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Abstract

Identifying copy number variants (CNVs) can provide diagnoses to patients and provide

important biological insights into human health and disease. Current exome and targeted

sequencing approaches cannot detect clinically and biologically-relevant CNVs outside their

target area. We present SavvyCNV, a tool which uses off-target read data from exome and

targeted sequencing data to call germline CNVs genome-wide. Up to 70% of sequencing

reads from exome and targeted sequencing fall outside the targeted regions. We have

developed a new tool, SavvyCNV, to exploit this ‘free data’ to call CNVs across the genome.

We benchmarked SavvyCNV against five state-of-the-art CNV callers using truth sets gen-

erated from genome sequencing data and Multiplex Ligation-dependent Probe Amplification

assays. SavvyCNV called CNVs with high precision and recall, outperforming the five other

tools at calling CNVs genome-wide, using off-target or on-target reads from targeted panel

and exome sequencing. We then applied SavvyCNV to clinical samples sequenced using a

targeted panel and were able to call previously undetected clinically-relevant CNVs,

highlighting the utility of this tool within the diagnostic setting. SavvyCNV outperforms exist-

ing tools for calling CNVs from off-target reads. It can call CNVs genome-wide from targeted

panel and exome data, increasing the utility and diagnostic yield of these tests. SavvyCNV

is freely available at https://github.com/rdemolgen/SavvySuite.

Author summary

We have created SavvyCNV, a new tool for calling genetic variants. Large regions of the

genome can be deleted or duplicated–these variants can have important consequences, for

example causing a patient’s genetic disease. However, many standard genetic tests only

target a small fraction of the genome and will miss variants outside of these regions.

Therefore, we developed a tool to exploit sequencing data which falls outside of these

regions (due to flaws in the targeting process) to call large deletions and duplications. This

allows large deletions and duplications to be detected anywhere in the genome. Research-

ers and diagnostic laboratories can use this tool to discover more genetic variants by re-

analysing their sequencing data.
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This is a PLOS Computational Biology Software paper.

Introduction

Copy number variants (CNVs) are an important class of genetic variant. They can cause

monogenic disease [1,2], are associated with polygenic traits [3] and may exert pharmacoge-

netic effects [4]. CNVs are structural rearrangements where bases are gained (duplication) or

lost (deletion) from the genome causing an altered copy number compared to the reference.

The importance of CNVs is highlighted by the role they play in many diseases, including

cancers [5], autism [6], developmental disorders [7], and heart disease [8]. Single or partial

gene deletions can cause disease where haploinsufficiency would result in the disease pheno-

type. For example, both single nucleotide variants and whole gene deletions of PKD1 cause

polycystic kidney disease [1]. Duplications can also cause disease as a result of gene disruption

at the site of insertion or through increased gene expression. For example, paternal duplication

of the chromosome 6q24 region causes neonatal diabetes by overexpression of the imprinted

gene PLAGL1 [2,9]. Larger CNVs are likely to cause syndromic disease as they affect multiple

genes. An extreme case is Down syndrome where duplication of chromosome 21 results in

characteristic facial features and intellectual disability [10].

CNVs can be detected by a range of methods. In the clinical setting DNA microarrays are

routinely used to detect larger rearrangements whilst multiplex ligation-dependent probe

amplification (MLPA) is often used to detect single or partial gene CNVs [11]. With next gen-

eration sequencing (NGS) increasingly employed to investigate genetic variation, the detection

of CNVs from NGS data has become increasingly important. While genome sequencing is the

optimal method to capture all sequence variation across the genome, due to speed and cost

exome sequencing and targeted NGS panels are still the most commonly used testing methods,

particularly as a first line test in clinical diagnostic laboratories.

Many methods have been published to call CNVs from exome and targeted gene panel data

[12]. These are designed to detect CNVs within the genes which are targeted by the assay, how-

ever biologically interesting and disease causing CNVs will often fall outside of the targeted

regions. Even where existing methods are able to identify that a particular gene is deleted/

duplicated, they will not necessarily be able to map the extent of the CNV, as the breakpoints

will often be located outside the targeted regions.

Current approaches to gene targeting for NGS are imperfect. Samuels et al reported that

between 40% and 60% of sequence reads generated map outside the target regions [13]. This

in effect produces ultra-low depth whole genome sequence data. While there is insufficient

information (<1X coverage) to call single nucleotide variants over the untargeted region, this

‘off-target’ data can be exploited to call large CNVs. The very low average read depth across

the off-target regions is also why split reads (where reads map to either side of a breakpoint)

cannot be used to detect CNVs. Instead they must be detected using read depth changes over a

wide area. The ability to use off-target reads to call CNVs across the genome increases the diag-

nostic utility of targeted next-generation sequencing panels and also allows for more accurate

mapping of CNVs where breakpoints fall outside of the targeted regions. Previous tools have

been designed to detect CNVs in off-target reads from exome data [14] and large targeted pan-

els [15,16]. As such sequencing panels target a larger region of the genome they require a large

amount of sequencing and thus produce a relatively large number of off-target reads. However,

no tool has been designed to call CNVs using off-target reads from small targeted panels

(<100 genes targeted).
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We have developed a new tool, SavvyCNV, for calling germline CNVs from off-target

reads. It is able to call off-target CNVs from small targeted panels as well as having improved

performance on exome data compared to previous tools. We benchmarked the utility of Sav-

vyCNV by comparing it to the current tools for calling CNVs in off-target regions in both tar-

geted sequencing and whole exome sequencing (using a truth set derived from genome

sequencing), and in on-target regions (using a truth set derived from MPLA). We then used

SavvyCNV in a patient cohort tested with a small targeted gene panel (75 genes) to perform a

genome-wide analysis to detect CNVs of clinical relevance.

Results

How much off-target read data is there?

For our small targeted panel [17] of 75 genes, 3.4 (SD 1.6) million reads are sequenced on aver-

age per sample. 55% (SD 10%) of these map to off-target regions of the genome. This gives a

mean read depth in off-target regions of 0.065 (SD 0.044). In the exome samples that we used

as a benchmarking data set there are an average of 76 (SD 20) million reads per sample with

20.3% (SD 6.6%) off-target, equating to mean read depth of 0.52 (SD 0.20) in off-target regions.

This compares to a typical genome sequencing experiment where sufficient reads are

sequenced to give >30X mean coverage across the genome.

SavvyCNV can call off-target CNVs from targeted panels

To evaluate SavvyCNV’s ability to call off-target CNVs accurately from targeted panel data we

benchmarked its performance against a truth set of deletions and duplications generated using

genome sequencing of the same samples (see Materials and Methods) and compared it to five

other tools for calling CNVs: GATK gCNV [18], DeCON [19], EXCAVATOR2 [14], CNVkit

[15], and CopywriteR [16]. To prevent bias due to software configuration tuning, we ran all six

tools with multiple configurations, and plotted the best results for each tool on a precision-

recall graph (Fig 1). The best recall (sensitivity) where precision is at least 50% is shown in

Table A in S1 Text.

All tools called all of the CNVs larger than 5Mb (although not necessarily with precision of

at least 50%), however only SavvyCNV did so without any false positive calls. All CNVs larger

than 1Mb were called by SavvyCNV, GATK gCNV, and DeCON (all with precision less than

50%), although SavvyCNV called the most (97.6%) at a precision of at least 50% (as in Table A

in S1 Text). For CNVs of any size, SavvyCNV had the highest recall (25.5%) with precision of

at least 50%. For all three CNV size categories, SavvyCNV had the greatest detection power.

SavvyCNV can call CNVs that are larger than 1Mb from off-target reads from a targeted panel

with good recall (97.6%) and precision (78.8%).

Of the 68 CNVs detected by SavvyCNV (all sizes, precision at least 50%), 17 overlapped

with targeted regions. This shows that while the increased read depth across a targeted region

is used by SavvyCNV to help detect CNVs, most of the CNV detections are truly in off-target

regions. Off-target calling is also able to map the boundaries of on-target CNVs where they

extend outside of the targeted regions (see Fig A in S1 Text for an example of this).

We analysed the accuracy of the locations of the boundaries of the CNVs as detected by all

six tools. SavvyCNV, GATK gCNV, and DeCON all had a similar accuracy, which scaled pro-

portionately to the analysis bin size. With a bin size of 200kbp, all three tools found the CNV

boundaries with a mean absolute error in location of 90kbp. Excavator2, CopywriteR, and

CnvKit had higher location errors of 200kbp, 400kbp, and 600kbp respectively, although they

detected very few CNVs and the results may not be reliable.
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We conducted a sensitivity analysis where an alternative CNV caller was used to call the

truthset from the genome sequencing data and results were similar (see Fig B in S1 Text).

SavvyCNV can call on-target CNVs from targeted panels

To evaluate the performance of SavvyCNV at calling CNVs from on-target data we used the

ICR96 validation series [20] and compared its performance to GATK gCNV, DeCON, and

CNVkit. ICR96 is a set of 96 samples sequenced using a small targeted sequencing panel (Tru-

Sight Cancer Panel v2, 100 genes), with exon CNVs detected independently using MLPA (25

single-exon CNVs, 43 multi-exon CNVs, and 1752 normal copy number genes). SavvyCNV

had the highest recall (for precision > = 50%) though GATK gCNV and DeCON also per-

formed well—these 3 tools had a recall >95% (Table B in S1 Text). Precision can only be com-

pared between tools if recall is identical. To give an example, GATK gCNV achieves its highest

Fig 1. Benchmarking off-target CNV calling from targeted panel data. The data points on the plot are generated by a parameter

sweep for each tool and show the precision and recall that can be achieved with each tool. The f statistic is the harmonic mean of

precision and recall (see Materials and Methods for details).

https://doi.org/10.1371/journal.pcbi.1009940.g001
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recall of 97.1% with 85.7% precision, at the same level of recall SavvyCNV has a precision of

93.0% (this is shown in Fig 2). DeCON was the next-best performing tool after SavvyCNV and

GATK gCNV while CnvKit did not call the majority of CNVs. Excavator2 did not run on this

data set, and CopywriteR does not call on-target CNVs by design. Fig 2 shows the recall and

precision of the four tools. SavvyCNV was the only tool capable of detecting all the CNVs

although only with a precision of 29.1%.

Two of the CNVs within the ICR96 dataset cover less than a complete exon and have one

breakpoint within the targeted region. These two CNVs are the hardest to detect by read-

depth methods, as the read depth is only altered over a fraction of the exon area. Both CNVs

are detected only by SavvyCNV, even when the highest sensitivity settings are used with the

other CNV callers. If a structural variant caller is used to search for targeted breakpoints, then

7 of the 68 CNVs can be found in this data set. Adding a structural variant caller to the analysis

Fig 2. Benchmarking on-target CNV calling from targeted panel data. The data points on the plot are generated by a parameter

sweep for each tool and show the precision and recall that can be achieved with each tool. The f statistic is the harmonic mean of

precision and recall (see Materials and Methods for details).

https://doi.org/10.1371/journal.pcbi.1009940.g002
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therefore increases the power to detect CNVs, even on targeted sequencing data. Of the

remaining 61 CNVs, only SavvyCNV is capable of detecting them all (precision 59.2%)

(Table B in S1 Text).

Multi-exon CNVs are easier to detect than single-exon CNVs. SavvyCNV, GATK gCNV,

and DeCON can detect all 43 multi-exon CNVs, although only SavvyCNV and GATK gCNV

did this with a precision of at least 50%.

SavvyCNV can call off-target CNVs from exome data

To assess SavvyCNV’s ability to call CNVs from off-target reads generated by exome sequenc-

ing we benchmarked it against a truth set (see Materials and Methods) and compared its per-

formance to GATK gCNV, DeCON, EXCAVATOR2, CNVkit, and CopywriteR. The best

recall where precision is at least 50% is shown in Table C in S1 Text for two different size cate-

gories, and recall/precision is shown in Fig 3 for all CNVs.

Fig 3. Benchmarking off-target CNV calling from exome data. The data points on the plot are generated by a parameter sweep

for each tool and show the precision and recall that can be achieved with each tool. The f statistic is the harmonic mean of precision

and recall (see Materials and Methods for details).

https://doi.org/10.1371/journal.pcbi.1009940.g003
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SavvyCNV was the best performing tool on this data set, able to call 86.7% of the CNVs

with at least 50% precision, while the next best tool (DeCON) called 46.7% of CNVs with at

least 50% precision. The chief difference between the performances of the tools is SavvyCNV’s

ability to call CNVs smaller than 200kpb. SavvyCNV is able to call an additional 30 CNVs that

are smaller than 200kpb at> = 50% precision while GATK gCNV, EXCAVATOR2, CNVkit,

and CopywriteR call no true CNVs smaller than 200kB, and DeCON calls 10.

We conducted a sensitivity analysis where an alternative CNV caller was used to call the

truthset from the genome sequencing data and results were similar (see Fig C in S1 Text).

SavvyCNV can detect clinically relevant CNVs

Having validated the ability of SavvyCNV to call CNVs from off-target reads we proceeded to

screen for CNVs in our cohort of targeted panel samples from patients referred for genetic

testing to identify the cause of their diabetes or hyperinsulinism [17]. We were able to detect 6

clinically relevant CNVs both within and outside of the targeted regions (Table 1). Of these, 3

provided a new genetic diagnosis for diabetes/hyperinsulinism (rows 1–3 in Table 1), provid-

ing information which will guide clinical management and allow accurate counselling on

recurrence risk in family members and future offspring. The remaining 3 CNVs (rows 4–6 in

Table 1) confirmed clinically-reported diagnoses unrelated to the diabetes/hyperinsulinism.

These findings demonstrate the ability of SavvyCNV to detect clinically relevant CNVs and

aneuploidies from off-target data from a small targeted panel.

Discussion

SavvyCNV can detect CNVs genome-wide from off-target reads

We benchmarked SavvyCNV on its ability to call germline off-target and on-target CNVs

from targeted panel and exome sequencing data. This new tool outperformed five existing

tools, three of which (CNVkit [15], Excavator2 [14], and CopywriteR [16]) were specifically

designed to call off-target CNVs. GATK gCNV performed similarly to SavvyCNV in the on-

target (ICR96) analysis. However, SavvyCNV considerably outperforms all other tools in the

off-target analyses.

SavvyCNV finds the greatest number of true positive CNVs in all data sets while other tools

did not call certain CNVs. For example, the two partial exon CNVs in the on-target (ICR96)

Table 1. Clinically-relevant CNVs detected.

Row CNV detected (GRCh37) CNV size Clinical confirmation Reason for

referral

Clinical implications

1 Chr8:6,800,000–11,800,000

deletion

5Mb Deletion includes GATA4, causative of the patient’s

neonatal diabetes and additional features.

Diabetes Genetic diagnosis of

monogenic diabetes [21].

2 Chr8:8,000,000–10,400,000

duplication

8:10,600,000–12,000,000

deletion

2.4Mb and

1.4Mb

Deletion includes GATA4, causative of the patient’s

neonatal diabetes and additional features.

Diabetes Genetic diagnosis of

monogenic diabetes [21).

3 Chr18:19,400,000–21,800,000

deletion

2.4Mb Deletion includes GATA6, causative of the patient’s

neonatal diabetes and additional features.

Diabetes Genetic diagnosis of

monogenic diabetes [22].

4 Chr21:14,400,000–48,200,000

duplication

Chromosome Patient known to have Down Syndrome at referral. Hyperinsulinism Confirms the diagnosis of

Down syndrome.

5 Chr22:18,800,000–21,600,000

deletion

1.8Mb Confirmed by array CGH. Diabetes Provided the diagnosis of

DiGeorge syndrome.

6 ChrX:0–155,400,000

duplication

Chromosome Patient known to have XXX syndrome at referral. Diabetes Confirms the diagnosis of

XXX syndrome.

https://doi.org/10.1371/journal.pcbi.1009940.t001
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data set are detected only by SavvyCNV. This is likely because of the improved error correction

and error modelling that is incorporated into SavvyCNV over existing tools. SavvyCNV uses

singular vector decomposition to reduce noise. CNVkit, EXCAVATOR2 and CopywriteR only

correct for GC content, while GATK gCNV uses Bayesian principle component analysis

(https://www.broadinstitute.org/videos/scalable-bayesian-model-copy-number-variation-

bayesian-pca), and DeCON uses sample matching (it searches for samples in the control set

that have a similar noise profile). Unlike the other tools tested, CopywriteR does not normalise

against other samples but excludes on-target reads to make read counts representative of the

true copy number. CNVkit was primarily designed for somatic CNV calling and thus it is per-

haps not surprising that when used for germline calling it demonstrates limited performance.

SavvyCNV had a higher precision than other tools when calling off-target CNVs, an impor-

tant consideration in diagnostic and research laboratories as if false positives are reduced,

fewer CNVs will require orthogonal testing to identify the true positive results. Many of the

false positives produced by DeCON, CNVKit, and EXCAVATOR2 have a read depth ratio

close to 1, where a true full deletion should be close to 0.5 and a true full duplication should be

close to 1.5. This indicates that these tools are picking up either mosaic CNVs or noise. The

prior probability is overwhelmingly that these are noise. This is why the default for SavvyCNV

and GATK gCNV is to call only non-mosaic CNVs as this hugely reduces the number of false

positives called. Mosaic CNV calling can be enabled in SavvyCNV for projects where it is

applicable.

SavvyCNV can also be used to call CNVs from on-target sequencing and, while it is not

demonstrated in this study, it can be used to call CNVs from genome sequencing data and has

already been used to identify a novel disease-causing deletion [23].

Estimates of precision and recall rely on the quality of the truth set

On-target CNV calling from a targeted panel was tested on the ICR96 data set in which the truth

set was verified by MLPA. The truth sets for the off-target CNV calling from targeted panel and

exome sequence data were generated from CNV calls from genome sequencing data. Genome

sequencing has a much higher coverage than that generated from only off-target reads which

allows CNVs to be called more accurately enabling them to be used as a truth set. GenomeStrip

[24] was used to call the truth set as it was designed to call CNVs from genome data and was not

one of the tools under examination in this study. We also conducted a sensitivity analysis where

Canvas was used to call the truthset and results were similar. However, it is possible that there

could be some false positive and negative calls in the truth set. This would lower the precision

and recall of the tools under examination but should not bias the results in favour of a particular

tool. Furthermore, as the majority of the truthset was called using a read depth method, and Sav-

vyCNV and the tools it was compared to also use read depth methods, it is possible that they

would share technical artifacts which could artificially inflate estimates of performance.

Sensitivity depends on the size of the CNV

Smaller CNVs are harder for all software to detect. For all tools tested the larger the CNV the

better the precision and recall, however SavvyCNV performs better than the other tools tested.

SavvyCNV detects CNVs larger than 1Mb with 100% recall in off-target data from both tar-

geted panel and exome data.

Another important factor determining performance is the number of off-target reads. The

number of off-target reads will vary depending on the depth of sequencing, size of panel and

the particular capture method used. We have created an additional tool, CoverageOffTarget
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(available at https://github.com/rdemolgen/SavvySuite), which calculates the number of off-

target reads in a set of samples.

CNV calling can be optimised for precision or recall by adjusting

configuration

When calling CNVs, precision and recall are a trade-off; high recall will maximise the number of

true CNVs that are called, with the consequence that it also reduces precision resulting in a large

number of false positive CNV calls. Precision and recall can be adjusted using the bin size and

transition probability parameters—for full documentation on how to use the software see the

github page: https://github.com/rdemolgen/SavvySuite. The CoverageOffTarget tool can be run

on the set of samples to be analysed to provide a recommendation for an appropriate bin size.

Different precision levels are appropriate in different situations, influenced both by the

experimental methodology and the aims of the project. When calling CNVs on-target on a

small gene panel there will be fewer false positive calls generated due to the smaller target area

thus it may be preferable to adjust settings to enable a higher recall at the cost of a lower preci-

sion. This could also be true in a clinical context where the most important aim is to not miss a

true causative variant. In contrast, when calling CNVs genome-wide in a gene-agnostic

approach such as exome or genome sequencing, a higher precision is likely to be desirable to

avoid generating an unmanageably long list of CNVs. A large bin size may also be preferable

when the aim is to detect large CNVs as this will improve the precision for detecting these with

the trade-off of potentially missing smaller CNVs. The user can choose their preferred settings

for SavvyCNV for different project requirements.

Off-target CNV calling is ‘free’ data and increases diagnostic yield

SavvyCNV utilises data already generated by targeted panel and exome tests. These tests are

carried out in order to detect single nucleotide variants and small insertions or deletions (<50

base pairs). In some laboratories CNVs are also detected within the targeted regions using

CNV calling software while other laboratories use array-CGH or MLPA to detect CNVs.

Using SavvyCNV allows CNVs to be detected not just within the targeted regions but allows

genome-wide CNV calling. This will provide a genetic diagnosis for more patients, increasing

the diagnostic yield of these tests. We have demonstrated the ability to find relevant genetic

diagnoses using off-target CNV calling from our small targeted panel. Existing data can be rea-

nalysed with our method to reveal additional CNVs. As an illustration of this, two of the CNVs

in the ICR96 data set were found to actually be large CNVs (15Mb and 56Mb), which may

have clinical implications beyond the targeted gene.

SavvyCNV calls germline CNVs from off-target reads from exomes and small targeted gene

panels with high precision and recall, and performs better than existing tools including those

designed for off-target CNV calling. Calling CNVs from off-target reads is exploiting ‘free’

data to increase the diagnostic yield of targeted panel and exome sequencing tests and reveal

important biological findings.

Materials and methods

Ethics statement

For the patients referred to the molecular genetics department at the Royal Devon and Exeter

Hospital for genetic testing, informed written consent was obtained from the probands or

their parents/guardians, and the study was approved by the North Wales ethics committee.

The study was conducted in accordance with the Declaration of Helsinki.
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Overview of how SavvyCNV calls CNVs

SavvyCNV and the commands to run it are freely available from https://github.com/

rdemolgen/SavvySuite.

SavvyCNV calls CNVs by looking at read depth over the genome. The genome is split into

bins and each bin is assessed for statistical divergence from normal copy number. The bin size

is user specified. If there is targeted sequencing with three million reads and approximately

50% off-target reads, then a bin size of 200kpb is appropriate.

SavvyCNV normalises the read depths by first dividing the read count by the mean relative

read depth of the sample across all genomic locations, and then subsequently dividing the read

count by the mean read depth of the genomic location across all samples. SavvyCNV then uses

singular vector decomposition (SVD) to reduce noise. This identifies biases common to multi-

ple samples, which can be caused by differences in sample handling or chemistry. The SVD is

performed on the logarithm of the normalised read depth, and by default the first five singular

vectors are discarded. Fig D in S1 Text shows the effect of using SVD on precision and recall.

SavvyCNV estimates the error in each genomic location in each sample by modelling the error

using the average error in each sample across all genomic locations and the average error in

each genomic location across all samples. The total number of reads available is also analysed,

and the error estimation is increased if it would be lower than the error calculated using the

Poisson distribution. The effect on CNV calling accuracy is shown in Fig E in S1 Text while

the design of the error modelling is described in Fig F in S1 Text. The error estimate is used to

determine whether the read depth in a genomic location is significantly outside the range

expected for normal copy number. The significance probability of the read depth representing

a deletion, duplication, or normal dosage is calculated using an approximation of the cumula-

tive normal distribution (P(d< = 0.5) for deletions, P(d> = 1.5) for duplications, and P(d< =

1.0) or P(d> = 1.0) for normal dosage). These probabilities are used in a hidden Markov

model (HMM) with three states (deletion, duplication, and normal) to identify CNVs.

SavvyCNV assumes CNVs are non-mosaic by default. The HMM state probability calcula-

tions assume that the relative dosage is either< = 0.5, 1, or> = 1.5. Dosage levels must cross

the mid-point between 1 and 0.5 or 1.5 (so the probability of a deletion or duplication is calcu-

lated as greater than the probability of normal dosage) before they become evidence of a CNV.

This increases specificity at the cost of being able to detect mosaic CNVs (see Fig G in S1 Text).

Mosaic CNV calling can be enabled in SavvyCNV for projects where it is applicable, which

changes the probability calculations to use just the probability of the read depth being not 1.

Computational requirements

Run time is proportional to the number of active bins in the analysis, and proportional to the

number of samples to the power of 2.3. Calling on-target CNVs on 150 exomes takes around

half an hour, but 300 exomes would take five times as long. Calling off-target CNVs on 1700

targeted samples with a bin size of 200kpb takes around 4 hours.

If only a small number of samples are available, then CNV detection performance is lower.

Fig H in S1 Text shows how the CNV detection ability of SavvyCNV depends on the number

of samples that are analysed in a single batch.

If a large number of samples must be processed, then they can be split into groups and pro-

cessed separately. Additional software is provided alongside SavvyCNV that allows a selection of

similar samples to be selected from a large pool to use as a control for a set of samples, to reduce

run time. RAM usage depends on the bin size and the number of samples. Calling on-target

CNVs on 1700 samples with a bin size of 400 base-pairs requires 170GB of RAM, and calling off-

target CNVs on 1700 samples with a bin size of 200kpb requires around 1GB of RAM.
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Targeted panel data

2591 patients were referred to the molecular genetics department at the Royal Devon and Exe-

ter Hospital for genetic testing for maturity onset diabetes of the young (MODY), neonatal

diabetes (NDM) or hyperinsulinemic hypoglycemia (HH). Samples were sequenced on a tar-

geted gene panel test for monogenic diabetes and HH using a custom Agilent SureSelect panel

of 75 genes, targeting 200kpb and obtaining 3.4 million reads on average per sample (standard

deviation 1.6 million)[17], using an Illumina HiSeq 2500 or an Illumina NextSeq 500. Based

on the GATK best practice guidelines [18] reads were aligned to the hg19/GRCh37 human ref-

erence genome with BWA mem [25], duplicates were removed using Picard (https://

broadinstitute.github.io/picard/) and GATK IndelRealigner was used for local re-alignment.

CNV analysis was carried out on these BAM files.

Exome sequencing data

Following testing using the targeted panel, samples from 86 patients underwent exome

sequencing with Agilent SureSelect Whole Exome versions 1, 3, 4, and 5, obtaining 76 million

reads on average (standard deviation 20 million). Sequencing, alignment and variant calling

was as above for the targeted panel.

Truth set for targeted and exome data

The truth set was based on genome sequencing of the same samples. 170 of the targeted panel

samples and 42 of the exome samples were subsequently genome sequenced on an Illumina

HiSeq 2500 or an Illumina HiSeq X10. These were used to create a truth set of CNVs for testing

the off-target CNV calling from targeted panel or exome data. The CNVs in the truth set were

called by GenomeStrip [24] from the genome sequencing data. In order to remove false posi-

tive calls CNVs were filtered based on their allele balance ratios–whether the allele balance of

the variants within the called CNV was consistent with it being a true call. We used the X chro-

mosome in males to calibrate the expected allele ratio for a deletion and used the allele ratio of

normal, two copy regions to evaluate if the allele ratio for duplications fell above that. In addi-

tion 37 CNVs were added to the targeted panel truth set as they were validated by other meth-

ods such as MLPA or were aneuploidies reported by the clinician at time of referral for genetic

testing. There were 45 duplications and 30 deletions tested in the exomes, and 171 duplications

and 96 deletions tested in the targeted samples.

We conducted a sensitivity analysis where Canvas [26] was used to call the truthsets from

the genome sequencing data. The ICR96 data set [20] was used to benchmark on-target CNV

calling. This data set consists of 96 samples sequenced on a targeted panel where the truth set

of CNVs is based on 68 positive and 1752 negative MLPA tests.

Calling clinically-relevant CNVs

The remaining 2479 targeted panel samples from unsolved patients with MODY, NDM and

HH were analysed with SavvyCNV to look for off-target CNVs which might explain their phe-

notype. For clinical evidence of the CNVs, see Table 1.

CNV tool comparisons

A CNV was deemed to have been detected if there was any overlap between the call made by

the CNV caller and the truthset. To ensure a fair comparison between the different tools, for

each data set all tools were run with a variety of configurations. The size of genomic regions

that were analysed was varied for all six tools (targeted panel: 150kbp to 300kbp or 50kbp to
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2Mbp for CopywriteR; exomes: 6kbp to 50kbp or 20kbp to 2Mbp for CopywriteR; ICR96:

200bp to 600bp). The hidden Markov model transition probability was varied for DeCON and

SavvyCNV (10−10 to 0.1). All six tools provide quality metrics for the CNV calls. These metrics

were used to filter the CNV calls to reject false positive calls and retain true positive calls. All

possible quality cut-off values were tried. The best precision achieved for each possible recall

was then selected for each tool from all the generated results, and plotted in precision-recall

graphs. GATK gCNV produces a probability of CNV in each individual genomic location, but

does not estimate the boundaries of detected CNVs. The output was processed to group

together locations with probable CNVs to determine the size and boundaries of the CNVs, in

order to produce results that were comparable to the other CNV callers. EXCAVATOR2 [14]

did not run on the ICR96 data set—we contacted the authors of the tool but did not receive a

response. CopywriteR was not run on the ICR96 data set, as it is not designed to use on-target

data. The code used to run the benchmarking comparisons is available at https://github.com/

exeter-matthew-wakeling/SavvyCNV_benchmarking.

Statistics

We defined recall as the percentage of true positive CNVs that were found by the tool. We

defined precision as the percentage of the total CNVs called by the tool that were true. Several

figures use the f statistic to compare tools; this is the harmonic mean of precision and recall.

Supporting information

S1 Text. Supplementary information. Table A. Benchmarking off-target CNV calling from

targeted panel data. The table shows the performance of the different CNV calling software

based on the size of the CNV. The tools were run with multiple different parameters. For this

comparison, we have selected the configuration for each tool that provides the highest recall

with a precision of at least 50%. More variants may be detected by each tool with different con-

figuration, but with precision less than 50%. Table B. Benchmarking on-target CNV calling

from the ICR96 targeted panel data. The table shows the performance of the different CNV

calling software based on the size of the CNV. The tools were run with multiple different

parameters. For this comparison, we have selected the configuration for each tool that provides

the highest recall with a precision of at least 50%. Table C. Benchmarking on-target CNV call-

ing from the exome data. The table shows the performance of the different CNV calling soft-

ware based on the size of the CNV. The tools were run with multiple different parameters. For

this comparison, we have selected the configuration for each tool that provides the highest

recall with a precision of at least 50%. Fig A. An example of a single large CNV called by Sav-

vyCNV in chromosome 8. The CNV is a heterozygous deletion of 8:6,800,000–12,400,000,

which is a 5.6Mbp deletion. The CNV analysis uses a bin size of 200kbp, so the CNV covers 28

bins. The normalised read depth of each bin is shown as an error bar, where the error is the

estimated error calculated by SavvyCNV. Bins either side of the deletion have a normal nor-

malised read depth near 1, whereas bins inside the deletion have a normalised read depth near

0.5. This CNV overlaps a targeted gene in the sequencing capture, and this targeted data covers

two separate bins, which are marked. Note that the error estimate for these two bins is slightly

smaller than the other bins, partly because of the increased read count contributed by the tar-

geted region of the capture, however the difference is small–the majority of evidence for this

CNV comes from off-target data. Some of the bins have a large estimated error–this is caused

by large tandem repeat regions which mean the read depth is highly variable between samples.

Fig B. Benchmarking off-target CNV calling from targeted panel data. This figure shows the

equivalent of Fig 1, but using a truth set called using Canvas on whole genome sequenced
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samples. The truth set used in Fig 1 was produced by analysing whole genome samples with

GenomeStrip2 and filtered using variant allele fraction data. The data points on the plot are

generated by a parameter sweep for each tool and show the precision and recall that can be

achieved with each tool. The f statistic is the harmonic mean of precision and recall (see Mate-

rials and Methods for details). Fig C. Benchmarking off-target CNV calling from exome data.

This figure shows the equivalent of Fig 3, but using a truth set called using Canvas on whole

genome sequenced samples. The truth set used in Fig 3 was produced by analysing whole

genome samples with GenomeStrip2 and filtered using variant allele fraction data. The data

points on the plot are generated by a parameter sweep for each tool and show the precision

and recall that can be achieved with each tool. The f statistic is the harmonic mean of precision

and recall (see Materials and Methods for details). Fig D. Shows the improvement in preci-

sion/recall due to the error correction strategy used by SavvyCNV, for all three data sets. By

default, SavvyCNV uses singular vector decomposition (SVD), which identifies biases com-

mon to multiple samples, which can be caused by differences in sample handling or chemistry.

The "normal" line shows the default configuration, while the "No SVD" line is with SVD

switched off. Fig E. Shows the improvement in precision/recall due to the error modelling

strategy used by SavvyCNV. By default, SavvyCNV estimates the error in normalised read

depth in each genomic location for a sample by calculating the standard deviation for that loca-

tion across all samples, then scaling by the standard deviation for that sample across all loca-

tions. An alternative is to add the two error values. Other software assumes that the error is

Poisson in nature, and can therefore be calculated from the read depth. The error estimate is

used to determine whether the read depth in a genomic location is significantly outside the

range expected for normal copy number. In reality, the actual error is larger than the Poisson

method in some genomic locations. Modelling the error allows SavvyCNV to avoid making

false CNV calls in these highly variable regions. Fig F. Shows the error estimation accuracy of

three strategies investigated during the development of SavvyCNV. The CNV detection ability

of these three strategies is shown in Fig E in S1 Text. SavvyCNV was used to analyse the read

depths of around a thousand targeted samples with a bin size of 200kbp. The estimated error

was calculated using the three strategies and listed alongside the actual normalised read depth

value for each bin in each sample, giving a total of 32 million data points. These data points

were then grouped into 100 sets with similar estimated error, and the standard deviation of the

normalised read depth was calculated—this is the actual error. The Poisson error model calcu-

lates the estimated error by using the number of reads in the analysis bin, and it usually under-

estimates the actual error, however it does represent a theoretical minimum random error that

the normalised read depth could have. The additive error is formed by adding the standard

deviation of the genomic location across all samples with the standard deviation of the sample

across all genomic locations. This usually overestimates the error, but this cannot be corrected

by scaling. The normal error model multiplies the two error estimates together and divides by

the mean error of all samples, and is highly effective at estimating the error in the normalised

read depth. As a check, if this calculation yields an error lower than the Poisson error, then the

Poisson error is used instead. Fig G. Shows the improvement in precision/recall due to the

non-mosaic assumption used by SavvyCNV. By default, SavvyCNV assumes that CNVs are

not mosaic, although this is a configurable setting. This allows it to reduce the number of false

positive CNV calls. In mosaic mode (and DeCON, Excavator2, and CNVKit), a CNV call is

produced when the normalised read depth is significantly away from 1.0. In SavvyCNV’s

default mode (and GATK gCNV), the read depth must also be closer to 0.5 or 1.5 (representing

a whole heterozygous deletion or duplication) than 1.0 in order for a CNV to be called. Fig H.

Shows how the CNV detection ability of SavvyCNV depends on the number of samples that

are analysed in a single batch. SavvyCNV detects regions where the read depth of a sample is
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higher or lower than expected, and so it must have other samples to compare the test sample

to. A larger number of available samples improves the ability of SavvyCNV to correct for noise

and determine the expected read depth for each sample, to better detect deviations from that

expected read depth. We divided our set of targeted sequencing samples into randomly

assigned batches sized between 7 and 400 samples, and ran SavvyCNV with multiple configu-

ration settings as described for the main experiment that produced Fig 1 for each group size.

The maximum f statistic was calculated for each group size. This process was repeated 25 times

with randomly-assigned groups. This shows that the detection power of SavvyCNV for this set

of samples is lower when fewer samples are analysed. The power to detect all CNVs is fully

reached when there are at least 50 samples analysed. The power to detect larger CNVs contin-

ues to increase with larger sample batches up to a maximum with 200 in each batch.
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