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Lung cancer continues to be one themost prevalent and life threatening cancersworldwide. In order to study the
gene regulation pattern in lung cancer for new therapeutics discovery, gene expression profiling using human
lung cancer tissues was conducted. The gene expression profiles were established using Affymetrix Human
Exon 1.0 ST Arraywith RNA extracts from six clinical patients (five lung cancer samples and one normal control).
The raw data were analyzedwith Affymetrix Expression Console and Affymetrix Transcriptome Analysis Console
2.0. The regulation of several genes was further validated using real-time reverse transcription quantitative
polymerase chain reaction (RT-qPCR). Here we provide detailed experimental methods and analysis for the
microarray data, which have been deposited into Gene Expression Omnibus (GEO) under GSE63571.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Experimental design, materials and methods

Tissue samples

Tissue samples from clinical patients were acquired from the
Clinical and Translational Science Institute (CTSI) Biorepository at
University of Florida, including four subtypes of lung cancer samples
(adenocarcinoma, large cell carcinoma, stromal sarcoma, and synovial
sarcoma) as well as one normal tissue sample. All the human tissue
samples were stored at−80 °C before RNA extraction.
RNA preparation

Total RNA was isolated and purified from 10 mg of frozen tissue
samples using Qiagen RNeasy Mini Kit, QIAshredder kit and RNase-
Free DNase Set kit (Qiagen, Valencia, CA) followingmanufacturer's rec-
ommendations. The RNA extracts were first analyzed by a Nanodrop
2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA)
and gel electrophoresis. RNA quality was determined by the ratios of
A260/A280 (close to 2) and A260/A230 (close to 2), and the presence
of two distinct ribosomal bands on gel electrophoresis. Qualified RNAs
were further tested using anAgilent 2100Bioanalyzer (Agilent Technol-
ogies, Santa Clara, CA), and samples with 28S/18S RNA ratio N1 were
selected [1]. Six samples (C308, C433, C688, C696, C699, and N687)
were finally subjected to the gene microarray test, including five lung
cancer samples (C308, C433, C688, C696, C699) and one normal control
(N687). Two samples C688 and N687 were from the same patient,
others are unmatched samples. The detailed sample information is
given in Table 1.
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Table 1
Information of the six RNA samples for gene expression microarray.

Sample ID Sex Age Pathology status Histologic type

C308 Female 58 Primary cancer Adenocarcinoma, NOS
C433 Male 50 Primary cancer Large cell carcinoma, NOS
C688 Male 70 Primary cancer Adenocarcinoma
C696 Female 66 Metastatic cancer Stromal sarcoma, NOS
C699 Male 31 Metastatic cancer Synovial sarcoma, NOS
N687 Male 70 Normal Adenocarcinoma
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Gene expression microarray

200 ng of each RNA sample was processed using Affymetrix
GeneChip Whole Transcript (WT) PLUS Reagent Kit. 15 μg of cRNA
were input into the second cycle cDNA reaction. 5.5 μg of ss-cDNA
were input for fragmentation. Each DNA fragment was end labeled
with biotin using terminal deoxynucleotidyl transferase [2] before
being hybridized to the arrays. Hybridization cocktails containing
fragmented, end-labeled cDNAwere prepared and applied to GeneChip
Human Exon 1.0 ST arrays. Hybridization was performed at 60 rpm for
16 h at 45 °C using the FS450_0001 fluidics protocol. Arrays were
scanned using Affymetrix GeneChip Command Console Software
(AGCC) to produce .CEL intensity files.
Gene expression analysis

Affymetrix Expression Console was used to process the original .CEL
files using HuEx-1_0-st-v2 library file from Affymetrix. The .chp files
were generated using the RMA-sketch workflow after signal summari-
zation (Median polish) and data normalization (Sketch-Quantile
method). Genome reference consortium GRCh37 and hg19 (Feb. 2009)
were used here for analysis (genome.ucsc.edu). Gene level analysis was
Fig. 1. Volcano plots showing the distribution of gene expression fold changes and p-values.
change N2 and p-value b 0.05 (203 genes) are indicated in red, and genes with fold change b

up-regulation compared with normal control, while negative fold changes indicate down-regu
further conducted with Affymetrix Transcriptome Analysis Console 2.0
software. Both core level gene analysis and extended level gene analysis
were conducted. Core level limits analysis to exons that consist of BLAT
alignments of mRNA with annotated full-length CDS regions, while ex-
tended level also includes transcripts that are defined by exon-level
probe sets that map to cDNA alignments and their annotations based
on cDNA alignments (see Affymetrix Exon Probeset Annotations and
Transcript Cluster Groupings for detailed explanation, http://www.
affymetrix.com/support/technical/whitepapers.affx).

A total of 17,881 genes were tested at core level to compare their ex-
pression between two groups of lung cancer and normal control. 345
geneswere found to be differentially expressedwith absolute fold change
N2 and ANOVA p-value b 0.05 (one-way between-subject ANOVA (un-
paired) method) [3]. According to the algorithm of Affymetrix Tran-
scriptome Analysis Console 2.0, ANOVA was the method to apply here
for calculating the p-value (see Transcriptome Analysis Console (TAC)
2.0 user manual, page 128). Volcano plot, representing the distribution
of the fold changes and p-values of the above 17,881 genes, is shown in
Fig. 1. Furthermore, 20 genes were identified as the most significantly
deregulated genes in lung cancer when the cutoff of absolute fold change
was increased to 6. The heat map for these 20 genes is displayed in Fig. 2.
Real-time RT-qPCR validation

cDNA was generated using SuperScript® VILO™ MasterMix
(Invitrogen, Grand Island, NY) from the six same RNA extracts as used
for gene microarray. All primers required were designed using Primer
Premiere 6 software, and purchased from Integrated DNA Technologies
(IDT, Coralville, IA). The real-time RT-qPCR reactions were prepared
using SYBR® Select Master Mix (Life Technologies, Grand Island, NY),
and performed using BioRad CXF96 Real-Time PCR Detection System.
The following conditions were used: 95 °C for 2 min, 40 cycles of 95 °C
A total number of 17,811 genes in the core gene category were tested. Genes with fold
−2 and p-value b 0.05 (142 genes) are indicated in green. Positive fold changes indicate
lation.

http://www.affymetrix.com/support/technical/whitepapers.affx
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Fig. 2. Heat map showing different expression patterns of 20 top genes with ANOVA
p-value b 0.05 and absolute fold change N6 in lung cancer based on core level gene ex-
pression analysis. The heat map indicates up-regulation (red), down-regulation (green),
and mean gene expression (black). The columns represent individual tissue samples
including five lung cancer samples and one normal control. The rows are labeled with in-
dividual gene symbols. As many as 129,542 genes were analyzed at extended level, and
3411 genes were found to be differentially expressed with absolute fold change N2 and
p-value b 0.05 compared with normal control (Fig. 3). Adjustment of the absolute fold
change cutoff to 8 results in a group of 50 genes. Because the detailed information for
some of the genes is not available even using the latest Affymetrix annotation file, only
17 genes with designated gene symbols are included in the heat map in Fig. 4.

Fig. 3.Volcano plots showing the distribution of gene expression fold changes and p-values. A to
and p-value b 0.05 (900 genes) are indicated in red, and genes with fold change b−2 and p-v

Fig. 4. Heat map showing different expression patterns of 17 top genes with ANOVA
p-value b 0.05 and absolute fold change N8 in lung cancer based on extended level
gene expression analysis. The heat map indicates up-regulation (red), down-regulation
(green), and mean gene expression (black). The columns represent individual tissue
samples including five lung cancer samples and one normal control. The rows are labeled
with individual gene symbols.
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for 10 s and 60 °C for 1min. Fold change of gene expressionwas calculat-
ed with the 2−ΔΔCT method [4], using β-actin as the house keeping gene.

Three genes were selected for qPCR validation, including AGER
(advanced glycosylation end product-specific receptor), GOLM1 (Golgi
membrane protein 1), and NARS (asparaginyl-tRNA synthetase).
Consistent with reported results [5,6] and gene microarray analysis
data (Figs. 2, 4), the down-regulation of AGER in lung cancer was
tal of 129,542 genes in the extended gene categorywere tested. Geneswith fold change N2
alue b 0.05 (2511 genes) are indicated in green.



Fig. 5.Real-time RT-qPCR validation of expression levels of (A) AGER, (B) GOLM1, and (C) NARS. Fold changes of gene expressionwere calculatedwith the 2−ΔΔCTmethod, usingβ-actin as
the house keeping gene. Results are shown as mean ± SEM from triplicates (n = 3).

Table 2
Quantitative and statistical assessment of RT-qPCR validation on AGER.

Sample ID Relative expression value ± SEMa

C308 0.0744 ± 0.00833
C433 0.181 ± 0.0212
C688 0.177 ± 0.0262
C696 0.0603 ± 0.0237
C699 0.128 ± 0.0272
N687 1 ± 0.227

a Data are shown as mean ± SEM from triplicates, p-value b 0.05 vs. normal.
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validated using RT-qPCR (Fig. 5A). GOLM1 has beenwell documented as
a biomarker in prostate cancer with increased expression level [7,8]. Both
of our microarray (Fig. 2) and qPCR results (Fig. 5B) indicate that GOLM1
is also up-regulated in lung cancer. In accordancewith themicroarray re-
sults (Fig. 4), NARS, one member of the aminoacyl tRNA synthetase fam-
ily, was also confirmed up-regulated using RT-qPCR (Fig. 5C), suggesting
its potential role as a novel biomarker in lung cancer. The role of NARS in
lung cancer has not been reported, although there is now accumulating
evidence supporting the functions of aminoacyl tRNA synthetases in can-
cer etiology [9,10]. Quantitative and statistical data of RT-qPCR valida-
tion are demonstrated in Table 2 using AGER as an example to assess
the quality of RT-qPCR experiments.

Conclusion

The identification of novel prognostic and predictive biomarkers in
lung cancer is of great significance [11]. Herein we described the study
of gene regulation patterns for lung cancer using Affymetrix Human
Exon 1.0 ST Array, which led to the discovery of several significantly
deregulated genes.
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