

(
π
2 r

) , (2.28)

where ūp = ∫ ‖v̄p‖ dt is the accumulated plastic sliding displacement, and r0 and ūp
0 are the

initial values of r and ūp, respectively. The analytical integration would be beneficial in implicit
numerical calculations [22], while further work is required for the formulation of the implicit
calculation method, i.e. a return-mapping projection based on the subloading-friction model.
Here, it should be noted that numerical calculations can be performed with high efficiency
by the forward-Euler method based on the subloading-friction model which possesses an
automatic-controlling function to attract the contact stress to the normal friction-yield surface.

There exist the following functions other than the one in equation (2.27) which satisfy the
conditions in equation (2.26), but unfortunately analytical integration does not exist for them:

Ū(r) = −ũ ln r, Ū(r) = ũ
(

1
r

− 1
)

. (2.29)

The three functional forms for Ū(r) in equations (2.27) and (2.29) are schematically depicted in
figure 3, setting ũ = 100 in equations (2.27) and (2.29)2 and ũ = 300 in equation (2.29)1 so that the
values of these functions coincide approximately to each other in the range r ≤ 1. From figure 3, it
follows that

100 cot
(π

2
r
) ∼= −300 ln r ∼= 100

(
1
r

− 1
)

≥ 0 for r ≤ 1

and 100 cot
(π

2
r
)

< −300 ln r < 100
(

1
r

− 1
)

< 0 for r > 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.30)

noting

r → 2 − 0 :
•
r → −∞ in ũ cot

(π

2
r
)

; r → ∞ :
•
r → −∞ in − ũ ln r; r → ∞ :

•
r → −ũ in ũ

(
1
r

− 1
)

.

(2.31)

The cotangent function in equation (2.27) will be adopted in subsequent analyses for the following
reasons.

(1) It possesses the largest negative value in the range r > 1 among these three kinds of
function Ū(r). Then, it provides the most intense controlling function to pull back the
contact stress to the normal friction-yield surface when the stress jumps out from that
surface in numerical calculations. Here, note that the evolution rule of the normal friction-
yield ratio r is given by

•
r = Ū(r)‖v̄p‖ in equation (2.25), so that r becomes negative,

i.e.
•
r < 0, and thus the contact stress is pulled back to the normal friction-yield surface

if it goes over that surface, i.e. r > 1, leading to Ū(r) < 0. This fact will be explained in
detail in §2g with the illustration in figure 4.

(2) It can be analytically integrated as shown in equation (2.28) and it thereby provides an
advantage in the implicit numerical calculation.
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400

200

0
21 3 r

u~

U
– 

(r) = –300 ln r

–

U
– 

(r) = 100  – –1r
1

U
–

(r)

U(r) = 300 cot   – r
2
p

Figure 3. Three types of function Ū(r) in the evolution rule of the normal friction-yield ratio r. (Online version in colour.)

ft/fn

U
–
(r) > 0 for r < 1

r• = U
–

(r) || v–p|| for v–p π 0

U
–

(r) = 0 for r = 1

U
–

(r) < 0 for r > 1

r < 1:r > 0 r > 1:r < 0

0 u–t

Figure 4. Contact stress controlling function in the subloading-friction model: contact stress is automatically attracted to the
normal friction-yield surface in the plastic sliding process. (Online version in colour.)

(ii) Evolution of the friction coefficient

The following characteristics for the variation of the friction coefficient are deduced from the
hypothesis of adhesion in dry friction [36].

(1) The friction coefficient decreases with plastic sliding because the adhesion of surface
asperities on the contact surface is broken by plastic sliding.

(2) The friction coefficient recovers with time because the adhesion of surface asperities is
reconstructed as time elapses.

Then, the evolution rule for the friction coefficient is assumed as follows:

•
μ = κ

(
1 − μ

μk

)
︸ ︷︷ ︸

negative

∥∥v̄p∥∥ + ξ

(
1 − μ

μs

)
︸ ︷︷ ︸

positive

, (2.32)
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where μs and μk (μs ≥ μ ≥ μk) are material constants designating the maximum and minimum
values of μ for static friction and kinetic friction, respectively. κ(> 0) is a material constant
specifying the rate of decrease of μ in the plastic sliding process, and ξ (> 0) is a material constant
specifying the rate of recovery of μ as time elapses.

(iii) Plastic sliding velocity

The time differentiation of the subloading-friction surface in equation (2.22) reads

∂f (f)
∂f

•
◦
f = r

•
μ+ •

r μ. (2.33)

Substituting equations (2.25) and (2.32) into equation (2.33), we have

∂f (f)
∂f

•
◦
f = r

[
κ

(
1 − μ

μk

)
‖v̄p‖ + ξ

(
1 − μ

μs

)]
+ Ū(r)‖v̄p‖μ. (2.34)

Now, we assume that the plastic sliding velocity is induced in the direction of the projection of
the outward-normal vector of the subloading-friction surface to the contact surface, which may
be called the tangent-associated flow rule, i.e.

v̄p =
•
λ̄ tn

(•
λ̄ ≥ 0

)(
‖v̄p‖ =

•
λ̄, n • v̄p = 0

)
(2.35)

with

tn ≡ ∂f (f)/∂f − (n • ∂f (f)/∂f)n∥∥∂f (f)/∂f − (n • ∂f (f)/∂f)n
∥∥ = (I − n ⊗ n)∂f (f)/∂f∥∥(I − n ⊗ n)∂f (f)/∂f

∥∥ (‖tn‖ = 1, n • tn = 0) , (2.36)

where
•
λ̄ and tn are the magnitude and the direction, respectively, of the plastic sliding velocity. The

vector ∂f (f)/∂f − [n • ∂f (f)/∂f]n in equation (2.36) is the tangential part of the outward-normal
vector ∂f (f)/∂f of the subloading-friction surface, and the vector tn is its normalization. It follows
from equations (2.8) and (2.35) with equation (2.36) that

v̄p
n = 0, v̄p = v̄p

t . (2.37)

For the Coulomb friction-yield function described in equation (2.21), substituting

∂f (f)
∂f

= ∂

∂f

(
ft
fn

)
= 1

f 2
n

(
fn

∂ft
∂f

− ft
∂fn
∂f

)
= 1

f 2
n

( fntf − ft(−n)) = 1
fn

(
tf + ft

fn
n
)

(2.38)

into equation (2.36), it follows that the direction of the plastic sliding velocity coincides with the
direction of the tangential contact stress vector defined in equation (2.13), i.e.

tn = tf . (2.39)

Substituting equation (2.35) into equation (2.34), we have

∂f (f)
∂f

•
◦
f =

•
λ̄ mp + mc, (2.40)

where

mp ≡ κ

(
1 − μ

μk

)
r + Ū(r)μ and mc ≡ ξ

(
1 − μ

μs

)
r (≥0) (2.41)

are relevant to the plastic and the creep sliding velocity, respectively.
It follows from equation (2.40) that

•
λ̄ = ∂f (f)/∂f •

◦
f −mc

mp , v̄p = ∂f (f)/∂f •
◦
f −mc

mp tn. (2.42)
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(d) Relation between contact stress rate and sliding velocity
Substituting equations (2.14)1 and (2.42)2 into equation (2.4), we have

v̄ = Ce−1
◦
f +∂f (f)/∂f •

◦
f −mc

mp tn, (2.43)

from which the magnitude of the plastic sliding velocity in terms of the sliding velocity, denoted
•

Λ̄, is derived as
•

Λ̄ = ∂f (f)/∂f • Cev̄ − mc

mp + ∂f (f)/∂f • Cetn

⎛
⎝=∂f (f)/∂f •

◦
f −mc

mp

⎞
⎠ . (2.44)

The corotational rate of contact stress is obtained from equations (2.4), (2.14)2, (2.35) and (2.44) as
follows:

◦
f = Ce

(
v̄ − ∂f (f)/∂f • Cev̄ − mc

mp + ∂f (f)/∂f • Cetn
tn

)
. (2.45)

(e) Loading criterion
The loading criterion for the plastic sliding velocity is given by

v̄p �= 0 :
•

Λ̄ > 0

v̄p = 0 : otherwise,

⎫⎬
⎭ (2.46)

or

v̄p �= 0 :
∂f (f)
∂f

• Cev̄ − mc > 0

v̄p = 0 : otherwise,

⎫⎪⎬
⎪⎭ (2.47)

noting mp + (∂f (f)/∂f) • Cetn > 0 in the denominator of the positive plastic multiplier in terms of
the sliding velocity in equation (2.44). Here, note that the infinite plastic relaxation is generated
so that the contact stress infinitely decreases if the denominator decreases to zero as known from
equation (2.45).

(f) Calculation of the normal friction-yield ratio
The normal friction-yield ratio r can be calculated using one of the following two methods.

(1) We calculate r using the following equation derived from the subloading-friction surface
in equation (2.22) for both of the elastoplastic sliding and elastic sliding processes after
the contact stress vector f and the hardening variable μ are updated:

r = f (f)
μ

. (2.48)

Needless to say, the hardening variable μ is calculated by the plastic sliding velocity in
equation (2.42), including the plastic modulus mp, which depends on the evolution rule
of the normal friction-yield ratio r in equation (2.25).

(2) We calculate r using method (1) for the elastic sliding process but calculate r by the
time integration of equation (2.25) for the plastic sliding process. Actually, we adopt the
function Ū(r) in equation (2.27) of the cotangent form as described in §2c(i). Here, it is
beneficial to employ analytical time integration in equation (2.28) for the plastic loading
process in implicit numerical calculations. However, in the numerical stress updating
calculation by the forward-Euler method, we must use time integration based on the
forward-Euler difference scheme for the rate-form evolution equation (2.25) to update
the value of r. By this, the controlling function to attract the contact stress to the normal
friction-yield surface works efficiently.
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Method (2) would be superior to method (1) because the normal friction-yield ratio is
calculated directly from the plastic sliding velocity.

(g) Basic features of the subloading-friction model
The fundamental aspects of friction phenomena are described appropriately by the subloading-
friction model as follows.

(1) The static friction as a peak and the decrease in the kinetic friction are described.
(2) The negative rate sensitivity is described because the friction coefficient decreases by

plastic sliding and the recovery of the friction coefficient requires an elapse of time.
(3) The smooth transition from the elastic to the plastic sliding state is described, fulfilling the

smoothness condition [37,38] because the plastic sliding velocity is not induced suddenly
but induced gradually as the contact stress approaches the normal friction-yield surface
so that a smooth contact stress versus sliding displacement curve is depicted, while the
elastic sliding is usually quite small. Here, note that the smoothness of the transition
is irrelevant to the elastic rigidity (magnitude of elastic sliding), as known from the
existence of the smooth transition from the rigid to plastic transition.

(4) The yield judgement of whether the contact stress reaches the friction-yield surface is not
required in the loading criterion in equation (2.46) or (2.47) because the plastic sliding
velocity develops continuously as the contact stress approaches the normal friction-yield
surface, excluding the assumption that the yield surface encloses a purely elastic domain.

(5) The contact stress is automatically attracted to the normal friction-yield surface in the
plastic sliding process and it is pulled back to that surface when it jumps out from the
normal friction-yield surface in numerical calculations by virtue of equation (2.25) with

equation (2.26)4 leading to
•
r < 0 for r > 1 as shown schematically in figure 4. It is known,

by noting equation (2.30) with figures 3 and 4, that the cotangent function Ū(r) in equation
(2.27) possesses the most intense controlling function to pull back the contact stress to the
normal friction-yield surface among the three types of function Ū(r) in equations (2.27)
and (2.29).

3. Generalized subloading-friction model: subloading-overstress
friction model

In the subloading-friction model described in the preceding sections, the sliding velocity is
postulated to consist of elastic and plastic sliding velocities. This leads to a negative rate
sensitivity (i.e. a decrease in friction resistance with increasing sliding velocity) because the
adhesion of surface asperities is broken more quickly at higher sliding velocities and the recovery
of adhesion requires time. In what follows, we consider the generalization of the subloading-
friction model to describe not only negative but also positive rate sensitivities by extending the
notion of the overstress, which has been adopted in the description of viscoplastic deformation
behaviour.

(a) Formulation of the generalized subloading-friction model
First, we introduce the viscoplastic sliding velocity v̄vp instead of the plastic sliding velocity v̄p in
equation (2.4), i.e.

v̄ = v̄e + v̄vp. (3.1)

Viscoplastic models describing rate-dependent plastic deformation are classified into either a
creep model or an overstress model. A viscoplastic strain rate is always induced inappropriately
depending on a stress level (e.g. [39]) or on the ratio of the magnitude of the stress to the yield
stress (e.g. [40,41]) in creep models. By contrast, a viscoplastic strain rate is induced depending on
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the overstress from the yield surface in the overstress model [33,34]. In other words, although the
creep model does not possess a loading criterion for the creep strain rate, the overstress model
possesses the loading criterion for the viscoplastic strain rate. Here, it should be noted that a
loading criterion for the viscoplastic strain rate as well as for the plastic strain rate in the ordinary
elastoplastic constitutive equation is required for the realistic description of the rate-dependent
elastoplastic deformation such that the viscoplastic strain rate is not induced when the stress is
reduced from the yield surface. The subloading-friction model can then be generalized so as to
describe both negative and positive rate sensitivities appropriately by incorporating the concept
of overstress. First, let the viscoplastic sliding velocity be given as

v̄vp = 1
ηv

〈
f (f) − μ

μ

〉n
tn = 1

ηv
〈r − 1〉ntn. (3.2)

Hence, by substituting equations (2.14) and (3.2) into equation (3.1), we have

v̄ = Ce−1
◦
f + 1

ηv
〈r − 1〉ntn,

◦
f = Cev̄ − 1

ηv
〈r − 1〉nCetn, (3.3)

where ηv and n are material constants. 〈 〉 denotes the Macaulay bracket, i.e. s < 0 : 〈s〉 = 0 and
s ≥ 0 : 〈s〉 = s (s: an arbitrary scalar). Note that the loading criterion for the viscoplastic sliding
velocity is furnished by introducing the Macaulay bracket. The surface that passes through the
current contact stress and that is similar to the normal friction-yield surface (similar on the
constant normal contact stress plane for the Coulomb friction-yield surface) is called the dynamic
loading friction surface. r is newly defined as the ratio of the size of the dynamic loading friction
surface to that of the normal friction-yield surface and thus is called the dynamic loading friction-
yield ratio. Here, note that r ≤ 1 holds in the quasi-static sliding process but r > 1 holds in the
dynamic sliding process. Variations of internal variables are induced generally by irreversible
(inelastic) sliding and hence the plastic sliding velocity v̄p in the evolution rules of the internal
variables in the elastoplastic sliding should be replaced by the viscoplastic sliding velocity v̄vp in
the evolution rules of the internal variables in the elasto-viscoplastic sliding. Then, from equation
(2.32), the evolution rule for the coefficient of friction μ is generalized to

•
μ = κ

(
1 − μ

μk

)
︸ ︷︷ ︸

negative

‖v̄vp‖ + ξ

(
1 − μ

μs

)
︸ ︷︷ ︸

positive

, (3.4)

where κ and ξ are the material constants defined for equation (2.32).
Note here that equation (3.3) is rewritten in incremental forms,

dū = Ce−1df + 1
ηv

〈r − 1〉ntndt, df = Cedū − 1
ηv

〈r − 1〉nCetn dt, (3.5)

where dū = v̄dt is the increment of sliding displacement. In quasi-static sliding, equation (3.3) is
reduced to

0 ∼= 0 + 1
ηv

〈r − 1〉ntn dt, 0 ∼= 0 − 1
ηv

〈r − 1〉nCetn dt, (3.6)

which leads to

r − 1 → 0, i.e. f (σ ) − μ → 0, (3.7)

fulfilling the normal friction-yield condition without the overstress. In impact sliding, by contrast,
equation (3.3) is reduced to

dū ∼= Ce−1df + 0, i.e. v̄ ∼= Ce−1
◦
f, df ∼= Ce dū − 0, i.e.

◦
f ∼= Cev̄, (3.8)
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which describe unrealistically the elastic sliding behaviour with an infinite friction strength, so
that these equations are inapplicable to sliding phenomena at high sliding velocities. We then
modify equation (3.3) as follows:

v̄ = Ce−1
◦
f + 1

ηv

〈r − 1〉n

r̂ − r
tn,

◦
f = Cev̄ − 1

ηv

〈r − 1〉n

r̂ − r
Cetn, (3.9)

in which the viscoplastic sliding velocity becomes infinite as the dynamic loading friction-yield
ratio r approaches the value of the material parameter r̂(>1), i.e. r → r̂. Then, we call r̂ the limit
dynamic loading friction-yield ratio.

The viscoplastic sliding velocity is induced suddenly at the moment that the contact stress
reaches the normal friction-yield surface, i.e. when the dynamic loading friction-yield ratio
becomes unity (r = 1), so that a smooth elastic–viscoplastic transition cannot be described by
equation (3.9). Then, we further modify these equations as follows:

v̄ = Ce−1
◦
f + 1

ηv

〈r − rs〉n

r̂ − r
tn,

◦
f = Cev̄ − 1

ηv

〈r − rs〉n

r̂ − r
Cetn (3.10)

by incorporating the variable rs (0 ≤ rs ≤ 1), called the subloading-friction-yield ratio, which is
calculated using equations (2.25) and (2.48) by replacing the plastic sliding velocity v̄p with the
viscoplastic sliding velocity v̄vp, i.e.

•
rs = Ū(rs)‖v̄vp‖ for v̄vp �= 0 (3.11)

and

rs = f (f)
μ

for v̄vp = 0 (3.12)

with

Ū(rs) = ũ cot
(π

2
rs

)
. (3.13)

Thus, the viscoplastic sliding velocity is induced by the overstress f (f) − rsμ from the subloading-
friction surface

r − rs = 0, i.e. f (f) = rsμ, (3.14)

so that a smooth elastic–viscoplastic transition is described.
Simulations reproducing test data are difficult when using equation (3.10) with a viscoplastic

term in the power form but, as will be described in §5, high accuracy simulations can be
performed by the use of the exponential function as

v̄ = Ce−1
◦
f + 1

ηv

〈en(r−rs) − 1〉
r̂ − r

tn,
◦
f = Cev̄ − 1

ηv

〈en(r−rs) − 1〉
r̂ − r

Cetn, (3.15)

which will be used in subsequent sections. The generalized subloading-friction model proposed
above is referred to as the subloading-overstress friction model.

The response of the subloading-overstress friction model for fluid friction is schematically
shown in figure 5. The elastic sliding is depicted with exaggeration for a concise explanation,
and the normalized overstress divided by the normal contact stress fn is written simply as the
term ‘overstress’ in this figure. The dynamic loading friction-yield ratio r coincides with the
subloading-friction-yield ratio rs, i.e. r = rs in quasi-static sliding and increases above rs with
increasing sliding velocity. However, r does not rise above r̂, i.e. r ≤ r̂, while the equality r = r̂
is realized only in impact sliding.
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ft/fn

at (impact sliding || v– || Æ •)

|| v– || increases

(quasi-static sliding | vv– || @ 0)

overstress
(r – rs)m

r = 1

r = rs

r = r̂

rm

0

rsm
m

u–t

Figure 5. Response of the subloading-overstress friction model. (Online version in colour.)

(b) Interpretation of the subloading-overstress friction model
Equations (3.4) and (3.15) are described in incremental forms as

dμ = κ

(
1 − μ

μk

)
︸ ︷︷ ︸

negative

∥∥dūvp∥∥ + ξ

(
1 − μ

μs

)
︸ ︷︷ ︸

positive

dt (3.16)

and

dū = Ce−1df + 1
ηv

〈en(r−rs) − 1〉
r̂ − r

tndt, df = Ce dū − 1
ηv

〈en(r−rs) − 1〉
r̂ − r

Cetn dt, (3.17)

where dūvp ≡ v̄vp dt is the viscoplastic sliding displacement.
The following properties are recognized from equations (3.16) and (3.17).

(1) In the quasi-static sliding process (dμ/dt ∼= 0, ‖dūvp‖/dt ∼= 0, ‖dū‖/dt ∼= 0, ‖df‖/dt ∼= 0) in
which the terms other than the second terms on the right-hand sides are negligible in
equations (3.16) and (3.17), we have μ = μs from equation (3.16) and r = rs from equation
(3.17), resulting in ft/fn = rsμs due to equation (2.22) with equation (2.21). Therefore,
the contact stress moves, satisfying the subloading-surface in the quasi-static sliding
process, so that the original subloading-friction model is reproduced in that process.
In other words, the subloading-overstress model is generalized so as to contain the
subloading-friction model formulated for the dry friction in §2.

(2) In the fast sliding process (dμ/dt → ∞, ‖dūvp‖/dt → ∞, ‖dū‖/dt → ∞, ‖df‖/dt → ∞) for
which the creep part of the second term on the right-hand side is negligible in equation
(3.16), the friction coefficient μ decreases with the viscoplastic sliding displacement ūvp ≡∫ ‖v̄vp‖dt after reaching a peak.

Friction resistance varies with the destruction of the adhesion of surface asperities and the
shearing of the viscous fluid lying between contact surfaces. The former is dominant in dry
friction whereas the latter is dominant in fluid friction because the surfaces are in direct contact
with each other in dry friction but are in indirect contact via the viscous medium in fluid friction.
Then, adhesion of surface asperities is stronger in dry friction than in fluid friction. We thus infer
the following differences between the responses of dry and fluid friction in the monotonic linear
sliding process at constant sliding velocities (figure 6).
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r = rs
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Figure 6. Comparison of responses in dry and fluid frictions at constant sliding velocities. (Online version in colour.)

(3) The friction resistance is obviously greater in dry friction than in fluid friction, and the
difference between a peak and a bottom contact stress ratio is larger in dry friction than
in fluid friction.

(4) The sliding displacement in the transition from the peak to the bottom contact stress ratio
is smaller in dry friction than in fluid friction because the contact is direct in the former
but indirect via fluid in the latter.

(5) The friction coefficient μ decreases with sliding displacement, as described in (1). Then,
dry friction exhibits a negative rate sensitivity because the contact stress ratio ft/fn is
given by the friction coefficient itself. On the other hand, fluid friction exhibits a positive
rate sensitivity because the contact stress ratio is given by the friction coefficient plus the
overstress, while the overstress increases with sliding velocity inducing a higher viscous
resistance.

(6) The ratio ft/(μsfn) approaches unity (i.e. r = 1: normal sliding-yield state) in dry friction
but becomes greater than unity (i.e. r > 1: over normal sliding-yield state) in fluid friction.

In addition, note that it is not required to use equation (2.43) and/or equation (2.45) in the
subloading-friction model even for the calculation of dry friction behaviour. In fact, the dry
friction behaviour is generated in the quasi-static sliding process in the subloading-overstress
friction model. Consequently, we need only use equation (3.15) with equations (3.4) and (3.11)–
(3.13) in the subloading-overstress friction model for calculations of general sliding behaviour
involving both dry and fluid frictions.

4. Numerical experiments
The basic mechanical properties of the subloading-overstress friction model formulated in the
preceding section are examined below in numerical experiments using the constitutive equation
(3.15) with equation (3.13) and adopting equation (2.21) for the Coulomb-type friction-yield stress
function f (f).

In numerical simulations, the material constants in the subloading-friction model are chosen
as follows:

Elastic sliding constant: αn = αt = 1000 GPa mm−1

Static friction coefficient: μs = 0.097; Kinetic friction coefficient: μk = 0.085

Sliding-softening constant: κ = 1.0 mm−1

Creep-hardening constant: ξ = 0.005 min−1

Normal friction-yield ratio evolution constant: ũ = 80 mm−1
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Figure 7. (a,b) Influence of material parameters in the subloading-overstress friction model.

Furthermore, the three material constants ηv, n and r̂ added in the subloading-overstress friction
model are changed in the following five levels, fixing the other two material constants as ηv =
1000, n = 16 and r̂ = 1.6.

Viscoplastic coefficient: ηv = 10, 100, 1000, 10 000, 100 000 min mm−1

Viscoplastic power coefficient: n = 4, 8, 16, 32, 64

Limit dynamic loading friction-yield ratio: r̂ = 1.2, 1.6, 2.4, 3.2, 6.4

The sliding velocity is set to be 0.1, 1, 100 and 1000 mm min−1. The calculated results are shown
in figure 7. The contact stress ratio ft/fn is larger for higher sliding velocities, exhibiting positive
rate sensitivity. Higher contact stress ratios are predicted for larger values of ηv and r̂, and for
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Figure 7. (Continued.)

lower values of n. Curves of the contact stress ratio versus sliding displacement for various
sliding velocities are shown in figure 8, indicating positive rate sensitivity, where the material
constants are chosen as ηv = 1000, n = 16 and r̂ = 1.6. The effect of the sliding velocity on the peak
(maximum) and bottom (minimum) contact stress ratios in the contact stress ratio versus sliding
displacement curves, which are read from figure 8, are plotted in figure 9. Here, the peak and
bottom contact stress ratios increase with sliding velocity in a certain velocity range, whereas
they converge to certain values outside this range.

5. Comparison with test data
To examine the validity of the generalized subloading-overstress model, a lubricated friction test
was performed. A schematic diagram of the test apparatus is shown in figure 10. The test plate,
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Figure 9. Influence of sliding velocity on the contact stress ratio. (Online version in colour.)

which is placed between the tools, is subjected to the constant normal load (5 kN) and is pulled
up at constant velocity. The pulling force is measured by the load cell (maximum load: 100 kN)
attached to the upper part of the test plate. The test plate is made of galvannealed steel sheet
with a friction area of width 30 mm, height 300 mm and thickness 0.7 mm. The tool steel SKD-11
of width 40 mm, height 30 mm and thickness 20 mm is used for the tools which grasp the test
plate. Therefore, the friction contact area for the normal contact stress is 900 mm2 and therefore
the normal contact stress is 5.56 MPa, whereas the friction contact area for the tangential contact
stress is 1800 mm2. The friction surfaces were polished and coated with anti-rust oil prior to the
tests. The pulling-up velocity of the test plate is set at five levels: 1, 10, 50, 100, 200 mm min−1. The
friction test was adopted supposing the press forming of thin sheet metal in the metal forming
process.

The measured relationship between the contact stress ratio ft/fn and the tangential sliding
displacement ūt is shown in figure 11a. The contact stress ratio first peaks and then gradually
falls to a stationary value, exhibiting a positive rate sensitivity, i.e. larger contact stress ratios at
higher sliding velocities.
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The simulation of the above-mentioned test result using equation (3.15) with equations (2.21)
and (3.13) is shown by the solid lines in figure 11a, using the following values for the material
constants:

αn = αt = 1000 GPa mm−1

μs = 0.097, μk = 0.085

κ = 0.2 mm−1, ξ = 0.009 min−1

ũ = 80 mm−1

ηv = 950 min mm−1, n = 16, r̂ = 1.8

The simulation of the test result using equation (3.10) with the power function is shown by
the solid lines in figure 11b, using the following values for material constants. These material
constants are chosen so as to simulate the test result as closely as possible. However, it is
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impossible to restrict the range from the highest and the lowest curves to the range in the test
curves. Equation (3.15) with the exponential function would be much more appropriate than
equation (3.10) with the power function for the prediction of real friction behaviour. However,
clarification of the definite physical background should be continued for the future:

αn = αt = 1000 GPa mm−1

μs = 0.097, μk = 0.085

κ = 1.0 mm−1, ξ = 0.005 min−1

ũ = 80 mm−1

ηv = 950 min mm−1, n = 16, r̂ = 1.8

Based on figure 11a, a comparison of the calculated and test results for the influence of the sliding
velocity on the peak (maximum) and bottom (minimum) values in the contact stress ratio versus
sliding displacement curves is shown in figure 12, where the close coincidence can be observed.

6. Concluding remarks
A generalized subloading-friction model, i.e. the subloading-overstress friction model, was
formulated and the validity was verified in numerical experiments and by comparison with test
data. The model is able to describe the following basic behaviours of friction phenomena.

(1) Peak and subsequent minimum friction resistance at a constant sliding velocity and the
recovery of friction resistance as sliding stops or the sliding velocity decreases.

(2) Both negative and positive rate sensitivities in the unified form, while only the former
has been described by the subloading-friction model [30,31].

(3) Sliding behaviour at general sliding velocity ranging from quasi-static to impact sliding.

The generalized subloading-friction model is formulated using the general friction-yield surface
but the Coulomb friction-yield surface was adopted in the explicit analyses to explain the
fundamental behaviour of the model concisely. The subloading-overstress friction model can be
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readily extended to describe the effect of the normal contact stress and the anisotropy on the
friction resistance by incorporating the more general friction-yield surface which is the nonlinear
function of the normal contact stress [30,31] and takes account of the orthotropic and rotational
anisotropies [42,43].

Crystal plasticity is widely analysed by inappropriate methods using a creep model [40,41,
44]. The subloading-overstress friction model, regarding the tangential contact stress and the
tangential contact yield stress as the resolved shear stress and the critical shear stress, respectively,
provides a rigorous analysis with high efficiency for rate-dependent crystal plasticity in addition
to rate-independent crystal plasticity [28,29]. Details of the results of the calculation of crystal
plasticity are forthcoming. Furthermore, the subloading-friction model can be applied to the
prediction of continental slip-type earthquakes to prevent earthquake disasters in the near
future.
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