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Abstract

Endocycles are variant cell cycles comprised of DNA Synthesis (S)- and Gap (G)- phases but 

lacking mitosis1,2. Such cycles facilitate post-mitotic growth in many invertebrate and plant cells, 

and are so ubiquitous that they may account for up to half the world’s biomass3,4. DNA replication 

in endocycling Drosophila cells is triggered by Cyclin E/Cyclin Dependent Kinase 2 (CycE/

Cdk2), but this kinase must be inactivated during each G-phase to allow the assembly of pre-

Replication Complexes (preRCs) for the next S-phase5,6. How CycE/Cdk2 is periodically silenced 

to allow re-replication has not been established. Here, using genetic tests in parallel with 

computational modeling, we show that Drosophila’s endocycles are driven by a molecular 

oscillator in which the E2F1 transcription factor promotes CycE expression and S-phase initiation, 

S-phase then activates the CRL4Cdt2 ubiquitin ligase, and this in turn mediates the destruction of 

E2F17. We propose that it is the transient loss of E2F1 during S-phases that creates the window of 

low Cdk activity required for preRC formation. In support of this model over-expressed E2F1 

accelerated endocycling, whereas a stabilized variant of E2F1 blocked endocycling by de-
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regulating target genes including CycE, as well as Cdk1 and mitotic Cyclins. Moreover, we find 

that altering cell growth by changing nutrition or TOR signaling impacts E2F1 translation, thereby 

making endocycle progression growth-dependent. Many of the regulatory interactions essential to 

this novel cell cycle oscillator are conserved in animals and plants1,2,8, suggesting that elements of 

this mechanism act in most growth-dependent cell cycles.

S-phase control in proliferating animal cells depends upon the E3 ubiquitin ligase, 

APCFzy/Cdc20, which is activated by Cyclin/Cdk1 during mitosis. APCFzy/Cdc20 promotes the 

degradation of mitotic Cyclins, thereby extinguishing Cdk1 activity following mitosis, and it 

also promotes the degradation of Geminin (Gem), an inhibitor of the preRC component 

Cdt1. The combination of low Geminin and low Cyclin/Cdk1 activity during early G1 

allows the assembly of preRCs containing origin recognition complex (ORC) proteins, 

Cdc6, Cdt1/Double-parked (Dup), and MCM2-7 onto replication origins, thus “licensing” 

the DNA for renewed replication9. Drosophila’s endocycling cells do not express mitotic 

Cyclin/Cdk1 complexes or APCFzy/Cdc20 10,11, and so this mechanism of S-phase regulation 

cannot apply to them. These endocycles do however employ CycE/Cdk2 to trigger S-

phases12,13 (Fig 1, 2), and they also require the G1-specific APC variant, APCFzr/Cdh1, 

which mediates cyclic degradation of cell cycle factors including Geminin and Orc110,14. 

Importantly, while over-expressed CycE/Cdk2 is tolerated in mitotic cell cycles15, it blocks 

endocycling (Fig 2, 3)5,6. This is likely due to CycE/Cdk2’s ability to suppress APCFzr/Cdh1 

and drive Geminin accumulation10,14,16, though CycE may also inhibit preRC formation 

directly by phosphorylating preRC components. The importance of CycE oscillation for 

endocycling is underscored by the finding that Archipelago (Ago/Cdc4/Fbw7), which 

promotes CycE degradation as a component of an SCF ubiquitin ligase, is required for the 

progression of endocycles, but not mitotic cycles (Fig S1)17. Despite its importance the 

mechanism controlling CycE/Cdk2 periodicity in the endocycle has remained obscure for 

over a decade.

We addressed this problem in Drosophila’s larval salivary glands, which undergo ~10 

asynchronous endocycles from ~7–96 hours after egg deposition (h AED), reaching a final 

ploidy of ~1350C18. Studies in the fly ovary had suggested that the CycE/Cdk2 inhibitor 

dacapo (dap) might periodically silence Cdk2 during endocycling19, but our analysis ruled 

this out for salivary glands (Fig S2)10. Hence we asked whether cyclic CycE/Cdk2 activity 

might be controlled transcriptionally. CycE transcription is regulated by the E2F1 

transcription factor20–22, the accumulation of which is periodic in mitotic Drosophila 

cells7,23–25 because it is targeted for degradation during S-phase by the PCNA/replication 

fork-associated E3 ubiquitin ligase CRL4Cdt2 7. In the salivary cells, E2f1 mRNA was 

ubiquitous (Fig 1c) but E2F1 protein was cyclic, being virtually absent in S-phase nuclei 

(Fig 1d, 2a). Continuously over-expressed E2F1 proteins were also depleted from S-phase 

nuclei (Fig 2c, 3c), consistent with periodic degradation. This implied that E2F-dependent 

transcription might also oscillate. Indeed, the mRNAs encoding CycE and two other E2F 

targets, RnrS and pcna were periodic (Fig 1, 3, S15, see also13). These mRNAs accumulated 

when E2F1 was over-expressed (Fig 3a) and were reduced in mutants for Dp, E2F1’s 

obligate dimerization partner (Fig S15). Thus periodic CycE expression is likely due to 

periodic activity of its regulator, E2F. CycE protein was also cyclic, being present during a 
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bit of each Gap phase and much of each S-phase (Fig 1e)13,26. Based on these and other 

results10 we determined that E2F1 accumulates during G-phases and is destroyed upon entry 

into S-phase, whereas its target CycE rises late in G-phases and persists through most of 

each S-phase.

These observations suggested that endocycles run using a molecular oscillator in which 

E2F1 promotes CycE transcription, and then CycE/Cdk2 triggers S-phase and the 

consequent destruction of E2F1 to reset the cycle (Fig 1g). To evaluate this hypothesis we 

built a computational model that translated known regulatory interactions into a system of 

delay differential equations describing the concentrations of E2F1, RBF, CycE, Geminin, 

and Cdt1/Dup, and the activities of APCFzr/Cdh1 and CRL4Cdt2 (Fig 1g, Supplementary 

Methods, Fig S4, S5). In this model, when CycE was low Gem was degraded by 

APCFzr/Cdh1, allowing preRC licensing through Cdt1/Dup. High CycE suppressed 

APCFzr/Cdh1 activity and allowed Gem accumulation, and also triggered phosphorylation of 

RBF, S-phase initiation, activation of CRL4Cdt2 and the subsequent degradation of E2F1 

and Cdt1/Dup. The model’s behavior depended on unmeasured parameters representing 

biochemical kinetics (Table S1), but Monte-Carlo searches found numerous parameters sets 

that simulated actual endocycles (Fig 1h, i). The model robustly produced oscillations of its 

components despite quantitative parameter variation (Fig S6–9) and did not require 

exquisitely tuned kinetics to reproduce oscillations like those observed in vivo 

(Supplementary Discussion).

We tested the computational model by challenging it to reproduce the results of genetic 

experiments performed in parallel. The model reproduced nearly all observed mutant and 

gene over-expression phenotypes (Fig 2, S10). Notably, it predicted that increasing E2F1 

should accelerate endocycling and lead to hyper-polyploidy, as subsequently observed 

experimentally (Fig 2, 3, S11). As predicted, we observed increased relative DNA amounts 

in E2f1+/+ cells generated in an E2f1+/− background, and found that E2f17172 homozygous 

null mutant cells supported essentially no endocycling (Fig 2b, S13). Thus both loss- and 

gain-of-function experiments indicated that E2F1 is an essential dose-dependent regulator of 

endocycle progression.

An important prediction of the computational model was that periodic E2F1 destruction 

should be essential for endocycling. Drosophila E2F1 is targeted for proteolysis during S-

phase via a conserved motif, the PIP box, which binds the replication fork-associated 

protein, PCNA, and mediates interaction with the CRL4Cdt2 ubiquitin ligase7. Consistent 

with model predictions, a stabilized but active form of E2F1 lacking the PIP box (GFP-

E2F1PIP3A)7 blocked endocycle progression (Fig 2, 3, S11). Likewise RNAi against Cul4, a 

CRL4Cdt2 component, arrested endocycling (Fig 2b, S11, S12). Levels of E2F1 in cells 

arrested by GFP-E2F1PIP3A were not higher than in control GFP-E2F1-expressing cells that 

cycled, suggesting that this arrest was due to inappropriately timed expression of E2F1 

rather than its excessive accumulation (Fig 3h, S11). Hence S-phase dependent degradation 

of E2F1 is essential for endocycling.

One discrepancy between the data and our model was that whereas the model could not 

readily predict endocycling without E2F (Fig S10), Dp and E2f1 E2f2 mutants support 
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endocycling21,22,26. Our analysis showed that although Dp protein was barely detectable in 

Dp mutant glands (Fig S15) cells in these mutants nevertheless endocycled slowly and 

sustained periodic expression of CycE and RnrS, and Geminin oscillation (Fig 2b, S14, S15). 

One explanation for these apparently discrepant observations is that residual maternal E2F 

activity persists in these mutants. Consistent with this possibility we found that GFP-

E2F1PIP3A was able to block endocycling in Dp mutants (Fig S16). Given this observation, 

the Dp mutant phenotype cannot be construed as confounding the model (see Supplementary 

Discussion).

We next asked how stabilized E2F1 arrests endocycling. Consistent with model predictions, 

cells arrested by GFP-E2F1PIP3A or Cul4-RNAi accumulated CycE and Geminin (Fig 3). In 

these arrested cells, however, Geminin accumulation occurred following rather than prior to 

arrest (Fig S12), indicating that it did not initiate the arrest. Interestingly, gem null mutant 

glands supported rather normal endocycles (Fig S17), but arrest by Rca110,14, an 

APCFzr/Cdh1 inhibitor, was substantially rescued in the gem mutants (Fig 3e, S18). This 

demonstrates that the predominant function of APCFzr/Cdh1 in these endocycles is the 

degradation of Geminin. Importantly, gem mutant cells could be arrested by ectopic 

CycE10,14 or E2F1PIP3A (Fig 3e, S18, S19). We conclude that while Geminin accumulation 

might consolidate the arrest caused by excess E2F1, it is neither initiating nor essential for 

this arrest.

Further investigations revealed that Cyclin A, Cyclin B3 and Cdk1 accumulated in 

E2F1PIP3A-arrested cells (Fig 3i, S20). These G2/M regulators are not normally expressed in 

endocycling cells8,10. Large inductions of the mRNAs encoding these factors were observed 

(Fig 3h), suggesting transcriptional de-repression. Consistent with this notion these factors 

were also induced in cells mutant for E2f2, Drosophila’s repressor E2F (Fig 3i, j). This 

suggests that, as in mitotic cells27, excess E2F1 may displace E2F2 and thereby de-repress 

its targets. In this context E2F2 appears to act as a selectivity factor that represses mitotic 

targets in endoreplicating cells. Given that Cdk1 is a potent suppressor of PreRCs that can 

arrest endocycle progression6, its derepression probably contributed to endocycle arrest by 

E2F1PIP3A.

Altogether our results indicate that periodic E2F1 degradation is necessary for endocycling 

for three reasons: 1) it creates a window of low CycE/Cdk2 activity; 2) it promotes high 

APCFzr/Cdh1 activity and thereby suppresses Geminin accumulation; and 3) it allows E2F2 

to maintain repression of Cdk1 and its Cyclins. Each of these conditions is required for 

preRC assembly and endocycle progression. This cell cycle mechanism (Fig 1g, S4) is 

fundamentally different from that used in mitotic cycles, wherein destruction of the M-phase 

Cyclins by APCCdc20/Fzy, rather than of E2F1 by the CRL4Cdt2, throws the switch that 

allows preRC assembly9. Indeed it is noteworthy that the periodic degradation of E2F1 and 

depletion of CycE are not required for mitotic cell cycles in Drosophila7,12. CRL4Cdt2 is 

required for endocycling in plants8, suggesting that this element of the endocycle oscillator 

is conserved.

Finally, we asked what factors control E2F production to regulate endocycle rates. 

Endocycle speed and number can be manipulated by altering cell growth through changes in 
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dietary protein28 or growth-regulatory genes including dMyc1 and Insulin/PI3K/TOR 

signaling components29. Hence we starved larvae of protein to suppress insulin/TOR 

signaling, reduce protein synthesis, and block cell growth. Starvation arrested the salivary 

endocycles within 24h and strongly depleted E2F1 (Fig 4a,b). E2f1 and Dp mRNA levels 

were not affected, but the E2F targets CycE, pcna, and rnrS were reduced (Fig 4c, not 

shown). To test whether this was responsible for starvation-induced endocycle arrest we 

overexpressed E2F1 in the salivary glands of starved animals. Although these glands failed 

to grow their nuclei incorporated BrdU and accrued ~7-fold more DNA than controls (Fig 

4a). Over-expression of Rheb, which activates the Target of Rapamycin (TOR) kinase and 

increases ribosome biogenesis and cap-dependent translation, also restored cell growth, 

E2F1 protein, and endocycle progression in starved animals (Fig 4a). Thus E2F1 appears to 

act as a “growth sensor” that couples rates of endocycle progression to rates of cell growth. 

A likely mechanism for this, corroborated by modeling (Fig 4e, S8), involves increased 

translation of E2F1 in rapidly growing cells. Indeed, we found that the association of E2F1 

mRNA with polyribosomes was greatly reduced in protein-starved animals (Fig 4d). 

Translational control of E2F is an attractive mechanism for coupling growth to G1/S 

progression not only in endocycling cells, but also in growth-dependent mitotic cells with 

extended G1 periods.

METHODS SUMMARY

Larvae were raised at 25°C in uncrowded conditions, and salivary glands dissected and 

analyzed using standard Drosophila genetics and molecular biology methods. DNA 

quantifications were done using DAPI fluorescence from CCD images. Computational 

modeling used delay differential equations tracking the concentrations of mRNAs and 

proteins, and numerically solved in Mathematica 5.2 (Wolfram Research). Full descriptions 

of experimental and computational methods, genotypes, and reagents is included in the 

Online Methods section and Supplementary Information.

METHODS

Genetics

To express genes in salivary glands ptc-Gal4, 43B-Gal4 or hey-Gal4 females were crossed 

to males carrying UAS transgenes. E2f17172/ E2f17172 mutant salivary gland cells were 

generated by heat shocking hs-Flp; FRT82B E2f17172/FRT82B ub-GPF-nls embryos to 

37°C from 2–4h AED. Cdk2 mutant glands were generated using the genotype: F4-Gal4 

UAS-GFP/+; Cdk2FRT Cdk23/Cdk22 or F4-Gal4 UAS-GFP/UAS-Flp; Cdk2FRT Cdk23/

Cdk22, where Cdk2FRT is a transgene encoding an Flp-excisable Cdk2.

Mutants:

w; FRT80B, ago1/TM6B30

y,w, hs-FLP1.22; FRT80B P[mini-w], P[ubi-GFP]/TM6B

dap4/CyO, act-GFP31

dapg36/CyO, act-GFP32
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w; Dpa1 /CyO, act-GFP21

w; Dpa2 /CyO, act-GFP21

w; FRT42D, Dpa3 /CyO, act-GFP21,33

w; Df(2R)Exel7124 /CyO(act-GFP) (Bloomington Drosophila Stock Center #7872)

w; FRT80B, e2f17172/TM6B (e2f17172 is described in 34)

w; e2f276Q1, cn, bw/CyO, act-GFP27

w; FRT40A, e2f2C03344, dpov/CyO, act-GFP (Gift from Maxim Frolov, University of 

Illinois, Chicago/USA)

w; gemininl(2)k14019,c, px, sp/CyO, act-GFP35

w; gemininl(2)k02302,c, px, sp/CyO, act-GFP35

w; DF(2R)ST1, Adhn5, pr1, cn*/ CyO, act-GFP35

For mutants, we used the strongest alleles available, which in most cases are null alleles. 

Details on mutant lesions can be found in the cited papers and FlyBase (http://flybase.org/).

Transgenes:

ptc-Gal436

43B-Gal45

hey-Gal4, Pin/CyO (Gift from Amir Orian, Rappaport Institute, Israel)

UASt-Cul4-RNAi (VDRC #44829)

UASt-CycE31

UASt-CycE-RNAi (Nig-Fly #3938R-3)

UASt-Dap31

UASp-GFP-E2F17

UASp-GFP-E2F1-PIP3A7

UASt-E2F115

UASt-Rbf137

UASt-Rheb38

UASt-HA-Rca139

Starvation

At 48h or 72h AED larvae were washed with PBS and transferred to PBS+20% sucrose at 

25°C, and maintained on this media until 96h or 120h AED, respectively.
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DNA quantification

DNA content in nuclei or whole salivary glands was quantified by DAPI fluorescence. 

Larvae were raised at 25°C to 96h AED, and fixed glands were dissected and stained, using 

an internal control (ptc-Gal4 UAS-GFPnls) for each sample. Samples were imaged at 10x 

with a CCD camera (Spot RT or Roper HQ2). Average cytoplasmic intensity was 

subtracted, and the integrated DAPI intensity was used to measure DNA content for whole 

glands (Fig 2) or nuclei (Fig 3). All salivary glands had ~the same number of cells (<10% 

variability). Controls were set to 1350C according to18.

Quantification of nuclear concentrations

Nuclear BrdU, Cyclin E, E2F1, and GFP-E2F1 concentrations as shown in Fig 1(D-F), S3, 

and S11 were measured from samples stained with DAPI and the indicated antibodies and 

imaged by confocal microscopy at 20X. We took image stacks (interval size = 0.65μm; 

optimal overlap under our conditions) with optimized imaging conditions such that the 

deviation from linearity was <10%. To measure average nuclear concentrations of E2F1 and 

CycE, we used ImageJ (NIH) and custom software that searched for nuclei by finding 

ellipsoidal regions that stained brightly for DNA and had the approximate diameter of a 

nucleus. About half of all nuclei visually overlapped with their neighbors and were not 

analyzed. To reproducibly set the boundaries for each nucleus, we restricted our analysis to 

optical sections in which the average nuclear DNA staining was >90% maximal (typically 

2–5 sections). Mean intensity in these regions was measured in other channels to determine 

nuclear concentrations.

BrdU labeling

Embryos were collected on grape-juice/agar plates for 2h and transferred to regular fly-food 

24h after egg deposition. At the indicated time points salivary glands were dissected in 

Drosophila Ringer’s Solution and incubated for 1h at room temperature with 100μg/ml 

BrdU in Ringer’s Solution. Afterwards, the samples were fixed for 30min in 4% 

Paraformaldehyde/PBS and subsequently treated for 30min with 2N HCl. BrdU 

incorporation was detected with a mouse anti-BrdU antibody (Becton Dickinson) diluted 

1:20 in 4% NGS/PBS/0.3% Triton-X100 and goat anti-mouse-Alexa Fluor-568 (Invitrogen) 

as secondary antibody diluted 1:2000 in 4% NGS/PBS/0.3% Triton-X100.

EdU labeling

EdU incorporation was performed analogous to the procedure for BrdU labeling using the 

Click-It EdU Alexa Fluor-555 imaging kit from Invitrogen.

In situ hybridization

Probes for in situ hybridization were generated with the DIG RNA labeling system (Roche). 

For in vitro transcription with T7/T3 RNA polymerase the following plasmids were used as 

template: pT7T3-19U-CycE40; pBLu(2)SKM-RnrS41; pBluSKP-E2F142. Salivary glands 

were dissected from larvae staged to the indicated time points. Small batches of about 30 

larvae were fixed overnight in 8% formaldehyde/PBS, pooled in scintillation vials and 

stored until usage in ethanol at −80°C. The hybridization procedure was performed 

Zielke et al. Page 7

Nature. Author manuscript; available in PMC 2012 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



according to the protocol developed by the Bier-Lab43. For detection samples were probed 

with the following antibodies: sheep-anti-DIG-AP (1:500, Roche) or mouse anti-DIG-HRP 

(1:500, Abcam). BCIP/NBT was used as substrate for the AP reaction according to Tautz & 

Pfeifle44, while the TSA Alexa Fluor-568 Detection Kit (Invitrogen) was used in 

combination with HRP.

qRT-PCR

At the indicated time points about 50 salivary glands per genotype were dissected in 

Drosophila Ringer’s Solution and immediately transferred to the lysis-buffer supplied with 

the RNAeasy mini kit (Qiagen). Samples were stored at −80°C and then processed with the 

RNAeasy mini kit (Qiagen) according the manufacturers instructions including the optional 

on-column DNAseI digestion. 100ng of total RNA were used for cDNA synthesis with the 

Quantitect Reverse Transcription Kit (Qiagen) or the iScript cDNA synthesis kit (Bio-Rad). 

qRT-PCR data shown in Figure 3 I-K was acquired on a Light Cycler 480 (Roche) using the 

indicated UPL assays (Roche) and Light Cycler 480 Probes Master (Roche). Relative 

expression data presented in Figure 4C was acquired on an iQ5 Instrument (Biorad) using 

QuantiTect Primer Assays (Qiagen) and the iScript one-step RT-PCR SYBR green kit (Bio- 

Rad). To ensure statistical significance qRT-PCR was performed in quadruplicates from 3–4 

independent samples. Relative expression to GAPDH1 and Actin5c was determined with the 

ΔΔCT method:

Polysome profiling

Whole larvae were lysed in ice-cold polysome lysis buffer (25mM Tris pH6.8, 10mM 

MgCl2, 25mM NaCl, 1% Triton-X 100, 0.5% Sodium Deoxycholate, 0.5uM DTT 1ug/ml 

Cycloheximide, 10ug/ml Heparin, Protease Inhibitor Cocktail (Complete mini, Roche), 2.5 

uM PMSF, 5mM Sodium Fluoride, 1mM Sodiumorthovanadate, RNase inhibitor (Ribolock, 

- Fermentas) using a Dounce Homogenizer. Lysates were then cleared by centrifugation 

(15,000 rpm, 15 mins, 4C). Equal optical density units (260nM) of cleared lysates were then 

layered on 15–45% sucrose gradient (prepared in polysome lysis buffer) and centrifuged 

(37,000 rpm, 2.5 hrs, 4C) in an SW41 Beckman rotor. The gradients were then fractionated 

using a Brandel BR188 Density Gradient fractionator with continuous OD (254nm) reading 

and collected into twelve equal fractions. The RNA from each fraction was extracted with 

Trizol reagent and reversed transcribed using Superscript II (Invitrogen) according to the 

manufacturers instructions. Quantitative real-time PCR was then performed as described 

in 45 using a MyIQ PCR machine (BioRad).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Wildtype salivary gland endocycles
a-c) In situ hybridization of WT 72h AED glands to the indicated mRNAs. d-f) WT salivary 

glands at 72h AED double-labeled for: d) E2F1 (green) and BrdU (red); e) CycE (red) and 

BrdU (green); f) CycE (red) and E2F1 (green). Graphs show nuclear concentrations 

measured from micrographs of 2–3 glands, in which each dot represents one nucleus. 

Shaded region (blue) shows trajectory of E2F1/CycE oscillations with an arrow indicating 

the expected temporal progression. g) Simplified schematic of the computational model. See 
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Fig S4. h) Time plot for WT predicted by the model. i) Nuclear concentrations predicted by 

the model; arrow represents temporal progression.

Zielke et al. Page 13

Nature. Author manuscript; available in PMC 2012 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Genetic tests of the endocycle mechanism
a) Salivary glands (centered) and associated fat body (above or below; FB) from 72h AED 

larvae expressing the indicated genes under ptc-Gal4/UAS control. ptc-Gal4 expresses in 

salivary glands but not in fat body. Left column shows DNA (blue) and BrdU (red) 

incorporated from 71–72h AED. Middle column shows E2F1 (green). Right column shows 

E2F1 and BrdU. All images had identical exposures and magnifications. Graphs (right) 

show simulated time plots of E2F1 (green) CycE (red) protein levels and CRL4Cdt2 (Cul4-

E3) activity (blue) for each genotype. See Table S1 for parameters. b) Nuclear DNA values 
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from 96h AED glands. For each genotype about 40 nuclei from 6–20 salivary glands were 

analyzed. Error bars represent standard deviations. ptc-Gal4 drove expression of the UAS-

linked transgenes indicated with a “+”. Dp −/− : Dpa2/Df(2R)Exel7124 mutant. E2f1−/− : 

E2f17172 mutant cells generated by mitotic recombination. cdk2−/− mutant glands were 

generated as described in methods. c) Salivary glands expressing wild-type GFP-E2F1 

(above) or GFP-E2F1PIP3A (below). Layout as in a.
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Figure 3. Endocycle arrest by stabilized E2F1
a-d) Expression of WT GFP-E2F1 with ptc-Gal4 promoted endocycling with cyclic cycE 

(a) and Gem (c), whereas GFP-E2FPIP3A caused endocycle arrest with uniform cycE (b) and 

Gem (d) expression. e) C-values per nucleus for the indicated genotypes and timepoints. For 

each genotype about 40 nuclei from 10–20 salivary glands were analyzed. Error bars 

represent standard deviations. f-g) CycA expression in WT (f) and glands expressing WT 

GFP-E2F1 (f) or GFP-E2FPIP3A (g). Arrowhead (f) indicates diploid imaginal ring cells. h) 
qRT-PCR measurements of the indicated mRNAs, from 72h AED salivary glands 

expressing GFP-E2F1 (green) or GFP-E2F1PIP3A (red). i) CycA and Cdk1 accumulation in 

E2f2 mutant cells, generated by MARCM mitotic recombination. GFP in i marks mutant 

cells (outlined). Cdk1 in i’’’ was detected using anti-PSTAIRE antibody. j) qRT-PCR 

measurements of the indicated mRNAs, from E2f2 mutant glands at the indicated 
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timepoints. Log10(Ratio)s for h and j are relative to WT controls. Error bars represent 

standard deviations derived from 3–4 biological replicates.
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Figure 4. E2F1 is a growth sensor
a) Salivary glands labeled for DNA (blue), E2F1 (green), and incorporated BrdU (red). Fed 

Control (WT) was labeled with BrdU at 48h and fixed at 49h. “Starved” animals were 

transferred to protein-free media at 48h AED, labeled with BrdU at 96h, and fixed at 97h 

AED. ptc-Gal4 drove expression of UAS-E2F1/DP or UAS-Rheb in the lower two panels. 

Chromatin (C) values are average nuclear DNA values from 10 glands measured at 120h 

AED. b) Immunoblot of salivary glands as in a, with quantitation, normalized to tubulin, 

below. c) mRNA levels from starved and fed control glands, measured by qRT-PCR. d) 
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mRNA levels from 3d protein-starved (black) or fed control (red) whole larvae, quantified 

from polysome gradient fractions by qRT-PCR. X axis indicates gradient fraction number. 

e) Computational simulation of starvation by reducing total protein synthesis (tn). In the 

“20% tn +E2F1” graph, translation of E2F1 was 100% of normal but translation of all other 

proteins was reduced to 20%. Graphed values (b, c) include standard deviations calculated 

from 3 independent biological samples.
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